Subordination and superordination results of multivalent functions associated with the Dziok-Srivastava operator

Mohamed K. Aouf ${ }^{\text {a }}$, Teodor Bulboacă ${ }^{\text {b }}$, Tamer M. Seoudy ${ }^{\text {c,d,* }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
${ }^{b}$ Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
${ }^{\text {c Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt }}$
${ }^{d}$ Department of Mathematics, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
(Communicated by Madjid Eshaghi Gordji)

Abstract

Using the techniques of the differential subordination and superordination, we derive certain subordination and superordination properties of multivalent functions associated with the Dziok-Srivastava operator.

Keywords: analytic functions, meromorphic functions, multivalent functions, Dziok-Srivastava operator, differential subordination, differential superordination 2010 MSC: Primary 30C45; Secondary 30C80.

1. Introduction

Let $A(p, k)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=k}^{\infty} a_{n+p} z^{n+p} \quad(p, k \in \mathbb{N}=\{1,2,3, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathrm{U}=\{z \in \mathbb{C}:|z|<1\}$; we write $A(p):=A(p, 1)$.

[^0]Suppose that f and g are analytic in U . We say that the function f is subordinate to g in U , or g superordinate to f in U , and we write $f(z) \prec g(z)$, if there exists an analytic function w in U with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z)), z \in \mathrm{U}$. If g is univalent in U , then the following equivalence relationship holds (see [13], [14] and [15]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathrm{U}) \subset g(\mathrm{U}) .
$$

For the functions $f_{j} \in A(p, k)$ given by

$$
f_{j}(z)=z^{p}+\sum_{n=k}^{\infty} a_{n+p, j} z^{n+p}, \quad z \in \mathrm{U}, \quad(j=1,2),
$$

we define the Hadamard product (or convolution) of f_{1} and f_{2} by

$$
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{n=k}^{\infty} a_{n+p, 1} a_{n+p, 2} z^{n+p}=\left(f_{2} * f_{1}\right)(z), \quad z \in \mathrm{U}
$$

For the complex parameters a_{1}, \ldots, a_{q} and b_{1}, \ldots, b_{s}, with $b_{j} \notin \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \ldots\}, j=$ $1, \ldots, s$, the generalized hypergeometric function ${ }_{q} F_{s}$ is defined (see [26]) by the following infinite series

$$
\begin{gathered}
{ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{s}\right)_{n}} \frac{z^{n}}{n!}, \quad z \in \mathrm{U}, \\
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right),
\end{gathered}
$$

where $(\theta)_{n}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

$$
(\theta)_{n}=\frac{\Gamma(\theta+n)}{\Gamma(\theta)}= \begin{cases}1, & \text { if } \theta=0 \\ \theta(\theta+1) \ldots(\theta+n-1), & \text { if } \theta \in \mathbb{N}\end{cases}
$$

Corresponding to the function $h_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)$ defined by

$$
h_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)=z^{p}{ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right), z \in \mathrm{U}
$$

Dziok and Srivastava [4] considered a linear operator

$$
H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right): A(p, k) \rightarrow A(p, k)
$$

defined by the following Hadamard product:

$$
\begin{align*}
& H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=h_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right) * f(z), z \in \mathrm{U} \tag{1.2}\\
&\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}\right)
\end{align*}
$$

If $f \in A(p, k)$ is given by (1.1), then we have

$$
\begin{equation*}
H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=f(z)=z^{p}+\sum_{n=k}^{\infty} \Gamma_{n} a_{n+p} z^{n+p}, z \in \mathrm{U} \tag{1.3}
\end{equation*}
$$

where

$$
\Gamma_{n}=\frac{\left(a_{1}\right)_{n} \ldots\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{s}\right)_{n}} \frac{1}{n!} \quad(n \in \mathbb{N}) .
$$

To simplify the notations, we write

$$
H_{p, q, s}\left(a_{1}\right) f(z):=H_{p}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z) .
$$

From (1.2) or (1.3) it follows that

$$
z\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{\prime}=a_{1} H_{p, q, s}\left(a_{1}+1\right) f(z)-\left(a_{1}-p\right) H_{p, q, s}\left(a_{1}\right) f(z), z \in \mathrm{U} .
$$

It should be remarked that the linear operator $H_{p, q, s}\left(a_{1}\right)$ is a generalization of many other linear operators considered earlier. In particular, for $f \in A(p)$ we have the following special cases:
(i) $H_{1,2,1}(a, b ; c) f=:\left(I_{c}^{a, b}\right) f\left(a, b \in \mathbb{C} ; c \notin \mathbb{Z}_{0}^{-}\right)$, where the linear operator $I_{c}^{a, b}$ was investigated by Hohlov [8];
(ii) $H_{p, 2,1}(n+p, 1 ; 1) f=: D^{n+p-1} f(n \in \mathbb{N} ; n>-p)$, where the linear operator D^{n+p-1} was studied by Goel and Sohi [7]. In the case when $p=1, D^{n} f$ is the Ruscheweyh derivative of f (see [22]);
(iii) $H_{p, 2,1}(\delta+p, 1 ; \delta+p+1) f(z)=: J_{p, \delta}(f)(z)=\frac{p+\delta}{z^{\delta}} \int_{0}^{z} t^{\delta-1} f(t) d t(\delta>-p)$, where $J_{p, \delta}$ is the generalized Bernardi-Libera-Livingston integral operator (see [3]);
(iv) $H_{p, 2,1}(p+1,1 ; p+1-\lambda) f(z)=: \Omega_{z}^{(\lambda, p)} f(z)=\frac{\Gamma(p+1-\lambda)}{\Gamma(p+1)} z^{\lambda} D_{z}^{\lambda} f(z)(-\infty \leq \lambda<p+1)$, where $D_{z}^{\lambda} f$ is the fractional integral of f of order $-\lambda$ when $-\infty \leq \lambda<0$, and fractional derivative of f of order λ when $0 \leq \lambda<p+1$. The extended fractional differintegral operator $\Omega_{z}^{(\lambda, p)}$ was introduced and studied by Patel and Mishra [21], while the fractional differential operator $\Omega_{z}^{(\lambda, p)}$ with $0 \leq \lambda<1$ was investigated by Srivastava and Aouf [25]. The operator $\Omega_{z}^{(\lambda, 1)}=: \Omega_{z}^{\lambda}$ was introduced by Owa and Srivastava [20] (see also Owa [19]);
(v) $H_{p, 2,1}(a, 1 ; c) f=: L_{p}(a, c) f\left(a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$, where the linear operator $L_{p}(a, c)$ was studied by Saitoh [23], which yields the operator $L(a, c)$ introduced by Carlson and Shaffer [1] for $p=1$;
(vi) $H_{1,2,1}(\mu, 1 ; \lambda+1) f=: I_{\lambda, \mu} f(z)(\lambda>-1 ; \mu>0)$, where $I_{\lambda, \mu}$ is the Choi-Saigo-Srivastava operator [3], which is closely related to the Carlson-Shaffer [1] operator $L(\mu, \lambda+1)$;
(vii) $H_{p, 2,1}(p+1,1 ; n+p) f=: I_{n, p} f(n \in \mathbb{Z} ; n>-p)$, where the operator $I_{n, p}$ was considered by Liu and Noor [10];
(viii) $H_{p, 2,1}(\lambda+p, c ; a) f=: I_{p}^{\lambda}(a, c) f\left(a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-} ; \lambda>-p\right)$, where $I_{p}^{\lambda}(a, c)$ is the Cho-KwonSrivastava operator [2].

In recent years, many interesting subclasses of analytic functions associated with the DziokSrivastava operator $H_{p, q, s}\left(a_{1}\right)$ and its many special cases were investigated by (for example) Dziok and Srivastava ([4] and [5]), Gangadharan et al. [6], Liu and Noor [10], Liu [9], Liu and Srivastava [12], Liu and Patel [11], and many others (see also [2, 16, 17, 27]). In the present paper we shall use the method based upon the differential subordination to derive inclusion relationships and other interesting properties and characteristics of the Dziok-Srivastava operator $H_{p, q, s}\left(a_{1}\right)$.

2. Preliminaries lemmas

Let $P[c, k]$ denote the class of functions of the form

$$
\varphi(z)=c+c_{k} z^{k}+c_{k+1} z^{k+1}+\ldots,
$$

that are analytic in U ; we write $P[k]:=P[1, k]$.
Definition 2.1. [15] Denote by \mathcal{Q} the set of all functions f that are analytic and injective on $\mathrm{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial \mathrm{U}: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and such that $f^{\prime}(z) \neq 0$ for $\zeta \in \mathrm{U} \backslash E(f)$.
In our present investigation, we shall require the following lemmas.
Lemma 2.2. 14] Let h be analytic and convex (univalent) in U , with $h(0)=1$, and let $\varphi \in P[k]$. If

$$
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\gamma} \prec h(z),
$$

where $\gamma \neq 0$ and $\operatorname{Re} \gamma \geq 0$, then

$$
\varphi(z) \prec q(z)=\frac{\gamma}{k} z^{-\frac{\gamma}{k}} \int_{0}^{z} t^{\frac{\gamma}{k}-1} h(t) d t \prec h(z),
$$

and q is the best dominant.
Lemma 2.3. 24] Let q be a convex (univalent) function in U , let $\sigma \in \mathbb{C}$ and $\theta \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$, with

$$
\operatorname{Re}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)>\max \left\{0 ;-\operatorname{Re} \frac{\sigma}{\theta}\right\} .
$$

If the function φ is analytic in U and

$$
\sigma \varphi(z)+\theta z \varphi^{\prime}(z) \prec \sigma q(z)+\theta z q^{\prime}(z),
$$

then $\varphi(z) \prec q(z)$, and q is the best dominant.
Lemma 2.4. [15] Let q be a convex (univalent) function in U and let $k \in \mathbb{C}$, with $\operatorname{Re} k>0$. If

$$
\varphi \in P[q(0), 1] \cap \mathcal{Q},
$$

and $\varphi(z)+k z \varphi^{\prime}(z)$ is univalent in U , then

$$
q(z)+k z q^{\prime}(z) \prec \varphi(z)+k z \varphi^{\prime}(z)
$$

implies $q(z) \prec \varphi(z)$, and q is the best subordinant.
Lemma 2.5. [28, Chapter 14] For any real or complex numbers $a, b, c\left(c \notin \mathbb{Z}_{0}^{-}\right)$we have

$$
\begin{align*}
& \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z) \tag{2.1}\\
& \quad(\operatorname{Re} c>\operatorname{Re} b>0) ; \\
& { }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z) ; \quad \tag{2.2}\\
& { }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, b ; c ; \frac{z}{1-z}\right) . \tag{2.3}
\end{align*}
$$

3. Main results

Unless otherwise mentioned, we assume throughout the sequel that $a_{i}>0$ for $i=1, \ldots, q, \alpha>0$, $\mu>0$ and $-1 \leq B<A \leq 1$. Now, we will prove the following sharp subordination result:

Theorem 3.1. Let $0 \leq j<p$, and for $f \in A(p, k)$ suppose that

$$
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \neq 0, z \in \mathrm{U}
$$

whenever $\mu \in(0,+\infty) \backslash \mathbb{N}$. Let define the function Φ_{j} by

$$
\begin{align*}
& \Phi_{j}(z)=(1-\alpha)\left[\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu}+ \tag{3.1}\\
& \alpha \frac{\left(H_{p, q, s}\left(a_{1}+1\right) f(z)\right)^{(j)}}{z^{p-j}}\left[\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu-1},
\end{align*}
$$

where all the powers are the principal ones, i.e. $\log 1=0$.
If

$$
\begin{equation*}
\Phi_{j}(z) \prec\left[\frac{p!}{(p-j)!}\right]^{\mu} \frac{1+A z}{1+B z}, \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \prec\left[\frac{p!}{(p-j)!}\right]^{\mu} q(z), \tag{3.3}
\end{equation*}
$$

where

$$
q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\mu a_{1}}{\alpha k}+1 ; \frac{B z}{B z+1}\right), & \text { if } B \neq 0, \\ 1+\frac{\mu a_{1}}{\mu a_{1}+\alpha k} A z, & \text { if } B=0,\end{cases}
$$

and $\left[\frac{p!}{(p-j)!}\right]^{\mu} q$ is the best dominant of (3.3). Furthermore, we have

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu}>\left[\frac{p!}{(p-j)!}\right]^{\mu} \eta, z \in \mathrm{U} \tag{3.4}
\end{equation*}
$$

where η is given by

$$
\eta= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\mu a_{1}}{\alpha k}+1 ; \frac{B}{B-1}\right), & \text { if } B \neq 0, \\ 1-\frac{\mu a_{1}}{\mu a_{1}+\alpha k} A, & \text { if } B=0,\end{cases}
$$

and the estimate (3.4) is the best possible.
Proof . Letting

$$
\begin{equation*}
\varphi(z)=\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu}, z \in \mathrm{U} \tag{3.5}
\end{equation*}
$$

by choosing the principal branch in (3.5) we note that $\varphi \in P[k]$. Differentiating both the sides of (3.5), by using in the resulting equation the assumption (3.2) and the fact that

$$
\begin{align*}
& z\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j+1)}=a_{1}\left(H_{p, q, s}\left(a_{1}+1\right) f(z)\right)^{(j)}- \tag{3.6}\\
& \left(a_{1}-p+j\right)\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}, \quad z \in \mathrm{U}, \quad(0 \leq j<p)
\end{align*}
$$

we obtain

$$
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\frac{\mu a_{1}}{\alpha}} \prec \frac{1+A z}{1+B z} .
$$

Now, by using Lemma 2.2 , with $\gamma=\frac{\mu a_{1}}{\alpha}$, in the above differential subordination, we deduce that

$$
\begin{aligned}
& \varphi(z) \prec q(z)=\frac{\mu a_{1}}{\alpha k} z^{-\frac{\mu a_{1}}{\alpha k}} \int_{0}^{z} t^{\frac{\mu a_{1}}{\alpha k}-1}\left(\frac{1+A t}{1+B t}\right) d t= \\
& \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\mu a_{1}}{\alpha k}+1 ; \frac{B z}{B z+1}\right), & \text { if } B \neq 0, \\
1+\frac{\mu a_{1}}{\mu a_{1}+\alpha k} A z, & \text { if } B=0,\end{cases}
\end{aligned}
$$

where we used a change of variable followed by the use of the identities (2.1), (2.2) and (2.3), respectively. This completes the proof of the assertion (3.3).

Next, we will show that

$$
\begin{equation*}
\inf \{\operatorname{Re} q(z):|z|<1\}=q(-1) . \tag{3.7}
\end{equation*}
$$

Indeed, we have

$$
\operatorname{Re} \frac{1+A z}{1+B z} \geq \frac{1-A r}{1-B r} \quad(|z|<r<1) .
$$

Setting

$$
g(s, z)=\frac{1+A s z}{1+B s z} \quad(0 \leq s \leq 1 ; z \in \mathrm{U})
$$

and

$$
d v(s)=\frac{\mu a_{1}}{\alpha k} s^{\frac{\mu a_{1}}{\alpha k}-1} d s
$$

which is a positive measure on the closed interval $[0,1]$, we get that

$$
q(z)=\int_{0}^{1} g(s, z) d v(s),
$$

so that

$$
\operatorname{Re} q(z) \geq \int_{0}^{1} \frac{1-A s r}{1-B s r} d v(s)=q(-r) \quad(|z| \leq r<1)
$$

Now, taking $r \rightarrow 1^{-}$in the above inequality we obtain the assertion (3.7). The estimate (3.4) is the best possible since the function $\left[\frac{p!}{(p-j)!}\right]^{\mu} q$ is the best dominant of (3.3).

Corollary 3.2. Let $0 \leq j<p$ and $f \in A(p, k)$. If

$$
\frac{\left(H_{p, q, s}\left(a_{1}+1\right) f(z)\right)^{(j)}}{z^{p-j}} \prec \frac{p!}{(p-j)!} \frac{1+A^{*} z}{1+B z},
$$

where

$$
A^{*}= \begin{cases}\frac{B_{2} F_{1}\left(1,1 ; \frac{\mu a_{1}}{\alpha k}+1 ; \frac{B}{B-1}\right)}{B_{1+2} F_{1}\left(1,1 ; \frac{\mu a_{1}}{\alpha k}+1 ; \frac{B}{B-1}\right)-1}, & \text { if } B \neq 0, \\ \frac{a_{1+k}}{a_{1}}, & \text { if } B=0,\end{cases}
$$

then $H_{p, q, s}\left(a_{1}\right) f$ is p-valent in U .

Proof. Putting $\mu=\alpha=1$ and replacing A by A^{*} in Theorem 3.1, we get

$$
\operatorname{Re} \frac{z\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j+1}}=\operatorname{Re} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}>0, z \in \mathrm{U} .
$$

Since the function $\phi(z)=z^{p-j+1}$ is $(p-j+1)$-valently starlike in U , in view of the result [18, Theorem 8] we obtain that the function $H_{p, q, s}\left(a_{1}\right) f$ is p-valent in U .

Theorem 3.3. Let $0 \leq j<p$, and for $f \in A(p, k)$ let define the function F_{α} by

$$
\begin{equation*}
F_{\alpha}(z)=\left(1-\alpha-\alpha a_{1}+\alpha p\right) H_{p, q, s}\left(a_{1}\right) f(z)+\alpha a_{1} H_{p, q, s}\left(a_{1}+1\right) f(z) . \tag{3.8}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{F_{\alpha}^{(j)}(z)}{z^{p-j}} \prec(1-\alpha+\alpha p) \frac{p!}{(p-j)!} \frac{1+A z}{1+B z}, \tag{3.9}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \prec \frac{p!}{(p-j)!} q(z), \tag{3.10}
\end{equation*}
$$

where

$$
q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{1-\alpha+\alpha p}{\alpha k}+1 ; \frac{B z}{B z+1}\right), & \text { if } B \neq 0, \\ 1+\frac{1-\alpha+\alpha p}{1-\alpha+\alpha(p+k)} A z, & \text { if } B=0,\end{cases}
$$

and $\frac{p!}{(p-j)!} q$ is the best dominant of (3.10). Furthermore, we have

$$
\begin{equation*}
\operatorname{Re} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}>\frac{p!}{(p-j)!} \xi, z \in \mathrm{U}, \tag{3.11}
\end{equation*}
$$

where ξ is given by

$$
\xi= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{1-\alpha+\alpha p}{\alpha k}+1 ; \frac{B}{B-1}\right), & \text { if } B \neq 0, \\ 1-\frac{\mu a_{1}}{\mu a_{1}+\alpha k} A, & \text { if } B=0,\end{cases}
$$

and the estimate in (3.11) is the best possible.
Proof . Using the definition (3.8) and the identity (3.6), it follows that

$$
\begin{equation*}
F_{\alpha}^{(j)}(z)=(1-\alpha+\alpha j)\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}+\alpha z\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j+1)} \tag{3.12}
\end{equation*}
$$

for $0 \leq j<p$. Putting

$$
\begin{equation*}
\varphi(z)=\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}, z \in \mathrm{U}, \tag{3.13}
\end{equation*}
$$

we have that $\varphi \in P[k]$. Differentiating both the sides of (3.13), using (3.9) and (3.12) in the resulting equation, by a simple calculation we get

$$
\varphi(z)+\frac{\alpha}{1-\alpha+\alpha p} z \varphi^{\prime}(z) \prec \frac{1+A z}{1+B z} .
$$

The remaining part of the proof is similar to that of Theorem 3.1, so we omit these details.

Theorem 3.4. Let $0 \leq j<p$, and for $\delta>-p$ let define the operator $J_{p, \delta}: A(p, k) \rightarrow A(p, k)$ by

$$
J_{p, \delta}(f)(z)=\frac{p+\delta}{z^{\delta}} \int_{0}^{z} t^{\delta-1} f(t) d t, z \in \mathrm{U} .
$$

If

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \prec \frac{p!}{(p-j)!} \frac{1+A z}{1+B z}, \tag{3.14}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\left(H_{p, q, s}\left(a_{1}\right) J_{p, \delta}(f)(z)\right)^{(j)}}{z^{p-j}} \prec \frac{p!}{(p-j)!} q(z), \tag{3.15}
\end{equation*}
$$

where

$$
q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\delta+p}{k}+1 ; \frac{B z}{B z+1}\right), & \text { if } B \neq 0, \\ 1+\frac{\delta+p}{\delta+p+k} A z, & \text { if } B=0,\end{cases}
$$

and $\frac{p!}{(p-j)!}$ q is the best dominant of (3.15). Furthermore, we have

$$
\begin{equation*}
\operatorname{Re} \frac{\left(H_{p, q, s}\left(a_{1}\right) J_{p, \delta}(f)(z)\right)^{(j)}}{z^{p-j}}>\frac{p!}{(p-j)!} k, z \in \mathrm{U} \tag{3.16}
\end{equation*}
$$

where k is given by

$$
k= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\delta+p}{k}+1 ; \frac{B}{B-1}\right), & \text { if } B \neq 0, \\ 1-\frac{\delta+p}{\delta+p+k} A, & \text { if } B=0,\end{cases}
$$

and the estimate in (3.16) is the best possible.
Proof . Letting

$$
\varphi(z)=\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) J_{p, \delta}(f)(z)\right)^{(j)}}{z^{p-j}}, z \in \mathrm{U}
$$

we have that $\varphi(z) \in P[k]$. Differentiating the above definition formula, by using (3.14) and the identity

$$
\begin{gathered}
z\left(H_{p, q, s}\left(a_{1}\right) J_{p, \delta}(f)(z)\right)^{(j+1)}=(\delta+p)\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}- \\
(\delta+j)\left(H_{p, q, s}\left(a_{1}\right) J_{p, \delta}(f)(z)\right)^{(j)}
\end{gathered}
$$

in the resulting equation, we get

$$
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\delta+p} \prec \frac{1+A z}{1+B z} .
$$

Now, the assertion (3.15) and the estimate (3.16) follow by employing the same techniques that was used in the proof of Theorem 3.1.

Theorem 3.5. Let q be a univalent function in U , such that q satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)>\max \left\{0 ;-\frac{\mu a_{1}}{\alpha}\right\}, z \in \mathrm{U} . \tag{3.17}
\end{equation*}
$$

Let $0 \leq j<p$, and for $f \in A(p, k)$ suppose that

$$
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \neq 0, z \in \mathrm{U},
$$

whenever $\mu \in(0,+\infty) \backslash \mathbb{N}$. Let the function Φ_{j} defined by (3.1), and suppose that it satisfies the following subordination:

$$
\begin{equation*}
\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z) \prec q(z)+\frac{\alpha}{\mu a_{1}} z q^{\prime}(z) . \tag{3.18}
\end{equation*}
$$

Then,

$$
\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \prec q(z),
$$

and q is the best dominant of the above subordination.
Proof. If the function φ is defined by (3.5), from Theorem 3.1 we obtain

$$
\begin{equation*}
\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)=\varphi(z)+\frac{\alpha}{\mu a_{1}} z \varphi^{\prime}(z) . \tag{3.19}
\end{equation*}
$$

Combining (3.18) and (3.19) we find that

$$
\begin{equation*}
\varphi(z)+\frac{\alpha}{\mu a_{1}} z \varphi^{\prime}(z) \prec q(z)+\frac{\alpha}{\mu a_{1}} z q^{\prime}(z), \tag{3.20}
\end{equation*}
$$

and by using Lemma 2.3 and (3.20) we easily get the assertion of Theorem 3.5.
Taking $q(z)=\frac{1+A z}{1+B z}$ in Theorem 3.5 we obtain the following special case:
Corollary 3.6. For $-1 \leq B<A \leq 1$, suppose that

$$
\operatorname{Re} \frac{1-B z}{1+B z}>\max \left\{0 ;-\frac{\mu a_{1}}{\alpha}\right\}, z \in \mathrm{U} .
$$

Let $0 \leq j<p$, and for $f \in A(p, k)$ suppose that

$$
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \neq 0, z \in \mathrm{U}
$$

whenever $\mu \in(0,+\infty) \backslash \mathbb{N}$. Let the function Φ_{j} defined by (3.1), and suppose that it satisfies the following subordination:

$$
\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z) \prec \frac{1+A z}{1+B z}+\frac{\alpha}{\mu a_{1}} \frac{(A-B) z}{(1+B z)^{2}} .
$$

Then,

$$
\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \prec \frac{1+A z}{1+B z}
$$

and the function $\frac{1+A z}{1+B z}$ is the best dominant of the above subordination.

Theorem 3.7. Let $0 \leq j<p$, and for $f \in A(p, k)$ suppose that

$$
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \neq 0, z \in \mathrm{U},
$$

whenever $\mu \in(0,+\infty) \backslash \mathbb{N}$. Suppose that

$$
\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \in P[1] \cap \mathcal{Q}
$$

such that $\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)$ is univalent in U , where the function Φ_{j} is defined by (3.1). If q is a convex (univalent) function in U , and

$$
q(z)+\frac{\alpha}{\mu a_{1}} z q^{\prime}(z) \prec\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)
$$

then

$$
q(z) \prec\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu},
$$

and q is the best subordinant of the above subordination.
Proof . If the function φ is defined by (3.5), from (3.19) we have

$$
q(z)+\frac{\alpha}{\mu a_{1}} z q^{\prime}(z) \prec\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)=\varphi(z)+\frac{\alpha}{\mu a_{1}} z \varphi^{\prime}(z) .
$$

Now, an application of Lemma 2.4 yields the assertion of Theorem 3.7.
Taking $q(z)=\frac{1+A z}{1+B z}$ in Theorem 3.7, we get the following special case:
Corollary 3.8. Let $0 \leq j<p$, and for $f \in A(p, k)$ suppose that

$$
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \neq 0, z \in \mathrm{U},
$$

whenever $\mu \in(0,+\infty) \backslash \mathbb{N}$. Suppose that

$$
\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \in P[1] \cap \mathcal{Q}
$$

such that $\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)$ is univalent in U , where the function Φ_{j} is defined by (3.1), and suppose that $-1 \leq B<A \leq 1$. If

$$
\frac{1+A z}{1+B z}+\frac{\alpha}{\mu a_{1}} \frac{(A-B) z}{(1+B z)^{2}} \prec\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)
$$

then

$$
\frac{1+A z}{1+B z} \prec\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu}
$$

and the function $\frac{1+A z}{1+B z}$ is the best subordinant of the above subordination.

Combining the Theorem 3.5 and Theorem 3.7, we easily get the following Sandwich-type result:
Theorem 3.9. Let $0 \leq j<p$, and for $f \in A(p, k)$ suppose that

$$
\frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}} \neq 0, z \in \mathrm{U}
$$

whenever $\mu \in(0,+\infty) \backslash \mathbb{N}$. Suppose that

$$
\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \in P[q(0), k] \cap \mathcal{Q}
$$

such that $\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z)$ is univalent in U , where the function Φ_{j} is defined by (3.1).
Let q_{1} be a convex (univalent) function in U , and suppose that q_{2} is a univalent function in U that q_{2} satisfies (3.17). If

$$
q_{1}(z)+\frac{\alpha}{\mu a_{1}} z q_{1}^{\prime}(z) \prec\left[\frac{(p-j)!}{p!}\right]^{\mu} \Phi_{j}(z) \prec q_{2}(z)+\frac{\alpha}{\mu a_{1}} z q_{2}^{\prime}(z),
$$

then

$$
q_{1}(z) \prec\left[\frac{(p-j)!}{p!} \frac{\left(H_{p, q, s}\left(a_{1}\right) f(z)\right)^{(j)}}{z^{p-j}}\right]^{\mu} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinant and the best dominant of the above double subordination.

References

[1] BC. Carlson and DB. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737-745.
[2] NE. Cho, OH. Kwon and HM. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004) 470-483.
[3] JH. Choi, M. Saigo and HM. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002) 432-445.
[4] J. Dziok and HM. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.
[5] J. Dziok and HM. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7-18.
[6] A. Gangadharan TN. Shanmugam and HM. Srivastava, Generalized hypergeometric functions associated with k-uniformly convex functions. Comput. Math. Appl. 44 (2002) 1515-1526.
[7] RM. Goel and NS. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980) 353-357.
[8] YuE. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1978) 83-89 (in Russian).
[9] JL. Liu, Strongly starlike functions associated with the Dziok-Srivastava operator, Tamkang J. Math. 35 (2004) 37-42.
[10] JL. Liu and KI. Noor, Some properties of Noor integral operator, J. Nat. Geometry 21 (2002) 81-90.
[11] JL. Liu and J. Patel, Certain properties of multivalent functions associated with an extended fractional differintegral operator, Appl. Math. Comput. 203 (2008) 703-713.
[12] JL. Liu and HM. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput. 159 (2004) 485-493.
[13] SS. Miller and PT. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981) 157-171.
[14] SS. Miller and PT. Mocanu, Differential subordinations: Theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[15] SS. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Var. 48 (2003) 815-826.
[16] KI. Noor, Some classes of $p-$ valent analytic functions defined by certain integral operators, Appl. Math. Comput. 157 (2004) 835-840.
[17] KI. Noor and MA. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999) 341-352.
[18] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math. 11 (1987) 273-286.
[19] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978) 53-59.
[20] S. Owa and HM. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987) 1057-1077.
[21] J. Patel and AK. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332 (2007) 109-122.
[22] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109-115.
[23] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japonica 44 (1996) 31-38.
[24] TN. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential Sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3 (2006) 1-11.
[25] HM. Srivastava, MK. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients I and II, J. Math. Anal. Appl. 171 (1992) 1-1; ibid. 192 (1995) 673-688.
[26] HM. Srivastava and PW. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press (Ellis Horwood, Chichester), John Wiley and Sons, New York, 1985.
[27] HM. Srivastava and J. Patel, Some subclasses of multivalent functions involving a certain linear operator, J. Math. Anal. Appl. 310 (2005) 209-228.
[28] ET. Whittaker and GN. Watson, A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition (Reprinted), Cambridge University Press, Cambridge, 1927.

[^0]: *Corresponding author
 Email addresses: mkaouf127@yahoo.com (Mohamed K. Aouf), bulboaca@math.ubbcluj.ro (Teodor Bulboacă), tms00@fayoum.edu.eg, tmsaman@uqu.edu.sa (Tamer M. Seoudy)

