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Abstract

In this paper, we prove a new common fixed point in a general topological space with a τ -distance.
Then we deduce two common fixed point theorems for two new classes of contractive selfmappings
in complete bounded metric spaces. Moreover, an application to a system of differential equations is
given.
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1. Introduction

The Study of Shrinking or contractive selfmappings on a metric space (X, d) (That is, d(Tx, Ty) <
d(x, y), for all x 6= y ∈ X ) was initiated by Nemytzki [12]. Moreover, as mentioned in [4], to obtain a
fixed point of such mappings, it is necessary either to add the assumption that the space is compact,
or else assume that there exists a point x ∈ X for which {T nx} contains a convergent subsequence.
In [14], the author showed that every weakly contractive mapping defined on a complete metric
space (X, d) has a unique fixed point, in other words, every selfmapping T : X → X satisfying
d(Tx, Ty) ≤ d(x, y) − φ(d(x, y)), for all x, y ∈ X, where φ : [0,+∞) → [0,+∞) is a continuous
nondecreasing function such that φ(0) = 0. Since then, many results have appeared in the literature
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concerning this class of mappings [5, 10, 3, 13].
The authors in [1] introduced the concept of τ−distances in general topological spaces (X, τ) which
extend many known spaces in the literature. Further, they proved a version of the well-known Ba-
nach’s fixed point for this general setting.

In this paper, using the concept of τ−distance, we first establish a new common fixed point
theorem for weakly compatible selfmappings which yields the fixed point proved by Jungck and
Rhoades [? ] in a new setting. As application of this result, we get a new common fixed point
theorem for shrinking selfmappings without using neither the compactness of the space nor the fact
that there exists a point x ∈ X for which {T nx} contains a convergent subsequence. In addition, we
prove a theorem for a new class of weakly contractive selfmappings, we call it Eθ−weakly contractive
selfmappings, where the auxiliary function φ satisfies φ(1) = 0 and inf

t>1
φ(t) > 0.

Furthermore, based on one of our results, we study the existence and uniqueness of solutions for a
system of differential equations.

2. Preliminaries

In this section, we recall some definitions and results needed in the sequel.
Let (X, τ) be a topological space and p : X × X → [0,∞) be a function. For any ε > 0 and any
x ∈ X, let Bp(x, ε) = {y ∈ X : p(x, y) < ε}.

Definition 2.1. (Definition 2.1 [1]) The function p is said to be τ − distance if for each x ∈ X
and any neighborhood V of x, there exists ε > 0 such that Bp(x, ε) ⊂ V .

Definition 2.2. A sequence in a Hausdorff topological space X is a p-Cauchy if it satisfies the usual
metric condition with respect to p.

Definition 2.3. (Definition 3.1 [1])
Let (X, τ) be a topological space with a τ -distance p.

1. X is S-complete if for every p-Cauchy sequence (xn), there exists x in X with lim p(x, xn) = 0.

2. X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists x in X with limxn = x
with respect to τ .

3. X is said to be p-bounded if sup{p(x, y)/x, y ∈ X} <∞.

Lemma 2.4. (Lemma 3.1[1])
Let (X, τ) be a Hausdorff topological space with a τ−distance p, then

1. p(x, y) = 0 implies x = y.

2. Let (xn) be a sequence in X such that limn→∞ p(x, xn) = 0 and limn→∞ p(y, xn) = 0, then
x = y.

Definition 2.5. ([? ]) Two selfmappings f and g of a set X are said to be weakly compatible if
they commute at there coincidence points; i.e., if fu = gu for some u ∈ X, then f ◦ gu = g ◦ fu.

Definition 2.6. ([5])
Θ is the class of all functions θ : [0,+∞) −→ [0,+∞) satisfying:
i) θ is a monotone increasing function,
ii) θ(t) = 0 if and only if t = 0.
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Definition 2.7. ([5]) Ψ is the class of all functions ψ : [0,+∞) −→ [0,+∞) satisfying:
i) ψ is nondecreasing,
ii) limψn(t) = 0, for all t ∈ [0,∞).

Definition 2.8. Φ is the class of all functions φ : [1,+∞) −→ [0,+∞) satisfying:
i) φ(t) = 0 if and only if t = 1,
ii) inf

t>1
φ(t) > 0.

3. Main results

In this section, we begin by proving a new Theorem and a Lemma needed in the next.

Theorem 3.1. Let (X, τ) be a p−bounded Hausdorff topological space with a τ−disatnce p.
Let f and g be two weakly compatible selfmappings of X, satisfying the following conditions:

i) g(X) ⊂ f(X),
ii) p(gx, gy) ≤ ψ(p(fx, fy)),

for all x, y ∈ X and ψ ∈ Ψ.
If the range of f or g is S−complete subspace of X, then f and g have a unique common fixed point.

Proof . Let x0 ∈ X. By the condition (i), it follows that there exists x1 ∈ X such that g(x0) = f(x1),
continuing this process, we can choose xn ∈ X such that f(xn) = g(xn−1) for any n ∈ N. Using (ii),
we get for all n,m ∈ N,

p(fxn, fxn+m) = p(gxn−1, gxn+m−1)

≤ ψ(p(fxn−1, fxn+m−1))

...

≤ ψn(p(fx0, fxm))

≤ ψn(M),

(3.1)

where M = sup{p(x, y)/x, y ∈ X}. Since limn→∞ ψ
n(M) = 0, we see that {fxn} is a p−Cauchy

sequence.
Suppose that f(X) is S−complete, which implies that there exists u ∈ X such that limn→∞ p(fu, fxn) =
0, and therefore limn→∞ p(gu, gxn) = limn→∞ p(gu, fxn) = 0. Using Lemma 2.4, we get gu = fu.
Now, the assumption that f and g are weakly compatible implies

f ◦ gu = g ◦ fu = g ◦ gu = f ◦ fu. (3.2)

Suppose that p(g ◦ gu, gu) 6= 0. From (ii), it follows

p(g ◦ gu, gu) ≤ ψ(p(f ◦ gu, fu))

< p(g ◦ gu, gu),
(3.3)

this leads to a contradiction. Thus g ◦ gu = gu. Also f ◦ gu = g ◦ fu = g ◦ gu = gu, which implies
that gu is a common fixed point of f and g.
Now, if the range of g is S-complete subspace of X, then limn→∞ p(gv, gxn) = 0 for some v ∈ X.
From (i), there exists w ∈ X such that gv = fw and the proof that gw is a common fixed point of
f and g is the same as that given when f(X) is S-complete.
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For the uniqueness, suppose that there exist u, v ∈ X such that f(u) = u = g(u) and f(v) = v = g(v)
with u 6= v. Then by condition (ii) and Lemma 2.4 it follows

p(u, v) = p(gu, gv)

≤ ψ(p(fu, fv))

= ψ(p(u, v))

< p(u, v),

which is a contradiction, then u = v. �
For f = IdX in Theorem 3.1, we get.

Corollary 3.2. (Theorem 4.1 in [1]).
Let (X, τ) be a Hausdorff topological space with a τ−distance p. Suppose that X is p−bounded and
S−complete. Let f be a selfmapping of X such that

p(fx, fy) ≤ ψ(p(x, y)),

for all x, y ∈ X. Then f has a unique fixed point.

Now, we give an example to support our result.

Example 3.3. Let X = [1, 18] and d(x, y) = |x − y| the usual metric. Consider the function
p : X ×X → [0,∞) defined by

p(x, y) = |x− y|e|x−y|, ∀x, y ∈ X.

It is easy to see that the function p is a τ−distance on X where τ is the usual topology. Define
f, g : X → X by

gx =

{
2x2 − 1 if x ∈ [1, 3

2
]

1 else
,

fx =

{
4x4 − 3 if x ∈ [1, 3

2
]

1 else
.

We take ψ : [0,∞)→ [0,∞) such that ψ(t) = 2
3
t.

Thus all the assumptions of Theorem 3.1 are satisfied and 1 is the unique common fixed point of f
and g.

Lemma 3.4. Let (X, d) be a metric space and p : X ×X → R+ be a function defined by

p(x, y) = eθ(d(x,y)) − 1, (3.4)

such that θ ∈ Θ. Then p is a τd-distance on X where τd is the metric topology.

Proof . Let (X, τd) be the topological space with the metric topology τd and V an arbitrary
neighborhood of an arbitrary x ∈ X, then there exists ε > 0 such that Bd(x, ε) ⊂ V , where
Bd(x, ε) = {y ∈ X, d(x, y) < ε} is the open ball.
It easy to see that Bp(x, e

θ(ε) − 1) ⊂ Bd(x, ε), indeed:
Let y ∈ Bp(x, e

θ(ε)− 1), then p(x, y) < eθ(ε)− 1, which implies that eθ(d(x,y)) < eθ(ε). Since θ supposed
increasing, we get d(x, y) < ε. �

Using Theorem 3.1 and Lemma 3.4, we now prove the following Theorem.
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Theorem 3.5. Let (X, d) be a bounded complete metric space (X, d). Let f and g be two weakly
compatible selfmapping of X satisfying the following conditions:

i) g(X) ⊂ f(X),
ii) inf

x 6=y
{θ[d(fx, fy)]− θ[d(gx, gy)]} > 0,

where θ ∈ Θ. Then f and g have a unique common fixed point.

Proof . We put α = inf
x6=y
{θ[d(fx, fy)]− θ[d(gx, gy)]}, this implies that

θ(d(gx, gy)) ≤ θ(d(fx, fy))− α, (3.5)

for all x 6= y ∈ X. Hence

eθ(d(gx,gy)) ≤ keθ(d(fx,fy)), (3.6)

such that k = e−α < 1.
Let’s consider the function p : X ×X → [0,∞) defined by

p(x, y) = eθ(d(x,y)) − 1,

which is a τd−distance on X as proved in Lemma 3.4, where τd is the metric topology. By taking
ψ(t) = kt in Theorem 3.1 for all t ∈ [0,∞), we get

p(gx, gy) ≤ kp(fx, fy). (3.7)

Finally, we conclude that f and g have a unique common fixed point. �
The following example illustrates Theorem 3.5.

Example 3.6. Let X = [0, 1], with

d(x, y) =

{
1 + max{x, y} if x 6= y
0 if x = y

.

Define f, g : X → X by fx = 1 − x and gx = 1
2
, for all x ∈ X and θ : [0,∞) → [0,∞), such that

θ(t) = ln(1 + t), for all t ∈ [0,∞). It is easy to see that g(X) ⊂ f(X) and f, g are weakly compatible.
On the other hand, we have for all x < y ∈ X

θ(d(fx, fy))− θ(d(gx, gy)) = ln(3− x) ≥ ln 2 > 0.

Then f and g satisfy all assumptions of Theorem 3.5 and have the unique fixed point which equal to
1
2
.

Example 3.7. Let X = B(0, 1), the unit closed ball of a real Banach space, endowed with the metric

d(x, y) =

{
1 if x 6= y
0 if x = y

.

Define f, g : X → X by fx = −x and gx = 0 for all x ∈ X.

θ(d(fx, fy))− θ(d(gx, gy)) = θ(d(−x,−y)) = 2, for all x 6= y ∈ X,

with θ = 2t. Therefore f and g satisfy all conditions in Theorem 3.5 such that f and g have the
unique fixed point which is equal to 0.
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Remark 3.8. The above examples show that there is no relationship between compactness and the
condition inf

x 6=y
{θ[d(fx, fy)]− θ[d(gx, gy)]} > 0. Indeed:

In the first example, X = [0, 1] is compact and inf
x 6=y
{θ[d(fx, fy)]−θ[d(gx, gy)]} > 0. On the other side,

for X = [0, 1], fx = 1
2
x and gx = 1

3
x, the space X is compact and inf

x 6=y
{θ[d(fx, fy)]− θ[d(gx, gy)]} =

0 with θ(t) = 2t. Moreover, in the second example, X is not compact and inf
x 6=y
{θ[d(fx, fy)] −

θ[d(gx, gy)]} > 0.

As application of Theorem 3.5, we get a result for a new class of weakly contractive maps defined
as follows.

Definition 3.9. Let (X, d) be a metric space and f, g : X −→ X be a two weakly compatible
selfmappings of X such that g(X) ⊂ f(X).
f and g are said to be Eθ-weakly contractive if

i) For all x 6= y ∈ X such that fx = fy, we have fx = gx,
ii) θ(d(gx, gy)) ≤ θ(d(fx, fy))− φ(θ(d(fx, fy)) + 1), for all x, y ∈ X,

where θ ∈ Θ and φ ∈ Φ.

Theorem 3.10. Let (X, d) be a bounded complete metric space and f, g be two Eθ−weakly maps on
X. Then f and g have a unique common fixed point.

Proof . Let x 6= y ∈ X, then we have the two following cases:
Case1: If fx = fy, then Definition 3.9 implies that fx = gx = fy = gy. Since f and g are weakly
compatible, we have g ◦ fx = f ◦ gx = f ◦ fx = g ◦ gx . Again, from Definition 3.9, we get

θ(d(g ◦ fx, fx)) = θ(d(g ◦ fx, gx)

≤ θ(d(f ◦ fx, fx))− φ(θ(d(f ◦ fx, fx)) + 1)

= θ(d(g ◦ fx, fx))− φ(θ(d(g ◦ fx, fx)) + 1).

Then f and g have a unique common fixed point.
Case2: If fx 6= fy, it follows from Definition 3.9,

0 < inf
t>1

φ(t) ≤ φ(θ(d(fx, fy)) + 1) ≤ θ(d(fx, fy))− θ(d(gx, gy)), (3.8)

hence infx6=y{θ(d(fx, fy)))− θ(d(gx, gy))} > 0. According to Theorem 3.5, we conclude that f and
g have a unique common fixed point. �

Example 3.11. Let X = {0, 1, 2, 3} with the following metric

d(x, y) =

{
max{x, y} if x 6= y
0 if x = y

.

Define f, g : X → X by

f0 = 0, f1 = 0, f2 = 1, f3 = 2

and
g0 = 0, g1 = 0, g2 = 0, g3 = 1.

We take θ(t) = 2t, for all t ∈ [0,∞) and

φ(t) =

{
0 if t = 1
1 if t > 1

.

Then f and g satisfy all conditions in Theorem 3.10 and 0 is the unique common fixed point. Note
that φ is not continous at 1.
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4. Application

In this section, we will prove the existence and uniqueness of a common solution for the tow
nonlinear integral equations {

x′(t) = K(t,
∫ t
0
K(s, x(s))ds),

x(0) = 0
(4.1)

and {
x′(t) = K(t, x(t)),
x(0) = 0

. (4.2)

where, x ∈ C[0, T ], the space of all continuous functions from [0, T ] into R, with T > 0.
K : [0, T ]× R→ R is a continuous mapping.
Let X = C[0, T ] endowed by the metric d : X ×X → R+ defined by

d(x, y) = sup
t∈[0,T ]

|x(t)− y(t)|,

it is clear that (X, d) is a complete metric space.
The differential equations (4.1) and (4.2) are equivalent to the integral equations

x(t) =

∫ t

0

K(s,

∫ s

0

K(ξ, x(ξ))dξ)ds, t ∈ [0, T ] (4.3)

and

x(t) =

∫ t

0

K(s, x(s))ds, t ∈ [0, T ], (4.4)

respectively.
Define a mappings f, g : X → X as follows

f(x)(t) =

∫ t

0

K(s, x(s))ds, t ∈ [0, T ] (4.5)

and

g(x)(t) =

∫ t

0

K(s,

∫ s

0

K(ξ, x(ξ))dξ)ds, t ∈ [0, T ] (4.6)

for all x ∈ X.
So the problem of the common solution of the differential equations is equivalent to finding the
common fixed point of the mappings f and g.
Suppose that the above assumptions hold, then we have the following Theorem:

Theorem 4.1. If there exists M > 0 such that

|K(s, x)−K(s, y)| ≤ 1

T
[|x− y| −M ], (4.7)

for all s ∈ [0, T ] and x, y ∈ X such that x 6= y. Then the nonlinear integral equations (4.5) and (4.6)
have a unique common solution.
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Proof . Clearly, g(X) ⊂ f(X) and f, g are weakly compatible, so, it remains for us to show that f
and g satisfy (ii) in Theorem 3.5.
Let x 6= y ∈ X and t ∈ [0, T ], then by (4.5), (4.6) and (4.7), we have

|g(x)(t)− g(y)(t)|

=

∣∣∣∣∫ t

0

K(s,

∫ s

0

K(ξ, x(ξ))dξ)ds−
∫ t

0

K(s,

∫ s

0

K(ξ, y(ξ))dξ)ds

∣∣∣∣
≤
∫ t

0

1

T

[ ∣∣∣∣∫ s

0

K(ξ, x(ξ))dξ −
∫ s

0

K(ξ, y(ξ))dξ

∣∣∣∣−M]ds
≤
∫ t

0

1

T

[
|f(x)(s)− f(y)(s)| −M

]
ds

≤ d(fx, fy)−M,

(4.8)

hence
d(gx, gy) ≤ d(fx, fy)−M

for all x 6= y ∈ X. Then inf
x6=y
{d(fx, fy) − d(gx, gy)} ≥ M > 0, which implies by Theorem 3.5 that

there exists a unique common solution of the integral equations (4.5) and (4.6). �

5. Some open problems

Very recently, Gordji et al.[6] introduced the concept of orthogonal sets as follows

Definition 5.1. [6]. Let X 6= ∅ and let ⊥⊂ X×X be a binary relation. If ⊥ satisfies the following
hypothesis:

∃x0 : (∀y, y ⊥ x0) or (∀y, x0 ⊥ y),

then it called an orthogonal set (briefly O-set). we denote this O − set by (X,⊥).

For more details, we refer the reader to see [6]. Then, an extension of Banach’s contraction principle
is presented. In the same direction of research, in 2017 Baghani et al. [2] defined an extension of
F-contraction on orthogonal sets namely ⊥F -contraction and proved a fixed point theorem for this
contractions. In the setting of orthogonal sets we can see also ([7, 11]). Motivated by this notion,
the first open problem can be introduced as follows:
Open problem I: Common fixed point theorems for contractive selfmappings on orthogonal metric
spaces and their applications to nonlinear differential equations.
On the other hand, the authors in [9], start the R-metric spaces, via this idea we can state:
Open problem II: Common fixed point theorems for contractive selfmappings on R-metric spaces
and their applications to nonlinear differential equations.
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