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Abstract

By using the subordination relation ” ≺ ”, we introduce an interesting subclass of analytic functions
as follows:

S∗α :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1

(1− z)α
, |z| < 1

}
,

where 0 < α ≤ 1 and A denotes the class of analytic and normalized functions in the unit disk |z| < 1.
In the present paper, by the class S∗α and by the Nunokawa lemma we generalize a famous result
connected to starlike functions of order 1/2. Also, coefficients inequality and logarithmic coefficients
inequality for functions of the class S∗α are obtained.
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1. Introduction

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk on the complex plane C and let H be the class of all
analytic functions f in ∆. We denote by A the class of all functions that are analytic and normalized
by f(0) = 0 and f ′(0) = 1 in ∆. Moreover for each f ∈ A, we have the following representation:

f(z) = z + a2z
2 + · · ·+ anz

n + · · · (z ∈ ∆). (1.1)

Also, we denote by S, the class of all univalent (one–to–one) functions in ∆. The well–known class
of analytic functions p with p(0) = 1 and Re(p(z)) > 0 (z ∈ ∆) is denoted by P . Let f and g belong
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to the class A. Then we say that f is subordinate to g, written by f(z) ≺ g(z), if there exists a
Schwarz function w such that f(z) = g(w(z)) for all z ∈ ∆. In particular, if g ∈ S, then the following
equivalence relationship holds true

f(z) ≺ g(z)⇔ (f(0) = g(0) and f(∆) ⊂ g(∆)).

A function f ∈ A is said to be starlike of order γ if f satisfies

Re

{
zf ′(z)

f(z)

}
> γ (z ∈ ∆),

for some 0 ≤ γ < 1, [16]. We denote by S∗(γ) the class of starlike functions of order γ and we denote
by S∗(0) ≡ S∗ the class of starlike functions. Next, we say that a function f ∈ A belongs to the
class Q(γ) if it satisfies the following condition

Re

{
f(z)

z

}
> γ (0 ≤ γ < 1, z ∈ ∆).

Also, a function f ∈ A is said to be in the class R(γ) if f satisfies

Re {f ′(z)} > γ (0 ≤ γ < 1, z ∈ ∆).

We note that f(z) ∈ R(γ) if and only if zf ′(z) ∈ Q(γ). It is well–known that any f(z) ∈ R(γ) is
univalent in ∆ (see [12] or [21]). Let ϕ be analytic function with the positive real part mapping the
unit disk ∆ onto a domain symmetric with respect to real axis and starlike with respect to ϕ(0) = 1
and ϕ′(0) > 0. Ma and Minda [8] introduced and studied the class S∗(ϕ) including of all functions
f ∈ A so that

zf ′(z)

f(z)
≺ ϕ(z) (z ∈ ∆). (1.2)

They obtained distortion, covering, and growth theorems. The class S∗(ϕ) is generalization of many
well–known classes. For example, by selecting ϕ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1) we
have the class S∗[A,B] of Janowski starlike functions [3]. Also, the class S∗[−1, 1] is the well–known
class of starlike functions. Recently, several authors have defined many interesting subclasses of S∗
by restricting the value of zf ′(z)/f(z) to lie in a certain precise domain in the right–half plane. The
Table 1 shows more details about some subclasses of starlike functions with different choices for ϕ.

Motivated by the above classes we define.

Definition 1.1. Let f ∈ A and 0 < α ≤ 1. Then we say that a function f belongs to the class S∗α
if it satisfies the following subordination relation

zf ′(z)

f(z)
≺ 1

(1− z)α
(z ∈ ∆). (1.3)

Remark 1.2. Since the function

qα(z) :=
1

(1− z)α
= 1 +

∞∑
n=1

Qnz
n (0 < α ≤ 1), (1.4)
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Table 1: Some subclass of S∗
Authors ϕ(z) Year Ref.

Ma and Minda 1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
1992 [9]

Sokó l and Stankiewicz
√

1 + z 1996 [20]

Sokó l 3
3+(α−3)z−αz2 , (−3 < α ≤ 1) 2011 [19]

Kuroki and Owa 1 + β−α
π
i log

(
1−e2πi

1−α
β−α z

1−z

)
, (0 ≤ α < 1, β > 1) 2011 [7]

Mendiratta et al.
√

2− (
√

2− 1)
√

1−z
1+2(

√
2−1)z 2014 [10]

Mendiratta et al. ez 2015 [11]

Raina and Sokó l z +
√

1 + z2 2015 [14]

Sharma et al. 1 + 4z
3

+ 2z2

3
2016 [18]

Kumar and Ravichandran 1 + (z/k)k+z
k−z , (k = 1 +

√
2) 2016 [6]

Kargar et al. 1 + 1
2i sinα

log
(

1+zeiα

1+ze−iα

)
, (π/2 ≤ α < π) 2017 [5]

Kargar et al. 1 + z
1−αz2 , (0 ≤ α ≤ 1) 2019 [4]

where

Qn =
n+1∏
k=2

k − 2 + α

k − 1
(n = 1, 2, 3, . . .), (1.5)

is univalent and Re {qα(z)} > 2−α, by the subordination principle, if f ∈ S∗α, then

Re

{
zf ′(z)

f(z)

}
> 2−α (0 < α ≤ 1).

Indeed, the set qα(∆) lies in the right–hand half plane (see Fig. 1 for α = 1/3) and thus S∗α ⊂ S∗.
On the other hand 1/2 ≤ 2−α < 1, and thus by [15] the members of the class S∗α are univalent. Also,
S∗1 becomes the class of starlike functions of order 1/2.

The following lemmas will be useful.

Lemma 1.3. (Nunokawa [13]) Let p(z) be an analytic function in |z| < 1 of the form

p(z) = 1 +
∞∑
n=m

cnz
n (cm 6= 0),

with p(z) 6= 0 in |z| < 1. If there exists a point z0, |z0| < 1, such that

Re{p(z)} > 0 for |z| < |z0|



850 Naraghi, Najmadi, Taherkhani

1.0 1.5 2.0 2.5 3.0 3.5
-1.0

-0.5

0.0

0.5

1.0

Figure 1: The boundary curve of q1/3(∆)

and
Re{p(z0)} = 0, a = |p(z0)| 6= 0,

then we have
z0p
′(z0)

p(z0)
= ik,

where k is real number and

k ≥ m

2

(
a+

1

a

)
≥ m ≥ 1 when p(z0) = ia (1.6)

and

k ≤ −m
2

(
a+

1

a

)
≤ −m ≤ −1 when p(z0) = −ia. (1.7)

Lemma 1.4. (Rogosinski [17]) Let q(z) =
∑∞

n=1 qnz
n be analytic and univalent in ∆, and suppose

that q(z) maps ∆ onto a convex domain. If p(z) =
∑∞

n=1 pnz
n is analytic in ∆ and satisfies the

following subordination
p(z) ≺ q(z) (z ∈ ∆),

then
|pn| ≤ |q1| (n = 1, 2, . . .).

In the present paper, we first find a lower bound for Re{f(z)/z} when f ∈ S∗α and as a corollary
we improve the well–known result concerning starlike functions of order 1/2. Also, we estimate the
coefficients and logarithmic coefficients of functions f which belong to the class S∗α.

2. Main Results

The first result is the following.
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Theorem 2.1. Let f ∈ S∗α. Then

Re

{
f(z)

z

}
>

1

2α
(0 < α ≤ 1). (2.1)

This means that S∗α ⊂ Q(2−α). The result is sharp.

Proof . Let the function f ∈ A belongs to the class S∗α. We define(
1− 2−α

)
p(z) + 2−α =

f(z)

z
(z ∈ ∆). (2.2)

Then p is analytic in ∆ and p(0) = 1. By an easy calculation, (2.2) yields that

zf ′(z)

f(z)
= 1 +

(1− 2−α) zp′(z)

(1− 2−α) p(z) + 2−α
(z ∈ ∆). (2.3)

Suppose that there exists a point z0 ∈ ∆ so that

Re{p(z)} > 0 for |z| < |z0|

and
Re{p(z0)} = 0 a = |p(z0)| 6= 0.

Applying Nunokawa’s lemma, we have
z0p
′(z0)

p(z0)
= ik, (2.4)

where

k ≥ 1 + a2

2a
when p(z0) = ia (2.5)

and

k ≤ −1 + a2

2a
when p(z0) = −ia. (2.6)

We consider the case p(z0) = ia. The proof of the case p(z0) = −ia is similar and therefore we omit
the details. From (2.3), we have

Re

{
z0f

′(z0)

f(z0)

}
= Re

{
1 +

(1− 2−α) z0p
′(z0)

p(z0)
× p(z0)

(1− 2−α) p(z0) + 2−α

}
= Re

{
1 +

(
1− 2−α

)
ik

ia

(1− 2−α) ia+ 2−α

}
= 1− Re

{
βak

(1− β) + iaβ

}
(β := 1− 2−α)

= 1− β(1− β)ka

(1− β)2 + a2β2

≤ 1− β(1− β)

2

1 + a2

(1− β)2 + a2β2

< 1− 1

2

β

1− β
(2.7)

≤ 1− β = 2−α (when β → 0+ or β → (1/2)−).
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To justify the inequality (2.7), we have left to show that for any a ∈ (0,∞) the following inequality
hlods

h(a) :=
1 + a2

(1− β)2 + a2β2
>

1

(1− β)2
= h(0).

Since h is increasing function, this is clear. But by Lemma 1.3 this is contradictory and we have

Re {p(z)} > 0 (z ∈ ∆).

Therefore the inequality (2.1) holds. For the sharpness consider the function

`α(z) :=
z

(1− z)α
(0 < α ≤ 1) (2.8)

= z + αz2 +
1

2
α(α + 1)z3 +

1

6
α(α + 1)(α + 2)z4 + O(z5).

It is clear that `α is holomorphic and

z`′α(z)

`α(z)
= 1 +

αz

1− z
=: Hα(z) (z ∈ ∆).

Since qα(z) = 1/(1−z)α is univalent, Hα(0) = 1 = qα(0) and Hα(∆) ⊂ qα(∆) (because Re{Hα(z)} =
1 − α/2 ≥ 2−α = Re{qα(z)} when 0 < α ≤ 1), we get Hα(z) ≺ qα(z). This means that `α(z) ∈ S∗α.
On the other hand

Re

{
`α(z)

z

}
= Re

{
1

(1− z)α

}
>

1

2α
(0 < α ≤ 1).

This completes the proof. �

The Figure 2 shows the image of the unit disk under the function `α(z) for α = 1/2.

0 2 4 6
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1

2

Figure 2: The boundary curve of `1/2(∆)

Taking α = 1 in the above Theorem 2.1, we get the following well–known result.

Corollary 2.2. If

Re

{
zf ′(z)

f(z)

}
>

1

2
(z ∈ ∆),

then

Re

{
f(z)

z

}
>

1

2
(z ∈ ∆).
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Since 1/2 ≤ 2−α < 1 when 0 < α ≤ 1, we have the following.

Corollary 2.3. Let f be starlike function of order γ(1/2 ≤ γ < 1). Then we have

Re

{
f(z)

z

}
> γ (1/2 ≤ γ < 1, z ∈ ∆).

In other words, we have S∗(γ) ⊂ Q(γ) when 1/2 ≤ γ < 1.

We remark that the Corollary 2.3 generalizes the well–known result given in the Corollary 2.2.
Next, we obtain the sharp estimates of coefficients of f(z) = z +

∑∞
n=2 anz

n ∈ S∗α.

Theorem 2.4. If f(z) = z +
∑∞

n=2 anz
n ∈ S∗α, then

|an| ≤
n∏
k=2

k − 2 + α

k − 1
(n = 2, 3, . . .). (2.9)

The inequality is sharp.

Proof . Let f of the form (1.1) belongs to S∗α. Then by Definition 1.1 we have φ(z) ≺ qα(z) where

φ(z) :=
zf ′(z)

f(z)
= 1 +

∞∑
n=1

λnz
n (z ∈ ∆) (2.10)

and qα is given by (1.4). Since qα is convex in the unit disk ∆, we get

|λn| ≤ |Q1| = α, (2.11)

where α is the coefficient of z in the Taylor series of qα. Now, from the relation (2.10), we get

zf ′(z) = φ(z)f(z). (2.12)

Equating the coefficients of zn in both sides of the last equation (2.12) we have

(n− 1)an = λn−1 + λn−2a2 + · · ·+ λ1an−1 (n = 2, 3, . . .). (2.13)

A simple calculation and using (2.11), give us

(n− 1)|an| ≤ α

n∑
k=2

|ak−1| (|a1| = 1), (2.14)

or

|an| ≤
α

n− 1

n∑
k=2

|ak−1|.

It is a simple exercise (by using the mathematical induction) that

α

n− 1

n∑
k=2

|ak−1| ≤
n∏
k=2

k − 2 + α

k − 1
.

Therefore, we have the inequality (2.9). Also, it is easy to see that equality occurs for the coefficients
of the function `α(z) given by (2.8). This completes the proof. �

Putting α = 1, in the Theorem 2.4, we have the following well–known result
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Corollary 2.5. Let f(z) = z +
∑∞

n=2 anz
n be starlike function of order 1/2. Then |an| ≤ 1.

We note that the above Corollary 2.5 is trivial, because K ⊂ S∗(1/2) ⊂ Q(1/2), where K is the class
of convex functions and for each function f ∈ K, we have |an| ≤ 1. Also, Dvorák [2] proved that if
f of the form (1.1) is odd and belongs to Q(1/2), then |an| ≤ 1.

The logarithmic coefficients γn := γn(f) of f ∈ A are defined by

log

{
f(z)

z

}
=
∞∑
n=1

2γnz
n (z ∈ ∆). (2.15)

The logarithmic coefficients have had great impact in the development of the theory of univalent func-
tions. For example, de Branges by using of this concept, was able to prove the famous Bieberbach’s
conjecture [1]. Thus, the next theorem is related to logarithmic coefficients.

Theorem 2.6. Let f ∈ A belongs to the class S∗α, 0 < α ≤ 1 and γn be the logarithmic coefficients
of f . Then

|γn| ≤
α

2n
(n ≥ 1).

The inequality is sharp.

Proof . Let f ∈ A and 0 < α ≤ 1. If f belongs to the class S∗α, then by using the Definition 1.1 we
have

zf ′(z)

f(z)
− 1 = z

(
log

{
f(z)

z

})′
=
∞∑
n=1

2nγnz
n ≺ qα(z)− 1,

where qα given by (1.4). Moreover if f ∈ S∗α, then

∞∑
n=1

2nγnz
n ≺

∞∑
n=1

Qnz
n (0 < α ≤ 1),

where Qn defined in (1.5). Thus by Lemma 1.4 we obtain that |γn| ≤ α/2n for n ≥ 1. It is easy to see
that equality occurs for the logarithmic coefficients of the function `α(z) given by (2.8) concluding
the proof. �
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[19] J. Sokó l, A certain class of starlike functions, Comput. Math. Appl. 62 (2011) 611–619.
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