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Abstract

In this paper, authors discover two interesting identities regarding Gauss—Jacobi and trapezium type
integral inequalities. By using the first lemma as an auxiliary result, some new bounds with respect to
Gauss—Jacobi type integral inequalities for a new class of functions called strongly (hy, hy)—preinvex
of order ¢ > 0 with modulus u > 0 via general fractional integrals are established. Also, using the
second lemma, some new estimates with respect to trapezium type integral inequalities for strongly
(hy1, he)—preinvex functions of order ¢ > 0 with modulus p > 0 via general fractional integrals are
obtained. It is pointed out that some new special cases can be deduced from main results. Some
applications to special means for different real numbers and new approximation error estimates for
the trapezoidal are provided as well. These results give us the generalizations of some previous known
results. The ideas and techniques of this paper may stimulate further research in the fascinating field
of inequalities.
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1. Introduction

The theory of inequalities is known to play an important role in almost all areas of pure and applied
sciences. Richard Bellman stated succinctly, at the Second International Conference on Mathemat-
ical Inequalities, Oberwolfach, Germany, July 30-August 5, 1978, ...there are three reasons for the
study of inequalities: practical, theoretical, and aesthetic.

Before we start, the following notations are used throughout this paper. We use I to denote an
interval on the real line R = (—o0, +00) and set of integrable functions on the interval [q, ¢2|, where

¢1 < q2 by L{q1, ¢2).

Definition 1.1. A function f : I — R is said to be convex, if

[t + (1 =t)g) < tf(q) + (1 —1)f(q) (1.1)
for all g1,q0 € T and t € [0, 1].

The following inequality, named Hermite-Hadamard inequality, is one of the most famous inequalities
in the literature for convex functions.

Theorem 1.2. Let f: I C R — R be a convex function on I and q1,qs € I with q; < qo. Then the
following inequality holds:

/ (q1 ; Q2> : P i 7 /q2 f(@)de < o —g f((h)' (1.2)

The inequality 18 also acknowledged as the trapezium inequality.

The trapezium type inequality has remained an area of great interest due to its wide applications
in the field of mathematical analysis. For other recent results which generalize, improve and extend
the inequality through various classes of convex functions interested readers are referred to
[T, 2, 4], [7]-[12], [15]-[21], |23, 24, 26], 28, 30, 31].

The Gauss—Jacobi type quadrature formula has the following

—+00

/ @ 0 — ) f@)dr = S Busf(w) + Rl (1.3)

q1 k=0

for certain By, x, v, and rest RF |f|, see [27].

Recently in [14], Liu obtained several integral inequalities for the left-hand side of ([L3). Also in
[20], Ozdemir et al. established several integral inequalities concerning the left-hand side of via
some kinds of convexity.

Let us recall some special functions and evoke some basic definitions as follows.

Definition 1.3. For k> 0 and x € C, the k-gamma function is defined by

| I-n Z-1
[e(z) = lim nik” (nk)e

A (1.4)

where
(@) =x(x+Ek)-...- (x4 (n—1)k).
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One can note that
Fe(a+ k) = alg(«). (1.5)

Definition 1.4. ([17]) Let f € L|q1, q2]. Then k-fractional integrals of order a,k > 0 with g1 > 0
are defined as

1) = oo [ @00 o>

qaf () Jo

1) = e [ =

For k = 1, k-fractional integrals give the classical Riemann-Liouville integrals.

and

=R

“Lf)dt, gy > . (1.6)

Definition 1.5. ([29]) A set S C R is said to be invex set with respect to the mapping ¢ : Sx S —
R, if x + t((y,x) € S for every x,y € S and t € [0, 1].

The invex set S is also termed an (-connected set.

Definition 1.6. Let S C R be an invezr set with respect to ¢ : S x S — R. A function f: S —
[0, +00) is said to be preinvex with respect to (, if for every x,y € S and t € [0, 1],

fla+t(y,x)) <A —=t)f(z) +tf(y).
For the motivation of them as well as the geometric interpretation of an invex set and a preinvex func-
tion with respect to an invex set, respectively, interested readers can see [8, 9, 111 [16, 18| 211 23, B31].
The notion of strongly convex functions was introduced by Karamardian in [6] and Polyak in [22].

Definition 1.7. A function f: S CR — R is said to be a strongly convex function for modulus
>0, if

F(L =tz +ty) < (L=)f(x) +tf(y) — pt(l = t)(y — )*
forall x,y € S and t € [0,1].

In [6], Karamardian noticed that every strongly monotone has a gradient map if and only if all
differentiable function is strongly convex. Higher order strongly convex functions introduced by Lin
et al. in [I3], to abridge the research of linear programming with equilibrium constraints.

Definition 1.8. A function f: S CR — R is said to be a strongly convex function for modulus
> 0 with order o > 0, if

F(A =tz +ty) < (1 =1)f(x) +1f(y) — pt(l =) (y — =)°
for all z,y € S and t € [0, 1].

Recently, Rashid et al. in [23], defined the following class of strongly preinvex functions of higher
order.

Definition 1.9. A function f : S — R s said to be strongly h-preinver of order o > 0 with
modulus p > 0 with respect to ( : S x S — R, if

fla+tC(y, ) < h(L—=1)f(x) + h(t)f(y) — pt(L — )¢ (y, x) (1.7)
forallx,y € S and t € [0,1].
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Also, let define a function ¢ : [0, +00) — [0, +00) satisfying the following conditions:

1
/@dt<+oo, (1.8)
o ¢
L2 gl et (1.9)
Al ") = T 2T S '
S0(7“)<ASO<S) for s <r (1.10)
2 T - '
p(r) _ »(s) (), 1_s
_ < P s <2< .
5 T | Sl —sl= g for o < 2 <2 (1.11)

where A;, Ay, A3 > 0 are independent of r,s > 0. If p(r)r® is increasing for some a > 0 and % is
decreasing for some 8 > 0, then ¢ satisfies ((1.8)—(1.11]), see [25]. Therefore, we define the following
left—sided and right—sided generalized fractional integral operators, respectively, as follows:

o f(2) = /x %f(t)dt, T > qi, (1.12)
a5 of () = /q2 %f(t)dta T < (. (1.13)

The most important feature of generalized fractional integrals is that they generalize some types
of fractional integrals such as Riemann-Liouville fractional integral, £~Riemann-Liouville fractional
integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional in-
tegrals, etc., see [24].

Motivated by the above literatures, the main objective of this paper is to discover in Section [2| and in
Section [3] two interesting identities and to established some new bounds regarding Gauss—Jacobi and
Hermite-Hadamard type integral inequalities for a new class of functions called strongly (hq,ho)—
preinvex of order o > 0 with modulus p > 0 via general fractional integrals. By using in Section
the first lemma as an auxiliary result, some new estimates with respect to Gauss—Jacobi type integral
inequalities for strongly (hq, he)—preinvex mappings of order ¢ > 0 with modulus p > 0 via general
fractional integrals will be given. Also, using in Section [3the second lemma, some new estimates with
respect to Hermite-Hadamard type integral inequalities for strongly (hy, he)—preinvex of order o > 0
with modulus p > 0 via general fractional integrals will be obtained. It is pointed out that some new
special cases will be deduced from main results. In Section [, some applications to special means
for different real numbers and new approximation error estimates for the trapezoidal will be given.
In Section [5] a briefly conclusion and future research is given as well. These results will give us the
generalizations of some previous known results. The sharpness for bounds regarding Gauss—Jacobi
integral inequalities and approximation error estimates for trapezoidal quadrature formulas compare
with other published papers will be given in the future project.

2. Gauss—Jacobi type inequalities via general fractional integral

Throughout this study, for brevity, we denote P = [g1,¢1 + ((¢2,¢1)] € R a closed invex subset, P°
is the interior of P and

o= [ AL 4y o, C(gnar) >0
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Also, let define the functions hy, hs : [0,1] — [0, +00).

Now, we are in position to introduce the following interesting class of functions.

Definition 2.1. A function f: P — R is said to be strongly (hy, hy)-preinvez of order o > 0 with
modulus p > 0 with respect to ( : P x P — R, if

flz+1C(y, x)) < ha(t) f(x) + ha(t) f(y) — pt (1 = £)¢7 (y, ) (2.1)

for all x,y € P and t € [0, 1].

Remark 2.2. Taking hi(t) = h(1 —t) and hy(t) = h(t) in Definition we obtain Definition [1.9
If we choose ((y,x) =y — x and hy(t) = h(1 —t), hao(t) = h(t) in Definition [2.1, we get Definition
[1.8 We observe that this class unifies several other classes of strong preinvezity.

Indeed, now we will discuss several special cases of Definition [2.1] as follows:

(i) If hy(t) = hao(t) = 1, then we attain the following class of strongly P-preinvex functions of order
o > 0 with modulus p > 0 with respect to ¢

[l +1¢(y, @) < f2) + f(y) — pt(1 = )¢ (y, ).

(ii) If hy(t) = 1 —¢ and ho(t) = ¢, then we attain the following class of strongly preinvex functions of
order o > 0 with modulus p > 0 with respect to ¢

flx+t(y,x) < (1 —=t)f(x) +tf(y) — ut(1 =) (y, x).

(iii) If he(t) = (1 —t)® and ho(t) = t*, where s € [0, 1], then we attain the following class of strongly
s-preinvex functions of order o > 0 with modulus p > 0 with respect to ¢

flx+t(y,x) < (1 =t)°f(z) +t°f(y) — pt(1 = )¢ (y, ).

(iv) If hy(t) = (1—1t)~® and ho(t) = t~°, where s € [0, 1), then we attain the following class of strongly
s-preinvex functions of Godunova-—Levin type of order o > 0 with modulus g > 0 with respect to ¢

f(x) n f(y) — (1 — )¢ (y, 2).

fla+ 1. 2) € g+

(v) If hy(t) = hao(t) = t(1 — t), then we attain the following class of strongly tgs-preinvex functions
of order o > 0 with modulus p > 0 with respect to ¢

flz+t(y,z)) <1 =t)(f(z) + f(y) — (1 = )¢ (y, ).

(vi) If hy(t) = 2\/\{% and hy(t) = ﬁ, then we attain the following class of strongly MT-preinvex

functions of order ¢ > 0 with modulus p > 0 with respect to ¢

Vi VI
VAT

flz+ iy, z)) < f(y) = pt(1 = )¢ (y, ).
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Remark 2.3. If we substitute ((y,x) =y — x in Deﬁm’tz’on then we attain the class of strongly
(hi, hy)-convex functions of order o > 0 with modulus p > 0 with respect to (. To the exceptional
of our knowledge, this class is a new addition in convexity theory. It is worth mentioning that this
class of functions is quite general and unifying one. This mean that, taking u — 0% in Definition
we get the well-known class of functions, respectively, convexr, P-convex, s-convex, s-convexr of
Godunova-—Levin type, tgs-convex and MT-convez.

For establishing some new bounds for Gauss—Jacobi type via general fractional integral, we need the
following lemma.

Lemma 2.4. Assume that f : P — R be a continuous mapping on P° with respect ton : Px P —»
R. Then for any fized p,q > 0, we have

zfﬁ%m[N(ééjb)riv(%+§$j3_x)rﬂ@m

= C(Q% Ch)/o [A*@)]p[/\*(l - t)]qf(fh + tC(Q% Q1))dt- (2-2)

We denote
Tﬁﬁ*(@l, Q2) = C(Q2, Ch)/o [A*<t>]p[A*(1 - t)]qf(fh + t(((h, %))dt- (2-3)

Proof . Using (2.3) and changing the variable of integration x = ¢; + t{(q2, ¢1), we have

T (C]17Q2) QQ,Ch)

1+¢(g2,91) . T—q T —q 1 dr
></ql [A (C(Q%(h )] [ (1 QZ>QI )] f(w)g(%,(h)
B q1+¢(g92,91) L r—q L+ C 02, (h > 4
B /q1 [A <C<Q2,Q1 >] [ ( Q2,Q1 f(x)dx.

The proof of Lemma [2.4] is completed. [J

Corollary 2.5. Taking ((g2,q1) = ¢2—q1 and (x) = z, in Lemmal[2.4], we get the following identity:

1

/%@—my@rﬂﬁﬂwwﬁ4%—mVﬂ“/tWL%Vﬂm+K%—m»ﬁ- (2.4)

q1 0
With the help of Lemma [2.4] we have the following results.

Theorem 2.6. Assume that f : P — R be a continuous mapping on P° with respect to ( : P X
k

P — R. If | f|*7 is a strongly (hq, he)-preinvex mapping of order o > 0 with modulus p > 0 on P,

then for k > 1 and any fized p,q > 0, we have

< (g2, 1) \/ AR (k) (2.5)

k-1
k

x [l (@) 77 + Hal f@2) |77 = B¢ ()] ©

TP (a1, 42)

where

A’/’\’f(k):/ol (A (1)] P [A*(1 — 6)] “at, Hi:/()lhi(t)dt, Vi=12
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Proof . Since |f ]% is a strongly (hq, he)-preinvex mapping of order ¢ > 0 with modulus x> 0 on
P, combining with Lemma [2.4] Holder inequality and properties of the modulus, we get

’T}”,’X*(ql,qz)

gq@@nl A (O] [A (L = ]I (@ + £C(g2, q0))lt

1 k—1
1 k 1 k
< (g2, 1) / (A6 [A (1 - 1)] th] [/ |f(ql+tC(qQ,ql))|“dt]
0 0
< (a2, q1) ) AR¥ (k)
k—1
1 k k o
| [ (@) + hafo) @) 5T = it = 0 ana1))
0
k—1
k k o e
= (a2, @) §/ARE (k) [ Hal F(@)|77 + Half ()7 = 57 ()|
The proof of Theorem [2.6] is completed. O
We point out some special cases of Theorem [2.6]
Corollary 2.7. Under the assumption of Theorem taking u — 07, we get
k—1
k I o
T2 (a1,02)| < Claz @) §f ARIR) [ F (@) 7T + ol f (@) 77| 7 (2.6)

If we fixed, respectively, hi(t) = 1 — t and hy(t) = ¢, then the following corollaries can be obtain.

Corollary 2.8. Under the assumption of Theorem[2.6 with ©(t) = t, we get

‘T]IZ,’K;(QD P@)| < CerqH((h; ¢) {C/ﬁ(kp +1,kg+1) (2.7)

k-1
k k=1

Xpﬂmwlgm%wl_gc@44 :

where A = ((q2, q1)t.

Corollary 2.9. Under the assumption of Theorem with @(t) = %, we have

PO (g, gy
P,q k
’Tf,A;(Ch;CD) < Trra( + 1) Y/ B(akp + 1, akq+ 1) (2.8)
(@) [T + () [T v
0|~ %) ,
X [ ! 5 2 - %C <QQaQ1> )

where A5 = C;((gi’%)ta.
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(63

Corollary 2.10. Under the assumption of Theorem with ¢(t) = %, we obtain
% (Pra)+1
k1 , ak ak
‘T}’,’Xg(ql,qz)( <-S G q;lq (/6 ( kp +1 74 1) (2.9)
|:k31Fk1 (oz + k’l)] 1 1
(@) + | (go) | -
qi)|*~ q2)| "~ Koo
X : 2 — —=(7(q2, 1) )
2 6
where N = %tﬁ.

Corollary 2.11. Under the assumption of Theorem with o(t) = t(q1 +C(ga, 1) —t)* ' and f(x)

18 symmetric to x = g1 + ez, ql), we get

B (p+a)+1
$F 42 9) /Bt 1) (2.10)

’Tﬁ}({z(%,%)‘ <

ap-i-q
k k %
1 4 1
4U@H LI b, 0]
where
q1+¢(q2,q1) kp
Wmez/ (s + Classa1)” — ] (2.11)
q1

(63 (04 k
x[(q1 + ¢(q2, @) — Cqr + Clg2, @) — )] dt
and N} = (91+¢(92,91))* — (@1 +(1=)¢(g2,q1))*

[0}

Theorem 2.12. Assume that f : P — R be a continuous mapping on P° with respect to ( :
P x P — R.If |f|" is a strongly (hy, ho)-preinver mapping of order o > 0 with modulus 1 > 0 on
P, then for 1l > 1 and any fized p,q > 0, we have

-1

< ) | AR)] T (2.12)

‘T}’,’X*(ql, q2)

\/BA* w1 f(@)| + B 1 f (q)]f — pWEECo (g2, 1),
where .
B, = / [A*O)]P[A*(1 = )] hs(t)dt, Vi=1,2,
’ 1
Wi = /O [A*(O)]P[A*(1 = t)]"t(1 — t)dt
and ARI(1) is defined in Theorem [2.¢ for value k = 1.
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Proof . Since |f|' is a strongly (hi, hy)-preinvex mapping of order o > 0 with modulus g > 0 on P,
combining with Lemma [2.4], the well-known power mean inequality and properties of the modulus,
we get

< (g 1) / A O] [A (= )] f(gr + 1¢(q2, 1)) dt

-1
l

’T}’,’X*(ql, q2)

< (g2, 1)

/O 1 [A*(1)]"[A*(1 - t)}th]

x [ | P - o)+ e, q1>>|ldt]

-1
l

< (g2, q1) [A’/’\’f(l)]

1
1

X

/0 (A @] [A @ = 1)]" (M@OIf (q)]" + ha(®)]f (g2)] — pt(1 = 1)C7 (a2, 01)) dt]

= ((q2, 1) [qu ] \/BA* w1 f@)| + BRE 1 f(g2)|h — pWRECo (g2, qu)-

The proof of Theorem [2.12]is completed. [
We point out some special cases of Theorem [2.12]

Corollary 2.13. Under the assumption of Theorem 2.19 taking p — 0%, we get

< Clana) [452(0)] T /B FCal + B Fa (2.13)

If we fixed, respectively, hi(t) = 1 —t and hy(t) = t, then from Corollary we have the following
results.

’T}”,’X*(ql,qz)

Corollary 2.14. Taking ¢(t) =t, we get

‘T}’,’K;(ql,@) < (P (g, 1) B

xv/Bp+1Lq+2)|f(@) + Blg+ 1,p+2)| f(g)]"

Corollary 2.15. Taking ¢(t) = &=, we have

(a)
a(p+q)+1
S (2, q1)
- I'rta(a+1)

xv/Blap + 1,aq + 2)| f(q) | + Blag + 1, ap + 2)| f(g2) |-

‘ =

(p+1g+1) (2.14)

=1
]

BT (ap+1,aqg+1) (2.15)

‘T}Z’X;(ql,qz)

e

Corollary 2.16. Taking ¢(t) = %1(11)’ we obtain
1
oy (P +1
k1 5 -1 6] (0%
‘Tﬁﬁg(QhQQ) < ¢ (e q;iqﬂll (Z;— +1, (5{— + 1) : (2.16)
|:/{31Fk1 (Oé + ]{71)] 1 1

x\l/ﬁ (212 2] @i+ 5 (2 12 4 2) @l
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Corollary 2.17. Taking o(t) = t(q1 + ((q2, q1) — )" and f(x) is symmetric to x = q; + @,

we get
-1

P.q Cri(a, 1) o ! ] 7
)Tf,x;(ql,qz)‘ < (a2 a) | =5 VDralf(q)[ + D[ fgo)]L, (2.17)
where
1 q1+¢(g2,q1) ) )i
Drl= —— ‘- a _ 4 '
12 ( gz, q1) /q1 (t = a)[(a1 + (g2 01)) ] (2.18)

(@1 + (a2, 1)) = a1 + (g2, 1) — 1)*]"dt.

Remark 2.18. The above estimates of our Theorems and respectively, and

are sharp. The corresponding analysis of them is done but we omit here their proofs and the details
are left to the interested readers.

3. Hermite-Hadamard type inequalities via general fractional integral

For establishing some new results regarding Hermite-Hadamard type inequalities via general frac-
tional integral we need to prove the following lemma.

Lemma 3.1. Let f: P — R be a differentiable mapping on P°. If f' € L(P), then the following
wdentity for generalized fractional integrals hold:

fla) + [l + (g2, q1) 1
2 2A*
C(q2, q1)

= A1) /O [A*(l —1) _A*(t)]f/((h + (1= 1)¢(g2, q1))dt. (3.1)

(1) |:qfr Sﬂf(QI + C(QQa QI)) + (Q1+C(qQ,q1))*I<pf(Q1)]

We denote

C(q2: 1)
2A+(1)

Heaelana) = S8 [ [0 -0 - 00)] o+ - 0Cadt. 62

Proof . Integrating by parts (3.2)), we have

= G

X { /0 A*(l - t)f,(% + (1 - t)g(%? C]1))dt - /0 A*<t>f/(CI1 + (1 - t)C(Q% %))dt}

_ (g2, q1) «d A (1= 6)f(q + (1 —1)C(g2, 1)) |*
2A*(1) C(q2, q1) 0

1 /1 ©0(¢(q2,q1)(1 — t))f(ql + (1 = 1)C(q2, q1))dt

_C(meh) 1-¢
+A*(t)f(ql 2‘(;21 ;;)C(fh, ) ‘; _ C(qgl - /0 Q’O(C(qi’ Q1)t)f(611 + (1 = 1)¢(ge, Ch))dt}
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_ G, @) A (D) f(q1 + ¢(g2, 01)) _ 1
T { ¢(g2: @) O A
NOfa) 1
+ (g, q1) C(go, q1) X q;“IsOf((h + (g2, Q1))}
_ flq) + f(Q12+ (g2, q1)) 2/\3(1) [q1+ of (@4 (@2, q1) + (cima) - f({h)]

The proof of Lemma is completed. [
Remark 3.2. Taking ((¢2,¢1) = ¢2 — q1 in Lemma (3.1, we get ([24)], Lemma 5).

Theorem 3.3. Let f : P — R be a differentiable mapping on P°. If |f'|7 is a strongly (hi, hs)-
preinvex mapping of order o > 0 with modulus > 0 on P, then for ¢ > 1 and p~' + ¢t = 1, the
following inequality for generalized fractional integrals hold:

q 7q
|HfA* 0, )| < 2A2* LYK \/H1|f' (1 |q+H2\f’(CI2)‘q——Ca(fh,ch) (3.3)

Ka-(p) = /01

and Hy, Hy are defined in Theorem [2.6,

where

A (1 —t) — A*(t)["adt

Proof . From Lemma [3.1] strongly (hi,hs)-preinvexity of order o > 0 with modulus p > 0 of
mapping |f’|4, Holder inequality and properties of the modulus, we have

1
|Hf7A*(q1,q2> < C(Q27QI) /
0

= 2A+(1)

S—Cﬁi’(‘f)) K (0) ( | (=0l + bt = 0] @] = 5 (0 a0) dt)q

= ) R gl @)l + El a0l — 5 )

The proof of Theorem [3.3]is completed. OJ
We point out some special cases of Theorem [3.3]

A(1—t) - A*(t)Hf/(Ch + (1= t)C(QQan))Mt

A1) - A*<t>\pdt); ( / N (1 t><<q2,q1>>\th);

1

Corollary 3.4. Taking u — 0%, hy(t) = t, ho(t) = 1 — ¢ and ((q2,q1) = 2 — q1 in Theorem
we get ([24)], Theorem 7).

Corollary 3.5. Under the assumption of Theorem [3.5 taking p — 0%, we get

q27 QI
2A

|Hyae (g1, 0)| < m p)V/Hilf/(a0)|7 + Ho| f'(g)]2. (3.4)
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Corollary 3.6. Taking p = q = 2 in Theorem we get

Hyae ()| < SEB VR Bl + Bl @ - S tana). 69

Corollary 3.7. Taking p — 0%, where ((qa, 1) = @2 — q1, hi(t) =1 —1t, ho(t) =t and p(t) =t in
Theorem [3.5, we have ([3], Theorem 2.3).

to

Corollary 3.8. Taking p — 0%, where ((q2,q1) = g2 — q1, ha(t) =1 —t, ha(t) =t and p(t) =

) I(a)
in Theorem [3.5, we get ([19], Theorem 8).
Corollary 3.9. Taking u — 07, where ((qa, q1) = @2 — q1, h1(t) = 1—1t, ho(t) =t and ¢(t) = ﬁ%(a)

in Theorem (3.3, we obtain ([5], Theorem 8).

Corollary 3.10. Taking ((ga, 1) = g2 — q1, ha(t) = 1 —t, ha(t) = t, where o(t) = t(q1 + ((q2, q1) —
)t and f(z) is symmetric to x = q; + @, in Theorem we get

q/¢(g2,91)
2

Va1 (a0 + g 0)” —

|Hyaz(qr,g2)| < (3.6)

(2q1 + ((go, Ql))paﬂ
opo

\/qjloaﬂ + (1 + (g2, 1)) =
y ¢ (a0l + 1F (@)l
2

- %CU(%,%)-

Theorem 3.11. Let f : P — R be a differentiable mapping on P°. If |f'|7 is a strongly (hy, hs)-
preinvex mapping of order o > 0 with modulus pn > 0 on P, then for ¢ > 1, the following inequality
for generalized fractional integrals hold:

[yl )] < SB[ )] 3.)

o Ko @)+ Kool £/ @2)l — iUn (1),
where

1
KA*,hi:/ |A*(1—t) = A*(t)|hi(1 = t)dt, Vi=1,2,
0

1
on = |
0

and Kx+(1) is defined in Theorem[3.3 for value p = 1.

A (1 —t) = A*(t)[t(1 — t)dt

Proof . From Lemma [3.1] strongly (hi,hs)-preinvexity of order o > 0 with modulus p > 0 of
mapping |f’|?, the well-known power mean inequality and properties of the modulus, we have

|Hpa (a1, 02)| < QMI / A (1 —t) = A (@O)|| f (@ + (1= )¢(g, @) |dt

2A
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Sﬁﬁﬁ?(ll

Nu—w—Awmf@+u—wa%mm%Qq

A (1 —1t) —A*(t)\dt) B

<

1
q

Nu—w—A%m(ma—wwmnv+mu—wvwmf—gcm%%nﬁ)

(f
(g2, 1) =

~2A0(1) (D] " Bae il (@)1 + Kl /@217 = nUxC7 (a2, 1),

The proof of Theorem |[3.11]is completed. [J
We point out some special cases of Theorem [3.11]

Corollary 3.12. Under the assumption of Theorem taking u — 07, we get

e[ )] Kl Kl @l 69

|Hya-(q1,¢2)| <

Corollary 3.13. Taking g =1 in Theorem |3.11}, we get

| Hya (a1, 02)| < C;X?(%)

[KAnhl\f'(ql)l + Kax po | f'(q2)| — 1Un=C (g2, @h)} : (3.9)

If we fixed, respectively, hy(t) = t, ho(t) = 1 — t, then from Corollary [3.12) we have the following
results.

Corollary 3.14. Taking p(t) = t, we have

Vﬁ@@hwﬂég§§QVW@M%ﬂf@mw (3.10)
Corollary 3.15. Taking p(t) = %, we obtain

W—l)qu+n

‘Hf,A;(Q1>Q2)| < ( a1 (o + 2)C(Q2,Q1)\q/|f/(Q1)|q + | f"(g2)|9. (3.11)

o
1

Corollary 3.16. Taking p(t) L0

= m, we g€t

2f — 1 Ty, (a + & T ,
\Hmdmaﬁh£<2ﬁ+1)V@h&ﬁQanC@mmhﬂfmﬂP+UK%W- (3.12)
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Corollary 3.17. Taking o(t) = t(q1 + (g2, 1) — 1)* " and f(x) is symmetric to x = ¢, + 2 ql),

we have
[Hp sl < S 7)Y R 1@l + 17 @ (313)

2A%(1)
where N
A*(l) — (Q1 + C(q27 ql)) ,
o
a+1
R = 2| -+ Glana))™ =2 (0 + S20) ]

— 1

Ky« = E[Fn — Fip + Fy — F22}
and

a+1 2

(ql+%Kq%qlﬂa+2—-(q1+-guf£%)>a+2]},

a+2
C(Q227 QI)> _ qux+2]

Q27Q1 )QH — ! }7
1
for = ¢? (QQ,Ql){OH‘Q
a+1
(Ch 1 C<q2’q1))a+1 _ (ql n C(CI227 QI>> ] },

a+1
(ql . <<q22, qn) - qixﬂ]

(Q1 + C(Q27 91))a+2 - f”] }

Fy = 1 ){@1+C@mmﬂ

(41 + (a2 00)™H — (ql N <(q2,ql>>a+1]

%ﬂl{a+2

q1
a—+1

mo— L (1 + (g2, 41))
2 g, ) a+1

a+2

Remark 3.18. Applying our Theorems and for appropriate choices of function p(t) =

s it elt) = tar + Clga @) — )7, where f(x) is symmetric to x = g + <590, and

o(t) = Lexp [(—1?70‘) t} for a € (0,1), for suitable choices of functions hy(t) and ha(t), for example:

L5t (1 —0)% (1 — )% t(1 —t); 2\/\%, ﬁ, such that |f'|? to be strongly (hy,hs)-preinvex
mapping of order o > 0 wzth modulus p > 0, we can deduce some new general fractional integral
inequalities using special means. Also, if we choose ((q2,q1) = G2 — q1, we can establish some new
fascinating general fractional integral inequalities for strongly (hy, he)-convez functions of order o > 0
with modulus p > 0 using special means. Finally, taking p — 0%, we can obtain some new general
fractional integral inequalities for (hy, hs)-preinvex mappings. We omit their proofs and the details

are left to the interested readers.
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4. Applications

Consider the following special means for different real numbers ¢, g2 and g;q2 # 0, as follows:

1. The arithmetic mean:
Q1+ g2
A(Qla QZ> =

2 b
2. The harmonic mean: 5
H(q1aq2) - l_’_l’
q1 q2
3. The logarithmic mean:
g2 — q1
L 22 41
(@.0) = 2| — In ||’

4. The generalized log—mean:

=

n+1 n+1 n
£__4 ] . neZ\{-1,0}.

Lol = | 250, o

Now, using the theory results in Section [3| we give some applications to special means for different
real numbers.

Proposition 4.1. Let ¢1,q2 € R\ {0}, where ¢1 < g2 and ((q2,q1) > 0, Then, forn € Z \ {—1,0},
where ¢ > 1 and p~* + ¢q~! = 1, the following inequality hold:

Aqt, (1 +C(q2,01))") = Lo (@1, 1 + (g2, q1)) ‘ < |T;|\C/($) (4.1)

X (/A (Jqr 10D, |go|atr-D),

Proof . Taking 4 — 0 and applying Theorem for f(xz) = 2™, hi(t) = t, ho(t) = 1 — ¢ and
©(t) = t, one can obtain the result immediately. [J

Proposition 4.2. Let ¢1,q2 € R\ {0}, where ¢1 < qo and ((q2,q1) > 0, Then, for ¢ > 1 and
p~t 4 ¢! =1, the following inequality hold:

(4.2)

1 B 1 ‘< C(q2, q1) 1
H L
(g1, @1 + (g2, 1)) (a1, @1+ C(g2 q1)) 2\/p+1\/H g2, g27)
1
Proof . Taking 1 — 07 and applying Theorem for f(x) = —, hi(t) = t, ho(t) = 1 —t and
x

©(t) = t, one can obtain the result immediately. [J

Proposition 4.3. Let q1,q2 € R\ {0}, where 1 < ¢ and ((q2,q1) > 0, Then, forn € Z\ {—1,0}
and q > 1, the following inequality hold:

A(qt, (1 + (g2, 1)) — Lo (1,1 +C(q2, 1)) | < |n|i(iq/z_,q1) (4.3)

</ A (Jqr 10D, |go|atr-D),
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Proof . Taking y — 0% and applying Theorem for f(x) = a”, hi(t) =t, ho(t) = 1 — ¢ and
©(t) = t, one can obtain the result immediately. [J

Proposition 4.4. Let q1,q € R\ {0}, where 1 < g2 and (g2, q1) > 0, Then for ¢ > 1, the following
inequality hold:

1 1 ‘ < C(Q2;Q1> 1 (44)

H(q,q+C(ea)  Liga+Cea)|” 42 o (6,02

1
Proof . Taking y — 07 and applying Theorem [3.11{ for f(z) = —, hi(t) = t, ho(t) = 1 — ¢ and
x

©(t) = t, one can obtain the result immediately. [J
Next, we provide some new error estimates for the trapezoidal formula.

Let @ be the partition of the points ¢ = zg < 1 < ... < &, = ¢ of the interval [g1, ¢2]. Let consider
the following quadrature formula:

/ f(@)de = T(f,Q) + E(f, Q).

where

an xz +f lerl)(l,H_l _:Ei)

is the trapezoidal version and E(f, Q) is denote their associated approximation error.

Proposition 4.5. Let f : [q1,q2] — R be a differentiable function on (q1,qa), where ¢ < qo. If | f'|9
is convez on [q1,qe] for ¢ > 1 and % + % =1, then the following inequality hold:

|E(f,Q)] < D21 (@)le + 1 f (i) |2, (4.5)

2\/— ,—Z Tiy1 —

Proof . Taking ;x — 0% and applying Theorem for ((qo,q1) = g2 — qu, ha(t) =t, ha(t) =1 —1t

and ¢(t) =t on the subintervals [x;,x;41] (i = 0,...,n — 1) of the partition ), we have
i i 1 st
‘f(w )+ f(@in) / Fa)de
2 Tit1 — Ti Jgy
(wier — @) | 1F (@) + | (a7 |7 (4.6)
29p+1 2 ' '

Hence from (4.6)), we get

E(f,Q)| = / f(x)dz — T(f,Q)| < Z{/ e~ £ +2f($i+1)(““_xi)}‘
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n—1

; e N2 £ ()] o q
< 5737 e~ YT Gl

The proof of Proposition [4.5|is completed. [J

Proposition 4.6. Let [ : [q1,q2] — R be a differentiable function on (q1,qa), where q1 < qo. If | f'|4
is convex on [qu,qa] for ¢ > 1, then the following inequality holds:

|E(f.Q)] < Wi

Proof . The proof is analogous as to that of Proposition but use Theorem taking p — 0%
for (o, q1) = g2 — qu, hu(t) = ¢, ho(t) =1 —t and p(t) =t. O

Ny T P T an

Remark 4.7. From Remark such that |f'|? to be strongly (hi, hy)-convex function of order
o > 0 with modulus pu > 0, we can provide some new error estimates for the trapezoidal formula
using ideas and techniques of Propositions[4.5 and[{.6. We omit their proofs and the details are left
to the interested reader.

Remark 4.8. The error estimates for the trapezoidal quadrature rules in and are given
assuming some differentiability properties of the function, but it depends on the choice of nodes. Some
numerical experiments to compare with standard estimates of the trapezoidal rule would be needed.

5. Conclusion

Since convex functions has large applications in many mathematical areas, this new class of func-
tions called strongly (hy, hy)-preinvex of order o > 0 with modulus x> 0 can be applied to obtain
several results in convex analysis, special functions, quantum mechanics, related optimization theory,
mathematical inequalities and may stimulate further research in different areas of pure and applied
sciences. The error estimates for the trapezoidal quadrature rules in and are given assum-
ing some differentiability properties of the function, but it depends on the choice of nodes. Some
numerical experiments to compare with standard estimates of the trapezoidal rule would be needed.
Therefore, future research and other projects will explain this problem much better.
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