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Abstract

Different estimation procedures for the probability density and cumulative distribution functions of
the generalized inverted Weibull distribution are discussed. For this purpose, the parametric and
non-parametric estimation approaches as maximum likelihood, uniformly minimum variance unbi-
ased, percentile, least squares and weighted least squares estimators are considered and compared.
The expectations and mean square error of the maximum likelihood and uniformly minimum vari-
ance unbiased estimation are provided in the closed-form whereas, for non-parametric estimation
methods (percentile, least squares and weighted least squares), the expectations and mean square
error are computed via the simulation data. The Monte Carlo simulations are provided to assess the
performances of the proposed estimation methods. Finally, the analysis of the real data set has been
presented for illustrative purposes.

Keywords: Generalized inverted Weibull distribution, Maximum likelihood estimator, Uniformly
minimum variance unbiased estimator, Percentile estimator, Least squares estimator, Weighted
least squares estimator.
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1. Introduction

The statistical distributions play an important role in describing the properties of real-world
phenomena and they can be utilized in modeling real-life data in engineering, environmental, ac-
tuarial, medical sciences, biological studies, economics, hydrology, finance, and insurance. Among
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the classical distributions, the inverse models and the shapes of density and failure rate functions
of the inverse models are investigated by [20], whereas [12], particularly, studied the inverse Weibull
distribution and offered the names complementary Weibull distribution. The inverse Weibull distri-
bution can be applied in the numerous branches of science, such as medicine, reliability engineering,
bio-engineering, degradation phenomenon of mechanical components, load-strength relationship for
a component and ecology.

The inverse Weibull distribution is extended by many researchers. Gusmão et al. [15] proposed
the generalized inverse Weibull (GIW) distribution that enhances the IW distribution function by
power. They also introduced the log-generalized inverse Weibull distribution accompanied by the cor-
responding regression model. Shahbaz et al. [30] recommended the Kumaraswamy-inverse Weibull
distribution based on the cumulative distribution function (CDF) of [23] distribution. The trans-
muted inverse Weibull distribution and the performance of the new distribution to modeling the
reliability data are investigated by [21]. Jain et al. [16] introduced inverse generalized Weibull
(IGW), generalized inverse generalized Weibull (GIGW) and a mixture of two GIGW distributions
with the discussion of statistical properties of the distributions. Khan and King [22] proposed the
generalized inverse Weibull distribution with reliability applicability of the distribution for the engi-
neering studies, which has the upside-down hazard rate function. Okasha et al. [29] focused on the
development of the inverse Weibull distribution by the Marshall-Olkin method that leads to a more
flexible distribution for modeling lifetime data. Basheer [9] introduced the generalized alpha power
inverse Weibull distribution, which was constructed via the alpha power transformation method.
Recently, Afify et al. [1] introduced the extended odd Weibull exponential distribution, which cov-
ers the different types of density such as symmetric, asymmetric (right-skewed or left-skewed) and
reversed-J shaped. Jia et al. [17] proposed the q-Weibull distribution, which can be applied to
describe complex systems with maximum likelihood (ML) and least squares (LS) estimates. The
q-Weibull distribution can model the different types of real-life data since it represents the unimodal,
bathtub-shaped and monotone hazard rate function.

The necessity of the estimation of the probability density function (PDF) and CDF is felt due
to their applications in the estimation of differential entropy, Renyi entropy, negentropy, Kullback-
Leibler divergence, Fisher information, cumulative residual entropy, Bonferroni curve, Lorenz curve,
hazard rate function, reverse hazard rate function, etc. According to this essential requirement,
Bagheri et al. [8] estimated the PDF and the CDF of a three-parameter generalized Exponential-
Poisson distribution when all parameters except the shape are considered to be known. Alizadeh et
al. (2015a, 2015b, 2015c) concentrated on the estimation of the PDF and the CDF of the generalized
exponential distribution, Weibull distribution and exponentiated Weibull distribution, respectively.
Bagheri et al. [7] obtained the estimators of PDF and CDF of the Weibull extension model when all
parameters except the shape are considered to be known. Alizadeh et al. [3] considered estimation
of the PDF and CDF of the inverse Weibull distribution with three parameters and investigated the
application properties of the maximum likelihood estimators via the simulation and real data.

Several studies have been provided in the concept of the PDF and CDF estimations for different
distributions, included: Pareto [11], exponential Gumbel [6], generalized Logistic [31], Frechet [27],
inverse Rayleigh [26], Lindley [25] and Pareto-Rayleigh [28].

Consider the random variable X from generalized inverted Weibull distribution, then the cumu-
lative distribution and probability density functions of the generalized inverted Weibull distribution
are given respectively, as

F (x) = 1−
(
1− e−(λ

x
)β
)α
, x > 0, α, β, λ > 0,
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and

f(x) =
αβλβ

xβ+1
e−(λ

x
)β
(
1− e−(λ

x
)β
)α−1

, x > 0, α, β, λ > 0.

The generalized inverse Weibull distribution is the same as inverse generalized Weibull due to [16].
The aim of this paper is to obtain the different estimation of the PDF and CDF of the gener-

alized inverse Weibull distribution based on the parametric and non-parametric approaches. The
performance of the estimation methods are evaluated by both simulation and real data, that both
verify the superiority of the maximum likelihood method.

The contents of the paper are organized as follows. The parametric estimation methods, maximum
likelihood and the uniformly minimum variance unbiased (UMVU) estimators, of the PDF and CDF
and their mean square errors (MSE) are derived, respectively in Sections 2 and 3. In Section 4,
the non-parametric estimation approaches as the percentile (PC), least squares and weighted least
squares (WLS) of the PDF and CDF are discussed. The estimators are compared by simulation and
two real data applications in Sections 5 and 6, respectively.

Its worth to mention that, throughout the paper (except for Section 6), both β and λ are supposed
to be known, whereas the parameter α is let to be unknown.

2. Maximum likelihood estimator of the PDF and CDF of GIW distribution

Consider the random sample X1, X2, . . . , Xn from the generalized inverse Weibull distribution,
the log-likelihood function is represented as

lnL(α, β, λ) = n lnα + n ln β + nβ lnλ−
n∑

i=1

( λ
xi

)β − (β + 1)
n∑

i=1

lnxi

+(α− 1)
n∑

i=1

ln
(
1− e

−( λ
xi

)β)
,

where λ and β are known. According to maximizing the log-likelihood function, the maximum
likelihood estimator of the parameter α is computed as

α̂
ML

=
n

−
∑n

i=1 ln
(
1− e

−( λ
xi

)β) .
Based on the invariant property of ML estimators, the ML estimators of the PDF and CDF of the
GIW distribution are obtained as

f̂(x) =
α̂

ML
βλβ

xβ+1
e−(λ

x
)β
(
1− e−(λ

x
)β
)α̂

ML
−1
, x > 0,

F̂ (x) = 1−
(
1− e−(λ

x
)β
)α̂

ML , x > 0,

respectively. Consider the sufficient statistic T = −
∑n

i=1 ln
(
1− e

−( λ
xi

)β)
, it can be shown that T has

Gamma distribution with the following PDF

fT (t) =
αn

Γ(n)
tn−1e−αt, t > 0, α > 0.

After some elementary algebra, the PDF of the ML estimator of α is obtained as follows

g(w) =
(nα)n

wn+1Γ(n)
e−

nα
w , w > 0, α > 0,
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where w = α̂
ML

. It results that, α̂
ML

has the inverse Gamma distribution with parameters
(
n, 1

nα

)
.

In the following, we obtain the r-th moment and MSE of the PDF and CDF estimators of the GIW
distribution.

Theorem 2.1. Based on the GIW distribution,

i. The ML estimators of the PDF is biased and r-th moment of the f̂(x) is represented by

E
(
f̂(x)r

)
=

2(nα)n

Γ(n)
Dr

1

[
nα

−r ln
(
1− e−(λ

x
)β
)] r−n

2

Kr−n

(
2

√
−nαr ln

(
1− e−(

λ
x)

β))
,

ii. The ML estimator of the CDF is biased and r-th moment of the F̂ (x) is shown as

E
(
F̂ (x)r

)
= 2

r∑
i=0

(
r

i

)
(−1)i

(nα)n

Γ(n)

( nα

−i ln
(
1− e−(λ

x
)β
))−n

2
K−n

(
2

√
−nαi ln

(
1− e−(λ

x
)β
))

,

where D1 =
(βλβe−(λ

x
)β

xβ+1

)(
1−e−(λ

x
)β
)−1

and Kν(.) denotes the modified Bessel function of the second

kind of order ν and is defined as Kν(2
√
βφ) = 0.5

(
φ
β

) ν
2 ∫∞

0
xν−1e−

β
x e−φxdx.

Proof . i. The ML estimator of α has inverse Gamma distribution with parameters (n, 1
nα
), so

E
(
f̂(x)r

)
=

∫ ∞

0

[
wβλβ

xβ+1
e−(λ

x
)β
(
1− e−(

λ
x)

β)w−1
]r

(nα)n

wn+1Γ(n)
e−

nα
w dw

=
(nα)n

Γ(n)

(
βλβe−(

λ
x)

β

xβ+1

)r(
1− e−(

λ
x)

β)−r
∫ ∞

0

wr−n−1
(
1− e−(

λ
x)

β)rw

e−
nα
w dw

=
(nα)n

Γ(n)
Dr

1

∫ ∞

0

wr−n−1erw ln
(
1−e−(λx )β

)
e−

nα
w dw

=
2(nα)n

Γ(n)
Dr

1

[
nα

−r ln
(
1− e−(

λ
x)

β)] r−n
2

Kr−n

(
2

√
−nαr ln

(
1− e−(λ

x
)β
))

,

where w = α̂
ML

. For r = 1, the biasness of the PDF estimator is deduced.

ii. Analogously, for F̂ (x), we have

E
(
F̂ (x)r

)
=

∫ ∞

0

[
1−

(
1− e−(

λ
x)

β)w
]r

(nα)n

wn+1Γ(n)
e−

nα
w dw

=

∫ ∞

0

r∑
i=0

(
r

i

)[
−
(
1− e−(

λ
x)

β)w
]i

(nα)n

wn+1Γ(n)
e−

nα
w dw

=
r∑

i=0

(
r

i

)
(−1)i

(nα)n

Γ(n)

∫ ∞

0

w−n−1
(
1− e−(

λ
x)

β)iw

e−
nα
w dw

=
r∑

i=0

(
r

i

)
(−1)i

(nα)n

Γ(n)

∫ ∞

0

w−n−1eiw ln
(
1−e−(λx )β

)
−nα

w dw

= 1 + 2
r∑

i=1

(
r

i

)
(−1)i

(nα)n

Γ(n)

(
nα

−i ln
(
1− e−(λ

x
)β
))−n

2

K−n

(
2

√
−nαi ln

(
1− e−(λ

x
)β
))

.

Obviously, the biasness of the F̂ (x) is verified for r = 1, which complete the proof. □
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Theorem 2.2. Consider the GIW distribution,

i. The MSE of the ML estimator of the PDF is given by

MSE
(
f̂(x)

)
=

2(nα)n

Γ(n)
D2

1

[
nα

−2 ln
(
1− e−(λ

x
)β
)] 2−n

2

K2−n

(
2

√
−2nα ln

(
1− e−(λ

x
)β
))

−4(nα)n

Γ(n)
D1

[
nα

− ln
(
1− e−(

λ
x)

β)] 1−n
2

K1−n

(
2

√
−nα ln

(
1− e−(λ

x
)β
))

(
αβλβ

xβ+1
e−(

λ
x)

β(
1− e−(

λ
x)

β)α−1
)
+

(
αβλβ

xβ+1
e−(

λ
x)

β(
1− e−(

λ
x)

β)α−1
)2

.

ii. The MSE of the ML estimator of the CDF is shown as

MSE
(
F̂ (x)

)
= 1 +

2∑
i=1

(
2

i

)
(−1)i

(nα)n

Γ(n)

[
2
( nα

−i ln
(
1− e−(λ

x
)β
))−n

2

]
K−n

(
2

√
−nαi ln

(
1− e−(λ

x
)β
))

−2

[
1− 2(nα)n

Γ(n)

(
nα

− ln
(
1− e−(λ

x
)β
))−n

2

K−n

(
2

√
−nαi ln

(
1− e−(λ

x
)β
))]

(
1−

(
1− e−(λ

x
)β
)α)

+
(
1−

(
1− e−(λ

x
)β
)α)2

.

Proof . By Theorem 2.1 and MSE
(
f̂(x)

)
= E

(
f̂(x)2

)
− 2f(x)E

(
f̂(x)

)
+ f(x)2, the proof is com-

pleted. □

3. The uniformly minimum variance unbiased estimators of the PDF and CDF of GIW
distribution

In this section, the uniformly minimum variance unbiased estimators of the PDF and CDF of the
GIW distribution are derived with their moments and MSEs.
Consider the GIW random sample X1, X2, · · · , Xn, where the parameters λ and β are considered to

be known and α be unknown, then T = −
∑n

i=1 ln
(
1− e

−( λ
xi

)β)
is a complete sufficient statistic for

the unknown parameter α and has Gamma distribution with parameters n and 1
α
, which denoted as

Gamma(n, 1
α
). To compute the UMVU estimators of the PDF and CDF of the GIW distribution,

we need to obtain the joint PDF of X1 and the complete sufficient statistic T , which discussed in
the following Theorem.

Theorem 3.1. The joint PDF of X1 and T can be expressed as

f(x1, t) =
αnβλβe−αt

(
t+ ln

(
1− e

−( λ
x1

)β))n−2

Γ(n− 1)xβ+1
1

(
e
( λ
x1

)β − 1
) , t > − ln

(
1− e

−( λ
x1

)β)
.

Proof . Consider U = −
∑n

i=2 ln
(
1 − e

−( λ
xi

)β)
, which has Gamma

(
n − 1, 1

α

)
distribution. Since U

and X1 are independent random variables, then the joint PDF of U and X1 can be written as

fU,X1(u, x1) = fU(u)fX1(x1) =
( αn−1

Γ(n− 1)
un−2e−αu

)(αβλβ

xβ+1
1

e
−( λ

x1
)β(

1− e
−( λ

x1
)β)α−1

)
.
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Let T = U − ln
(
1− e

−( λ
x1

)β)
and V = X1, then

fT,V (t, v) =
βλαn

v2Γ(n− 1)

(
t+ ln

(
1− e−(

λ
v )

β))n−2

e−αu
(λ
v

)β−1
e−(

λ
v )

β

e(α−1)(u−t)

=
αnβλβe−αt

Γ(n− 1)vβ+1

(
t+ ln

(
1− e−(λ

v
)β
))n−2 e−(

λ
v )

β

1− e−(
λ
v )

β , t > − ln
(
1− e−(λ

v
)β
)
.

By substituting X1 instead of V , the proof is completed. □

Theorem 3.2. The UMVU estimators of the PDF and CDF of the GIW distribution are given by

f̃(x) = fX1|T (x1|t) =
(n− 1)βλβ

(
t+ ln

(
1− e

−( λ
x1

)β))n−2

xβ+1
1 tn−1

(
e
( λ
x1

)β − 1
) , t > − ln

(
1− e

−( λ
x1

)β)
,

F̃ (x) = FX1|T (x1|t) = 1−
(
1 +

ln
(
1− e

−
(

λ
x1

)β)
t

)n−1

, t > − ln
(
1− e

−( λ
x1

)β)
,

respectively.
Proof . First, we show that fX1|T (x1|t) is an unbiased estimator of the f(x). The distribution of X1

given T is computed as

fX1|T (x1|t) =
f(x1, t)

fT (t)
=

(n− 1)βλβ
(
t+ ln

(
1− e

−( λ
x1

)β))n−2

xβ+1
1 tn−1

(
e
( λ
x1

)β − 1
) , t > − ln

(
1− e

−( λ
x1

)β)
.

The estimator fX1|T (x1|t) is unbiased, which is investigated as below,

E(f̃(x)) = E
(
fX1|T (x1|t)

)
=

∫
t

fX1|T (x1|t)fT (t)dt =
∫
t

fX1,T (x1, t)dt = fX1(x1) = f(x).

So, fX1|T (x1|t) is an unbiased estimator of the f(x). Since T is a complete sufficient statistic,
according to the Lehmann Scheffe theorem, fX1|T (x1|t) is the UMVU estimator of f(x).
Similar process is performed for the CDF,

FX1|T (x1|t) =
∫ x1

0

fX1|T (y|t)dy =

∫ x1

0

(n− 1)βλβ
(
t+ ln

(
1− e−(λ

y
)β
))n−2

yβ+1tn−1
(
e(

λ
y
)β − 1

) dy,

let − ln
(
1− e−(λ

y
)β
)
= w, therefore

FX1|T (x1|t) =
∫ − ln(1−e

−( λ
x1

)β

)

0

(n− 1)(t− w)n−2

tn−1
dw

= 1−
(t+ ln

(
1− e

−( λ
x1

)β)
t

)n−1

, t > − ln
(
1− e

−( λ
x1

)β)
.
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Analogously, we can obtain

E(F̃ (x)) = E
(
FX1|T (x1|t)

)
=

∫
t

FX1|T (x1|t)fT (t)dt =
∫
t

∫ x1

0

fX1|T (y|t)fT (t)dydt

=

∫ x1

0

∫
t

fX1,t(y, t)dtdy =

∫ x1

0

fX1(y)dy = FX1(x1) = F (x).

Therefore, FX1|T (x1|t) is an unbiased estimator of F (x). Since T is a complete sufficient statistic,
according to Lehmann Scheffe theorem FX1|T (x) is the UMVU estimator of F (x). □

Proposition 3.3. The upper incomplete gamma function for n = 1, 2, . . . is defined as below

Γ(n, q) =

∫ ∞

q

tn−1e−tdt,

Γ(−n, q) =
1

n!

[e−q

qn

n−1∑
k=0

(−1)k(n− k − 1)!qk + (−1)nΓ(0, q)
]
,

where Γ(0, q) = −Ei(−q) and Ei(.) is the exponential integral function which defined as Ei(−q) =
−
∫∞
q

t−1e−tdt.

Theorem 3.4. The r-th moment of the UMVU estimator of the PDF of the GIW distribution is
represented as

E
(
f̃(x)r

)
= Dr

r(n−2)∑
j=0

(
r(n− 2)

j

)
ajαr+jΓ (n− r − j,−aα)

Γ(n)
,

where D = (n−1)βλβ

xβ+1(e(λ/x)β−1)
, a = ln

(
1− e−(λ

y
)β
)
and Γ(., .) is the upper incomplete gamma function.

Proof . As mentioned before, the complete sufficient statistic T has Gamma distribution with the
parameters n and 1

α
, therefore

E
(
f̃(x)r

)
=

∫ ∞

−a

[
(n− 1)βλβ

xβ+1tn−1
× (t+ a)n−2

e(
λ
x)

β
−1

]r
αn

Γ(n)
tn−1e−αtdt

=
αnDr

Γ(n)

∫ ∞

−a

(
1 +

a

t

)r(n−2)

tn−r−1e−αtdt

=
αnDr

Γ(n)

∫ ∞

−a

r(n−2)∑
j=0

(
r(n− 2)

j

)(a
t

)j

tn−r−1e−αtdt

=
αnDr

Γ(n)

r(n−2)∑
j=0

(
r(n− 2)

j

)
aj

∫ ∞

−a

tn−r−j−1e−αtdt

= Dr

r(n−2)∑
j=0

(
r(n− 2)

j

)
ajαr+jΓ(n− r − j,−aα)

Γ(n)
.

□
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Theorem 3.5. The MSE of UMVU estimator of the PDF of GIW distribution is given by

MSE(f̃(x)) = D2

2(n−2)∑
j=0

(
2(n− 2)

j

)
ajα2+jΓ(n− 2− j,−aα)

Γ(n)
−
(
αβλβ

xβ+1
e−(λ

x
)β
(
1− e−(λ

x
)β
)α−1

)2

.

Proof . By Theorem 3.4 and the definition of MSE, the proof is achieved. □

In the following, we obtain the second moment of the UMVU estimator F̃ (x), which can be
utilized in the computation of the MSE.

Theorem 3.6. The second moment of the UMVU estimator of the CDF of GIW distribution are
demonstrate as follows

E(F̃ (x)2) =
Γ(n,−aα)

Γ(n)
− 2

Γ(n)

n−1∑
j=0

(
n− 1

j

)
(aα)j

Γ(n− j,−aα)

Γ(n)
+

2n−2∑
j=0

(
2n− 2

j

)
(aα)j

Γ(n− j,−aα)

Γ(n)
.

Proof . The second moment of the F̃ (x) is calculated as below

E(F̃ (x)2) =

∫ ∞

−a

[
1−

(
1 +

a

t

)n−1 ]2 αn

Γ(n)
tn−1e−αtdt

=

∫ ∞

−a

αn

Γ(n)
tn−1e−αtdt︸ ︷︷ ︸
I

− 2

∫ ∞

−a

(
1 +

a

t

)n−1 αn

Γ(n)
tn−1e−αtdt︸ ︷︷ ︸

II

+

∫ ∞

−a

(
1 +

a

t

)2n−2 αn

Γ(n)
tn−1e−αtdt︸ ︷︷ ︸

III

,

where

I =
Γ(n,−aα)

Γ(n)
,

II = 2
αn

Γ(n)

∫ ∞

−a

(
1 +

a

t

)n−1

tn−1e−αtdt = 2
αn

Γ(n)

∫ ∞

−a

n−1∑
j=0

(
n− 1

j

)(a
t

)j

tn−1e−αtdt

= 2
αn

Γ(n)

n−1∑
j=0

(
n− 1

j

)
aj

∫ ∞

−a

tn−j−1e−αtdt =
2

Γ(n)

n−1∑
j=0

(
n− 1

j

)
(aα)j

Γ(n− j,−aα)

Γ(n)
,

and

III =
αn

Γ(n)

∫ ∞

−a

2n−2∑
j=0

(
2n− 2

j

)(a
t

)j

tn−1e−αtdt =
αn

Γ(n)

2n−2∑
j=0

(
2n− 2

j

)
aj

∫ ∞

−a

tn−j−1e−αtdt

=
2n−2∑
j=0

(
2n− 2

j

)
(aα)j

Γ(n− j,−aα)

Γ(n)
.

□
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Theorem 3.7. The MSE of F̃ (x) is given by

MSE
(
F̃ (x)

)
=

Γ(n,−aα)

Γ(n)
− 2

Γ(n)

n−1∑
j=0

(
n− 1

j

)
(aα)j

Γ(n− j,−aα)

Γ(n)

+
2n−2∑
j=0

(
2n− 2

j

)
(aα)j

Γ(n− j,−aα)

Γ(n)
−
(
1−

(
1− e−(λ

x
)β
)α)2

.

Proof . By using Theorem 3.6 and the definition of MSE, the proof is completed. □

4. Non-parametric estimators

In this section, we focused on some non-parametric estimation approaches as percentiles, least
squares and weighted least squares estimators.

4.1. Estimators based on percentiles

Percentile estimators provided by Kao (1959, 1958), which are based on the inverting the CDF.
Since the GIW distribution has a closed-form CDF, therefore the parameters of the GIW distribution
can be estimated using percentiles.
Consider the random sample X1, X2, . . . , Xn from the GIW distribution and let X(1), X(2), . . . , X(n)

denote the corresponding order statistics in the ascending order. Also let pi =
i

(n+1)
.

The percentile estimator of α (when λ and β are consider to be known) say α̃
PC

is the value that
minimize the following expression

n∑
i=1

[
ln(1− pi)− α ln

(
1− e

−( λ
x(i)

)β)]2
.

So, the percentile estimators of the parameter α can be obtained as

d

dα

n∑
i=1

[
ln(1− pi)− α ln

(
1− e

−( λ
x(i)

)β)]2
= 0,

therefore

−2
n∑

i=1

ln
(
1− e

−( λ
x(i)

)β
)[

ln(1− pi)− α ln
(
1− e

−( λ
x(i)

)β)]
= 0.

After some calculation, the estimator of α, is given as

α̃
PC

=

∑n
i=1 ln

(
1− e

−( λ
x(i)

)β
)
ln(1− pi)∑n

i=1

[
ln
(
1− e

−( λ
x(i)

)β)]2 .

Subsequently, the percentile estimators of the PDF and CDF are represented respectively, as

f̃
PC

(x) =
α̃

PC
βλβ

xβ+1
e−(λ

x
)β
(
1− e−(λ

x
)β
)α̃

PC
−1

,

F̃
PC

(x) = 1−
(
1− e−(λ

x
)β
)α̃

PC

.

The expectations and the MSE of these estimators can be calculated by simulation.
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4.2. Least squares estimators

The least squares estimator of α (when λ and β are known), say α̃
LS
, is the value that minimizing

the following expression
n∑

i=1

[
1−

(
1− e

−( λ
x(i)

)β)α − pi

]2
.

Accordingly, the LS estimators of the PDF and CDF are shown respectively, as

f̃
LS
(x) =

α̃
LS
βλβ

xβ+1
e−(

λ
x)

β(
1− e−(

λ
x)

β)α̂
LS

−1

,

F̃
LS
(x) = 1−

(
1− e−(λ

x
)β
)α̂

LS

.

4.3. Weighted least squares estimators

The weighted least squares estimator of α (when λ and β are known), say α̃
WLS

is the value that
minimizing

n∑
i=1

Wi

[
1−

(
1− e

−( λ
x(i)

)β)α − pi

]2
,

where Wi =
(
V ar

(
F (X(i))

))−1
= (n+1)2(n+2)

i(n−i+1)
. So, the WLS estimators of the PDF and CDF are

illustrated respectively, by

f̃
WLS

(x) =
α̂

WLS
βλβ

xβ+1
e−(

λ
x)

β(
1− e−(λ

x
)β
)α̂

WLS
−1

,

F̃
WLS

(x) = 1−
(
1− e−(λ

x
)β
)α̂

WLS

.

Since mathematical computation of the expectation and MSE of these estimators are difficult, so
simulation scheme will be applied for computing non-parametric estimators.

5. Comparison between the ML, UMVU, PC, LS and WLS estimators

Due to comparison between the five different estimation approaches (ML, UMVU, PC, LS and
WLS) of the PDF and CDF of the GIW distribution, based on the efficiency, we generate data sets
from the GIW distribution with different combinations of the parameters as (α, β, λ) = (0.5, 0.5, 0.5),
(1.5, 0.5, 2), (0.5, 2, 1.5), (4, 2, 3), (3, 2, 4), (2, 3, 4), (9, 5, 2), (2, 9, 5), (2, 5, 9) and different sample size
n = (10, 20, . . . , 60). In the following, we provide the algorithm of the simulation.

Step 1. For the certain value of the parametres α, β, λ with the sample size n, we generate a random
sample from GIW(α, β, λ) distribution, then we compute the estimates of α with respect to different
estimation methods as (α̂

ML
, α̃

UMV U
, α̃

PC
, α̃

LS
, α̃

WLS
).

Step 2. The integrate square errors (ISE) of the generated random sample (Step 1) are computed
via

ISE
ML

(f̂(x)) =

∑n
i=1

(
f̂
ML

(xi)− f(xi)
)2

n
,

ISE
ML

(F̂ (x)) =

∑n
i=1

(
F̂

ML
(xi)− F (xi)

)2

n
.
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Similarly, the ISE for the other estimation methods (UMVU, PC, LS and WLS ) can be computed.

Step 3. The Step 1 and 2 are repeated for M=1000 times.

Step 4. The mean of 1000 ISEs, mean integrate square errors (MISE), are computed, that provided
in Step 3.

All programs are written by R software. Its worth to mention that, the minimization for estimation
of the PDF and CDF under PC, LS and WLS methods are performed based on the nlm (or optim)
command in R software, for simulation data in Sections 5 and real data in Section 6.
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Figure 1: The comparison of MISEs of the ML, UMVU, PC, LS and WLS estimators of the PDF and CDF for
(α, β, λ) = (1.5, 0.5, 2), (0.5,2, 1.5) and (0.5, 0.5, 0.5) based on simulation results, respectively.
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Figure 2: The comparison of MISEs of the ML, UMVU, PC, LS and WLS estimators of the PDF and CDF for
(α, β, λ) = (2, 3, 4), (4, 2, 3) and (3, 2, 4) based on simulation results, respectively.
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Figure 3: The comparison of MISEs of the ML, UMVU, PC, LS and WLS estimators of the PDF and CDF for
(α, β, λ) = (9, 5, 2), (2, 9, 5) and (2, 5, 9) based on simulation results, respectively.
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As can be seen from the Figures 1-3, the ML estimators of the PDF and CDF are more efficient
than other estimators, the UMVU estimators of the PDF and CDF are more efficient than non-
parametric estimators. As we expected, the parametric methods (ML and UMVU) are more efficient
than the non-parametric ones (PC, LS and WLS). Likewise, PC estimators of the PDF and CDF
are more efficient than LS and WLS estimators and also LS estimators of the PDF and CDF are
more efficient than WLS estimators. In addition, it is observed that MISEs decrease with increasing
sample sizes.
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Figure 4: The MSE of the different estimators of the parameter α for (α, β, λ) = (9, 5, 2) (left) and (α, β, λ) = (4, 2, 3)
(right).

Also, for more discussion in Figure 4, we compare the MSEs of α̂
ML

, α̃
UMV U

, α̃
PC

, α̃
LS

and α̃
WLS

in different situations. Obviously, the ML estimator of the parameter α is more efficient than the
other estimators. Also, it is observed that MSEs decrease with increasing sample sizes.

6. Data analysis

In this section, we use two real data sets and compare the different estimation approaches of the
PDF and CDF of the GIW distribution.

First real data set: The first data set represents the tensile strength of 100 carbon fibers [14].
Based on tensile strength data, the Kolmogorov-Smirnov (K-S) statistic of the GIW distribution is
computed about 0.0666 with p-value= 0.7659 under ML estimation, which means that GIW distri-
bution is fitted well to tensile strength data. In Table 1, we present the estimates of α, β, λ and
corresponding log-likelihood of the tensile strength data.

Table 1: Estimate of the parameters and corresponding log-likelihood for the tensile strength data.

α̂ β̂ λ̂ Log-likelihood
ML 10266.4267 0.3108 3674.6543 -141.5167
PC 800.5651 0.4139 283.2363 -142.0424
LS 1372.2353 0.3718 593.6500 -141.7463

WLS 1697.2930 0.3716 636.8529 -141.6902

In Figures 5-7, the Q-Q plot, different estimates of PDF along with histogram and the empirical
CDF and fitted CDF of the tensile strength data are depicted, respectively. Based on these plots,
the ML estimator provides the best fit for the tensile strength data.
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Figure 5: The Q-Q plot for the tensile strength data versus different estimators.
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Figure 6: The empirical CDF and fitted CDF for the tensile strength data.
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Figure 7: The different estimates of the PDF along with histogram of the tensile strength data.

Also, in this case, we consider some model selection criteria (MSCs) as ”pure” maximum likeli-
hood, Akaike information criterion (AIC), corrected AIC (AICc), Bayes information criterion (BIC,
also known as Schwarz criterion), and Hannan-Quinn criterion (HQC). For more discussion about
the MSCs see [10] and [13].

Table 2: The values of model selection criteria for the tensile strength data.

ML AIC BIC AICc HQC
ML 283.0335 289.0335 296.8491 289.2835 292.1966
PC 284.0848 290.0848 297.9004 290.3348 293.2479
LS 283.4926 289.4926 297.3081 289.7426 292.6556

WLS 283.3804 289.3804 297.1959 289.6304 292.5435

In Table 2, we represent the values of model selection criteria of GIW distribution for the tensile
strength data. from Table 2, all model selection criteria show that the ML estimator is better than
the others.

Second real data set: The second data set [24] is the number of million revolutions before
failure of twenty-three ball bearings, that collected from tests on the endurance of deep groove ball
bearings.

Based on the ball bearings data, the K-S statistic of the GIW distribution is computed about
0.1114 with p-value= 0.9374 under ML estimation, which means that the GIW distribution is fitted
well to ball bearings data. In Table 3, the estimates of α, β, λ and corresponding log-likelihood of
the endurance of deep groove ball bearings data are demonstrated.

Table 3: Estimate of the parameters and corresponding log-likelihood for the ball bearings data.

α̂ β̂ λ̂ Log-likelihood
ML 80.7143 0.4656 1865.2662 -112.9732
PC 17.4416 0.6129 438.2961 -113.2564
LS 4.9476 0.9462 134.6037 -113.6118

WLS 16.9615 0.6235 419.4374 -113.2289

In Table 4, the values of model selection criteria for the ball bearings data are represented that
all the model selection criteria confirm the suitability of the ML estimators than the others.
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Table 4: The values of model selection criteria for the ball bearings data.

ML AIC BIC AICc HQC
ML 225.9464 231.9464 235.3529 233.2095 232.8031
PC 226.5128 232.5128 235.9193 233.7760 233.3695
LS 227.2237 233.2237 236.6302 234.4868 234.0804

WLS 226.4579 232.4579 235.8644 233.7211 233.3146

In Figures 8-10, the Q-Q plot, different estimates of PDF along with histogram and the empir-
ical CDF and fitted CDF of the ball bearings data are illustrated, respectively, that indicate the
superiority of ML estimators to fit the ball bearings data.
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Figure 8: The Q-Q plot of endurance of deep groove ball bearings data versus different estimators.
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Figure 9: The empirical CDF and fitted CDF of the ball bearings data.
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Figure 10: The different estimates of PDF along with histogram of the ball bearings data.

Concluding remarks

The different estimation approaches included the parametric (ML and UMVU) and non-parametric
(PS, LS and WLS) methods of the PDF and CDF of the GIW distribution are compared with the
certain values of location and scale parameters. Explicit expressions are given for the MISEs of
the UMVU and ML estimators. The performances of the five estimation methods are evaluated by
simulation and two real data sets. The results show suitable performance of the ML than other
estimators based on the MISEs, log-likelihood, Q-Q plots, density plots and five model selection
criteria. The best estimators of the PDF can be utilized to estimate functional forms of the PDF
such as the differential entropy, negentropy, Rényi entropy, Kulback-Liebler divergence and Fisher
information. Similarly, the best estimators of the CDF can be used to estimate cumulative residual
entropy, quantile function, Bonferroni and Lorenz curves. Consequently, the best estimators of both
PDF and CDF can be used to estimate functional forms of the PDF and CDF such as probability
weighted moments, hazard rate function and mean deviation from the mean.
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