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Abstract

This paper proposes a nonlinear programming model for a scheduling problem in the supply chain.
Due to the nonlinear structure of the developed model and its NP-hard structure, a lower bound is
developed. Four lemmas and a theorem are presented and proved to determine the lower bound. The
proposed problem is inspired from a three stage supply chain commonly used in various industries.

Keywords: scheduling; supply chain; lower bound; nonlinear programming.
2010 MSC: Primary 26A25; Secondary 39B62, 39B38.

1. Introduction and preliminaries

Supply chain management (SCM) considers the way to plan and control the total flows of materials,
finances and information among suppliers, manufacturers, distributors, retailers and the final cus-
tomers. In a competitive environment, it is supply chain against supply chain, not the manufacturer
against manufacturer. Companies which optimize their SCM model subject to different limitations
and constraints can achieve efficient cooperation and synchronization.

This paper considers a scheduling problem in a three stage supply chain with m suppliers in the
first stage and l vehicles in the second stage to deliver orders to F manufacturing centers at the
third stage. It is assumed that there are n orders and each one should be assigned to a supplier for
processing and a vehicle for delivering it to a manufacturing centers.

The objective function is to minimize the maximum delivery time of the all orders.
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Many studies in field of production planning or scheduling in a supply chain is presented through
recent years. Roux et al.[1] presented a combined model for planning and scheduling in a multi-
manufacturer supply chain. Chang and Lee[2] introduced a scheduling problem in a three-stage
supply chain with two suppliers, one vehicle and a manufacturer as the destination of the orders.
Zegordi and Beheshti Nia[3] considered a similar problem to our problem, but in their problem
there is only a single manufacturer in the last stage. Zegordi et al.[4] proposed a gendered genetic
algorithm to solve a simpler version of the previous problem. Yimer and Demirli[5] proposed a mixed
integer mathematical model and a genetic algorithm in a make to order supply chain. Scholz-Reiter
et al.[6] presented a context for integrating production and transportation in global supply chains.
Osman and Demirli[7] investigated delivery scheduling and economic batch size in a three stage
supply chain. They considered tier 2 and tier 1 suppliers and assemblers and presented a novel
model. Averbakh and Baysan[8] studied online scheduling in a supply chain, considering multiple
customers and presented a estimating algorithm to minimize orders flow and goods delivery costs.
They considered operations to be split and orders to be batch delivery in which combination of orders
in delivering to different customers is not permitted. Kabra et al.[9] considered the supply chain
scheduling problem in a multi-stage, multi-product and multi-period environment. They considered
some new constraints such as the sequence dependent changeover, multi intermediate due dates,
shelf-life date, defective products and orders delivery delay costs. Ullrich[10] discussed an integrated
production and transportation scheduling considering time windows in a two-stage supply chain.
Thomas et al.[11] investigated scheduling in a coal supply chain, considering multiple independent
tasks and resources constraints. They considered planning and scheduling in different sub-problems
and presented a mixed integer programming model and used column generation techniques to solve
the problem. Selvarjah and Zhang[12] studied a supply chain in which a manufacturer receives
Semi-manufactured materials from suppliers at different times and delivers products to customers
in batches. The objective function is minimizing total weighted orders flow and batch delivery
costs. They present a lower bound and a heuristic algorithm to solve the problem. Sawik[13] study
relationship between scheduling and supplier selection in disruption condition considering two types
of suppliers to minimize costs and maximize service level. The first type suppliers are located in the
manufacturer zone and the second type suppliers are located out of the manufacturer zone. They
present a mixed integer and a probabilistic model for it. Pei et al.[14] discussed the problem of batch
sequencing in a two-stage supply chain involving production and transportation in order to minimize
make span. They presented a heuristic algorithm and a lower bound for solving problem in different
sizes in a logical time. Rasti-Barzoki and Hejazi[15] investigated a supply chain scheduling model
that consists of the due date, the resource assignment, production and distribution scheduling at the
same time. A pseudo-polynomial dynamic programming is used to solve this problem with the aim
of minimizing the total weighted tardy jobs and the due dates as well as resource assignment and
delivery costs of batches.

Studies regarding scheduling in supply chain may be categorized according to several aspects.
Some studies considered communications between a manufacturer and a supplier, such as the cur-
rent paper. Others considered communications between a manufacturer and suppliers; and some
others consider combined problems. Considering another aspect, some studies only investigated
manufacturing scheduling, while others considered transportation scheduling as well as manufactur-
ing scheduling, such as the current paper. Stages considered in 3-stage supply chain may be different,
regarding the fact that whether transportation is considered in the study or not. In some studied,
the 3 stages include the suppliers, the transportation fleet, and the manufacturer, such as this study.
In other studies, the 3 stages include the manufacturer, the transportation fleet and the distributors.
The 3 stages in studies where the transportation is not considered, may include the suppliers, the
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manufacture and the distributors.
No studies in the literature have considered multi-site manufacturing. In this approach, the man-

ufacturer produces final products in various sites. In recent years, many companies have concentrated
on multi-site manufacturing. Using multi-site manufacturing causes not concentrating all their re-
sources in one place; hence, in natural or human hazards, such as earthquakes or fire, lower losses
are enforced. Moreover, it allows for lower transportation costs, employing various environmental
potentials, such as low labor costs in a geographical zone, knowledge sharing, etc.

In this study, a supply chain scheduling is investigated, which includes multiple suppliers, multiple
vehicles and a manufacturer with multiple manufacturing sites. The closest problem to this problem,
is the one considered in[4].The main difference between these two studies, is that in their problem the
manufacturer is located in only one place, while in this study, the manufacturer is located in multiple
sites. Also, in their study, it is assumed that each supplier is capable of processing all orders, while
in this study, each supplier is only able to process certain orders, according to its capabilities. It is
also assumed that at the beginning of the scheduling process, all vehicles are located in a terminal.

2. Problem hypothesizes

The assumptions of the problem are as follows.

� There aren orders that should be processed by m suppliers and conveyed by l vehicles to the
F manufacturing centers each of which in different site.

� Each order has a distinct processing time at a supplier stage and different size for transporting
to the manufacturing centers.

� Each order should be delivered to a predetermined manufacturing center as its destination.

� Each supplier has a different processing speed. The supplies are located in a geographical zone.
Distances between the suppliers located in the geographical zone are negligible in comparison
with their distance from the manufacturing centers. Considering negligible distance between
the suppliers is applicable in industrial clusters.

� There is a set of permissible suppliers for assigning. These suppliers are located in a predeter-
mined graphical zone.

� Each order should be assigned to one of the permissible supplier.

� The vehicles have different capacities and speeds for transporting orders to the manufacturing
centers.

� All vehicles are ready at a terminal at the beginning of scheduling.

� Each vehicle could transport various orders from various suppliers located in a batch. In this
case, the total size of the assigned orders to this batch should be lower than the vehicle capacity.
Each vehicle may be reused after delivering a batch.

� Some vehicles are unable to provide services for some suppliers.

� The assigned orders to each batch should have a common destination.

� Real processing time of orderi after assigning to supplier s, pis is commuted by the following
relation[4]:
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pis =
Pi

sss
(2.1)

Where pi indicates processing time of order i and sss indicates the speed of supplier s. similarly,
real transportation time of order i after assigning to vehicle k (shik) is obtained by the following
equation:

shik =
disi
vsk

(2.2)

Where disi is required traveling distance of order i and vsk indicates the kth vehicle’s speed.
The main question of the problem is: How is the scheduling problem in the mentioned supply

chain? The sub-questions of this problem are: 1- How is the order assignment to the suppliers? 2-
How is the order sequence in each supplier? 3- How is the order assignment to the vehicles? 4- How
does each vehicle batch and deliver its assigned order to the manufacturing centers? Each decision
regarding the questions effects the delivery time of each order as well as the objective function.

Answering sub-questions 1 and 2 determines completion times of the orders at the supplier stage,
while answering sub-questions 3 and 4 determines delivery time of the orders to the manufacturing
centers.

Firstly, we present the mathematical model of the problem. Modeling the problem mathematically
shows the nonlinear entity of it. Subsequently we prove a lower bound for the problem.

3. Mathematical Model

In this section the mathematical model of the problem is proposed. Before presenting the math-
ematical model of the problem, the notations used for the parameters and variables of the problem
are presented as follows.The Sets of the Model are as follows:

Set of orders with index i
Set of suppliers with index s
Set of vehicles with index k
Set of batches of a vehicle with index b
Set of manufacturing centers with index f
The parameters of model are as follows:

n number of orders

m number of suppliers

F number of manufacturing centers

l number of vehicles

voli volume of order i when loaded to a vehicle

vsk speed of vehicle k

sss speed of supplier s (according to machine-hour per hour)

Capk capacity of vehicle k for transporting orders from suppliers to the manufacturing centers
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Pi required processing time of order i in terms of machine-hour

disi relevant distance of order i

distws the distance between the related manufacturing center of order w and supplier s.

disTs the distance between the terminal and supplier s.

Q A sufficiently large number

Also the following zero-one matrices should be given:

Fit (m× l) Fit (s, k) is equal to 1 if supplier s and vehicle k are allocated to the same geographical
zone and vice versa.

Permit (n×m) Permit (i, s) is equal to 1 if supplier s is a permissible supplier for orderi and vice
versa.

Center (n× F ) Center (i, f) is equal to 1 if order i should be delivered to manufacturing center f
and vice versa.

Variables of the model are as follows:

ci completion time of order i at the first stage

Deli delivery time of order i

Ldi loading time of orderi on a vehicle for transportation

Delmax maximum delivery time of the all orders

atvkb availability time of vehicle k for moving to its supplier zone to load belong orders to batch b

Also the following zero-one variables should be considered:

ASsi 1 if order i is assigned to suppliers and vice versa.

yiw 1 if order i has higher priority than order w and vice versa.

AVkib 1 if orderi assigned to the b th batch on the vehicle k and vice versa.

rfkb 1 if the bth batch on the kth vehicle assigned to manufacturing centerf and vice versa.

The objective function is MinZ = Delmax and the constraints of the mathematical model are as
follows:

m∑
s=1

ASsi = 1 ∀i (3.1)

Description: each order is allocated to only one supplier.

ASsi = 0 ∀i, s | permit(i, s) = 0 (3.2)
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Description: The orders do not assign to unacceptable suppliers. As mentioned in the problem
assumptions, some suppliers may not be able to process some orders. If Suppliers is unable to
process Order i (permit (i,s)=0), then Order i should not be assigned to Supplier s in any feasible
solution (ASsi=0).

ci ≥
pi
sss
−Q(1− ASsi) ∀i, s (3.3)

Description: completion time of orders in the first stage is determined.

cw + Q(1− yiw × ASsi × ASsw) ≥ ci +
pw
sss

∀i, w, s | i 6= w (3.4)

Description:processing of two orders concurrently on a supplier is not allowed. If yiw equal 1 means
that orderi has higher priority than order w and when both of orders i and w are assigned to supplier
s (ASsi= ASsw= 1), cw is greater than or equal to ci + pw

sss
. On the other hand, if yiw equals zero, the

constraint is ignored.

yiw = 1− ywi ∀i, w | i > w (3.5)

Description: it is not possible that order i is processed both after and before of order w

Ldi ≥ ci ∀i (3.6)

Description: The loading time of each order is linked to its completion time in the first stage.

Ldi ≥ atvkl +
disTs

vsk
−Q(2− AVki1 − ASsi) ∀i, k (3.7)

Ldi ≥ atvkb +
distws

vsk
−Q(3− AVkib − AVkw(b−1) − ASsi) ∀i, k, b | b 6= 1

Description: atvkb is connected with its relevant orders’ loading time.

atvk1 = 0 ∀k (3.8)

Description: all vehicles are available at the beginning of scheduling at the terminal.

Deli ≥ Ldi +
disi
vsk
−Q(1−

n∑
b=1

AVkib) ∀i, k, b (3.9)

Description: relations between the delivery time and loading time of orders are understood.

l∑
k=1

n∑
b=1

AVkib = 1 ∀i (3.10)

Description: each order is allocated to exactly one batch of one vehicle.
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n∑
i=1

voli × AVkib ≤ Capk ∀k, b (3.11)

Description: the total occupied volume of orders assigned to a batch of a vehicle should be lower
than the capacity of the vehicle.

atvk(b+1) ≤ Deli + Q(1− AVkib) ∀i, k, b | b 6= n

atvk(b+1) ≥ Deli −Q(1− AVkib) (3.12)

Description: atvk(b+1) is equal to the completion time of assigned orders to bth batch of the relevant
vehicle.

n∑
i=1

AVki(b+1) ≤ Q×
n∑

i=1

AVkib ∀k, b | b 6= n (3.13)

Description: the priority of batches is considered. If there is no assigned order to batch b of vehicle
k, then

∑n
i=1AVkib = 0. It forces no assignment to the next batch. In other words, to assign an

order to batch (b + 1), it is required to have an order assignment to its previous batch.

Delmax ≥ Deli ∀i (3.14)

Description: determine the maximum delivery times of the all orders

AVkib ∗ AVkwb ≤
F∑

f=1

center(i, f) ∗ center(w.f) ∀k, b, i, w (3.15)

Description: the assigned orders to each vehicle’s batch should have a same destination

ASsi +
n∑

b=1

AVkib ≤ 1 ∀i, s, k | Fit(s, k) = 0 (3.16)

Description: the assigned supplier and vehicle of an order is matched from the aspect of the geo-
graphical zone. If vehicle k and supplier s belong to different zones, when an order is assigned to
supplier s ASsi = 1, it may not be assigned to any batch of vehicle k

∑n
b=1AVkib = 0, and vice versa.

ASsi = {0, 1} ∀s, i
ci, Deli, Ldi ≥ 0 ∀i
yiw = {0, 1} ∀i, w

atvkb ≥ 0 ∀k, b (3.17)

AVkib = {0, 1} ∀kib
Delmax ≥ 0

rfkb = {0, 1} ∀fkb
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Table 1: The Orders information
Processing time(min) Size Destination

Order 1 40 20 Customer 1
Order 2 30 16 Customer 1
Order 3 30 30 Customer 2
Order 4 50 10 Customer 2

Table 2: The Transportation times

Kitchens Customer 1 Customer 2
Kitchens 0 60 70

Customer 1 60 0 110
Customer 2 70 110 0

Constraints (3.1) to (3.14) are similar to the constraints in the study of Zegordi et al.[4]. The
main difference is in constraints (3.15) and (3.16). Moreover, the Permit parameter is also considered
in this model which affects constraint (3.2). Furthermore, since the vehicle routes are different and
an initial terminal is defined for the vehicles at the beginning of the scheduling process, some changes
are also made in constraint (3.7).

As shown in the mathematical model, it has a nonlinear form. Since a simpler version of the
problem with one supplier, one vehicle and one manufacturing center is the problem considered by
change and Lee[2]. They proved the NP-hard complexity of their problem. Since their problem is a
reduced case of the problem in this study, it is concluded that this problem is also NP-hard In the
next section a lower bound for the problem is presented.

For more clarification, an example from a real -world catering provider in Iran is presented in this
section. Catering providers, provide food services for different types of customers, such as companies
and hotels. On time delivery is critical for customers and to satisfy the customers’ expectations,
catering providers should have an efficient scheduling in their supply chain. At the same time, in
order to minimize the total cost, effectively, catering providers use batched delivery.

The gathered data sets were collected for three days and for two costumers. In the considered
catering provider, there are two parallel kitchens for catering, which should service two companies
(costumers), according to a concluded contract. The distribution system consists of two same vehicles
with capacity of 45 food package. Tables 1 and 2 shows the gathered data. All values related to the
orders of costumers, were gathered from available documents in the company.

Since the production speed of both kitchen and transportation speed of both vehicles are identical,
the real processing time and transportation time are given in the tables 1 and 2. Considering these
data, the optimal schedule is shown in Figure 1 with an objective function of 150.

4. Proposing the lower bound

To prove the lower bound 4 lemmas and a theorem are presented and proved as follows:

Lemma 4.1. Assume there is a vehicle with capacity cap which is going to transport n orders, and
also assume S is an arbitrary solution on this circumstance with the objective function of minimizing
the maximum delivery time of the orders. Now assume we are dealing with another circumstance
in which there are cap vehicles with capacity 1. then for each solution S in the first circumstance
there is at least one solution S ′ in the second circumstance, which the following inequalities applies
to them:
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Figure 1: the optimum schedule

del′i ≤ deli ∀i = 1, . . . , n (4.1)

Where deli indicates the virtual delivery time of the ith order in the first circumstance, under solution
S and del′i indicates the virtual delivery time of ith order in the solutionS ′ .(In the second circumstance
the real completion time and the virtual completion time are equal to each other)

Proof . In the first circumstance and under scheduling s these equations exist:

dz ≥ maxi∈Bzdeli z = 1, . . . , [
n

cap
] + 1 (4.2)

dz ≤ stw ∀w ∈ Bz+1, z = 1, . . . , [
n

cap
] (4.3)

Where stw indicates the starting time of shipping order w, deli indicates the virtual delivery time of
order i, Bz indicates all the orders allocated to the zth batch and dz indicates the delivery time of
zth batch (real delivery time of the all allocated orders to it). (4.2) and (4.3) result in:

maxi∈Bzdeli ≤ stw, ∀w ∈ Bz+1, z = 1, . . . , [
n

cap
] (4.4)

deli ≤ stw, ∀i ∈ Bz,∀w ∈ Bz+1, z = 1, . . . , [
n

cap
] (4.5)

Now assume there is a solution S ′ in the second circumstance with the following condition:
First: each order belonging to each batch (in solution S), should be allocated only to a single

vehicle in the solution S ′.
Second: for each pair of assigned orders to a vehicle in solution S ′, the order belonging to the

batch with smaller index (in solution S) should be transported earlier than the order belonging to
the batch with bigger index in solution S ′ .

In this case the orders satisfying the second condition constraints (3.1) are converted to the
following equations in solutions′:

del′i = st′w ∀i ∈ Bz,∀w ∈ Bz+1z = 1, . . . , [
n

cap
] (4.6)
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Where st′w indicates the starting time of shipping order w and del′i is the virtual delivery time of
order i in solution S ′ . Therefore we have:

st′w ≤ stw ∀w ∈ Bz+1, z = 1, . . . , [
n

cap
] (4.7)

del′w ≤ delw ∀w ∈ Bz+1, z = 1, . . . , [
n

cap
] (4.8)

Therefore the lemma in proven. �
Conclusion 1: assume we are dealing with l vehicles with cap1, cap2,. . . , capl capacities in the

first circumstance, which have to transport n orders. And also assume S is an arbitrary solution
on this circumstance with the objective function of minimizing the maximum delivery time of the
orders. Now assume we are dealing with another circumstance which there are

∑l
k=1 capk vehicles

with capacity 1. Now for each solution S in the first circumstance there is at least a solution S ′ in
the second circumstance which we have:

del′max ≤ delmax (4.9)

Where delmax and del′max respectively indicate the maximum delivery time of orders in S and S ′,
respectively.

Lemma 4.2. Assume that we are dealing with circumstance in which there are m supplier with speed
of vs1, vs2, vs3,. . . , vsm and n orders for allocating to the suppliers. A lower bound for the optimum
value of the objective function of minimizing the maximum completion time of orders can be obtained
by the following relation:

c∗max ≥
∑n

i=1 pi∑m
s=1 vss

(4.10)

Where c∗max indicates the optimum value of the objective function, pi is the processing time of the
ith order and vss indicates the speed of supplier s.

Proof . Assume that splitting of the orders are allowed. Now consider solution S in which all
suppliers have identical release time. In this case, all suppliers will be working from the beginning
until their common release time which is equal to the objective function of the solution, represented
by ˜c∗max. It is clear that ˜c∗max. is smaller or equal to cmax in any other solution of the original
problem. Therefore the inequality c∗max ≥ ˜c∗max which c∗max is the optimum objective function of
the original problem.

Now assume the total processing time of the orders allocated to sth supplier are represented by
Qs. In solution S we have the following equations:

Q1 + Q2 + . . . + Qm =
n∑

i=1

pi (4.11)

Q1

ss1
=

Q2

ss2
= . . . =

Qm

ssm
= ˜c∗max (4.12)
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From (4.12), we have:

Qs =
Q1

ss1
× sss ∀s = 1, . . . ,m (4.13)

Equations (4.13) and (4.11) gives:

m∑
s=1

Q1

ss1
× sss =

Q1

ss1
×

m∑
s=1

sss =
n∑

i=1

pi V
Q1

ss1
=

∑n
i=1 pi∑m
s=1 sss

(4.14)

And according to (4.12) we have:

˜c∗max =

∑n
i=1 pi∑m
s=1 sss

(4.15)

Due to c∗max ≥ ˜c∗max, we have:

c∗max ≥
∑n

i=1 pi∑m
s=1 sss

(4.16)

So, the lemma is proven. �

Lemma 4.3. Assume we have l vehicles with speed of vv1, vv2,. . . , vvl and capacity of 1 to transport
n orders to the manufactures. In this case the following inequality is established:

del∗max ≥
∑n

i=1 disi∑l
k=1 vvk

(4.17)

Which del∗max is the optimum value objective function of the objective function of minimizing the
maximum delivery times of orders, disi the distance to be shipped for delivering of ith order.

Proof . In lemma 4.2 considers each vehicle as a supplier, vehicle speed as supplier speed and
required distance for each order to be shipped as its required processing time to be performed. So,
the results could be extended to the current situation and lemma 4.3 is proven. �

Lemma 4.4. Assume there l vehicles with cap1, cap2,. . . , capl capacities and speed of vv1, vv2,. . . ,
vvZ to transport n order. A lower bound for the optimum value of the objective function could be
obtained by the following inequality:

del∗max ≥
∑n

i=1 disi∑l
k=1 capk × vvk

(4.18)

Proof . Consider two circumstances which the mentioned situation in lemma 4.4 is the first circum-
stance. The second circumstance consists of

∑l
k=1 capk vehicles with capacities equal to 1 in which

there are cap1 vehicles with speed of vs1, cap2 vehicles with speed of vs2 etc.. Based on Conclusion 1,
for each solution S in the first circumstance there is at least a solution S ′′ in the second circumstance,
which we have:

del′′max ≤ del ∗max (4.19)
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Where del∗max and del′′max respectively indicate the maximum delivery time of orders in S and S ′′,
respectively.

According to Lemma 4.2 for each scheduling S ′′ we have:

del∗max ≥ del′′max ≥
∑n

i=1 disi∑l
k=1 capk × vsk

V del∗max ≥
∑n

i=1 disi∑l
k=1 capk × vsk

(4.20)

�

Theorem 4.5. Consider a two-stage supply chain environment which there are m suppliers with
speed of ss1, ss2, ss3,. . . , ssm in the first stage and l vehicle with cap1, cap2,. . . , capl capacities and
speed of vs1, vs2,. . . , vsl in the second stage. If the processing time of order i in the first stage is pi
and its required distance to be traveled by the vehicles is disi, a lower bound is being represented by
LB for the objective function of minimizing the maximum delivery time of orders can be obtained by
the following equation:

LB = MAX{lb, lb′, lb′′} (4.21)

In which:

lb = lb1 + lb2 (4.22)

lb1 =
Mini=1,...,n{pi}
Maxs=1,...,l{sss}

(4.23)

lb2 = Max{
∑n

i=1 disi∑l
k=1 vsk × capk

,
Mini=1,...,n{disi}
Maxk=1,...,l{vsk}

} (4.24)

lb′ = lb′1 + lb′2 (4.25)

lb′1 = Max{
∑n

i=1 pi∑m
s=1 sss

,
Mini=1,...,n{pi}
Maxs=1,...,m{sss}

} (4.26)

lb′2 =
Mini=1,...,n{disi}
Maxk=1,...,l{vsk}

(4.27)

lb′′ = Maxi=1,...,n{
pi

Maxs=1,...,m{sss}
+

disi
Maxk=1,...,l{vsk}

} (4.28)

Proof . Assume we are in the transportation stage. Consider k1 as the order with the smallest
completion time at the supplier stage. lb1 Indicates completion time of order k1. In other words,
it is a lower bound for the completion time of each order at the supplier stage. lb2 is maximum of
two terms and it is a lower bound for transportation time of last delivered order. The first term is
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achieved by lemma 4 and the second term is the smallest transportation time. Therefore the total of
these terms represent a lower bound for the objective function of minimizing the maximum delivery
time of the all orders.

The proof of lb′ is similar to lb in which it is assumed that we are in the supplier phase. lb′1
indicates a lower bound for completing time of the last completed order at the supplier stage and lb′2
indicates the smallest transportation time among the all orders.

On the other hand, lb′′ consider each order and calculate the minimum possible time that each
order may be processed by the suppliers and transported by the vehicles. It is occurred when it is
assigned to the supplier with highest production speed and also the faster vehicle.

Therefore, there are 3 lower bounds (lb, lb′ and lb′′). It is clear that the biggest one is the final
lower bound and the theorem is proven. �
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