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Abstract

In this study, the dynamical behavior of the four-dimensional (4D) hyperchaotic system is analyzed.
Its chaotic dynamical behaviors and basic dynamical properties are presented by Lyapunov expo-
nents, stability analysis, and Kaplan-Yorke dimension. Then, the control of 4D hyperchaotic system
is implemented by using passive control. The global asymptotic stability of the system is guaranteed
by using Lyapunov function. Simulation results are shown to validate all theoretical analysis and
demonstrate the effectiveness of the proposed control method. By applying the passive controllers,
the system under chaotic behavior converges to the equilibrium point at origin asymptotically.
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1. Introduction

Recently, chaos has been extensively studied in a number of fields such as engineering, communication,
mathematics, etc. Chaos and hyperchaos can occur in any nonlinear system. The chaotic systems
are defined by great sensitiviy to initial conditions [1]. The system must be at least third order
autonomus or second order nonautonomous to see chaotic behavior [2]. The chaotic system must
also have at least one positive Lyapunov exponent. Moreover, if the system has more than one
positive Lyapunov exponent, the system is called as hyperchaotic system [3, 4].

It is believed that high dimensional chaotic systems will provide much more benefits in appli-
cations. Chaotic systems with higher dimensional have been proposed to improve the security of
the communication due to their more-complex dynamics rather than chaotic systems [5]. Although
Rossler firstly reported the hyperchaos in 1979 [6], the hyperchaos is firstly observed in a fourth
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order electrical circuit among the real physical systems [7]. Therefore, a lot of scientists have been
proposed and generated many hyperchaotic systems recently [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Dif-
ferent methods have been proposed in recent years to obtain hyperchaos or hyperchaotic system
from chaotic systems such as linear feedback control method [9, 10, 11, 12], nonlinear feedback [13],
time delay state feedback [14] and state feedback [15]. Using these methods, hyperchaotic attractors
and tri-chaos attractors can be generated with two positive Lyapunov exponents and three positive
Lyapunov exponents respectively [2, 16]. A new 4D hyperchaotic system generated from three dimen-
sional autonomous Chen-Lee chaotic system by adding a nonlinear controller is reported by Cheng
[13]. It is showed that the obtained system has two lyapunov exponents and has more complex than
3D autonomous Chen-Lee chaotic system.

However, chaos in systems can lead the undesirable behavior such as harmful oscillations for the
system. So, if it is undesirable, this is needed to be diminished or control to avoid the undesirable
behavior. After Ott, Grebogi and Yorke have firstly proposed OGY method for control of chaos [17],
the control of chaotic behavior in the systems has received intensive attention. Recently, a number
of control methods have been applied to control the chaos and undesirable behavior in the chaotic
systems such as sliding mode control [18], time-delayed feedback control [19], linear control [20], state
feedback control [21], adaptive control [22, 23], passive control [24, 25, 26, 27, 28] and so on.

Since chaos can have a negative effect on the stable operation of the system, the studies about
the chaos control of the system have great significance. Several studies have shown that the passive
controller can asymptotically provide stability, suppressing chaos and stabilize the system effec-
tively. Also, the passive control technique is applied for the synchronization of the chaotic systems.
Therefore, the researchers are interested in the passive control as an effective method. Using the
effectiveness of the passive control technique, Kocamaz proposed a new controller designed based
on combining the passive and feedback controllers [29]. While classical passive control does not ap-
plied for the hyperchaotic finance system, it has been shown that the new passivity-based feedback
controller can stabilize the hyperchaotic system [29]. Takhi proposed passivity based sliding mode
control for chaos control and synchronization of chaotic systems using the combination of sliding
model control and passivity theory [30]. Zhang showed that the passivity based controllers can
stabilize hyperchaotic Chen system by controlling the hyperchaos and also achieve synchronization
between different hyperchaotic systems by ensuring the asymptotic stability [31].

In this article, firstly, the dynamical behavior of the 4D hyperchaotic system presented by Cheng
[13] is analyzed. The chaotic behavior of the 4D system is investigated by analyzing the Lyapunov
exponents, Lyapunov or Kaplan-Yorke dimension and eigenvalues. The complex dynamics behavior
is also shown by phase portraits and time series. Moreover, the passive control technique is applied
for control of hyperchaotic system presented by Cheng [13]. The asymptotic stability of the system
is ensured by using the Lyapunov function with passive control.

The structure of this paper is organized as follows. In Section 2, the hyperchaotic system ob-
tained from chaotic system is introduced and the dynamical behavior of the hyperchaotic system
is investigated by using Lyapunov exponents, Kaplan-Yorke dimension, eigenvalues, and phase dia-
grams. In Section 3, the control of the chaos in the hyperchaotic system is implemented via passive
control technique. In Section 4, the numerical simulations are given by showing very good control
achievement. Finally, conclusions are given in Section 5.

2. The System Description and Dynamical Analysis of 4D Hyperchaotic System

The hyperchaotic 4D system generated from 3D autonomous system by adding nonlinear con-
troller is given by [13],
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Figure 1: Phase diagrams of the system

ẋ = −yz + ax

ẏ = xz + by

ż = (1/3)xy + cz + 0.2w

ẇ = dx+ 0.5yz + 0.05w

(2.1)

where x, y, z, w are the state variables and a, b, c, d are real constants. When a = 5, b = −10, c =
−3.8, d = 0.4, the system exhibits hyperchaotic behavior. The phase portraits of the hyperchaotic
attractor of system with certain parameters and initial points [0.2, 0.1, 0.1, 0.2]T are shown in Fig. 1
and Fig. 2.

Lyapunov exponents of the system are computed as L1 = 0.3265, L2 = 0.0946, L3 = 0 and
L4 = −9.1711 with T = 10000 s for parameter a = 5, b = −10, c = −3.8, d = 0.4 and the initial state
values (x0, y0, z0, w0) = (0.2, 0.1, 0.1, 0.2) using the Wolf’s algorithm [32]. The system is chaotic due to
the Lyapunov characteristic exponents. If any system has one or more positive Lyapunov exponent,
it is described as chaotic.[32] Also, any system containing more than one positive Lyapunov exponent
can be defined as a hyperchaotic system [2].

The Lyapunov or Kaplan–Yorke dimension [33, 34] of the corresponding chaotic system is calcu-
lated as,
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(a) (b)

Figure 2: 3D phase spaces of the system (a) x-y-z plane, (b)z-w-y plane.

DL = j +
1

|Lj+1|

j∑
i=1

Li = 3 +
L1 + L2 + L3

|L4|
= 3.0459. (2.2)

The dissipation of the system (2.1) is given as follow [35] :

∇V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
+
∂ẇ

∂w
= a+ b+ c+ 0.05 = −8, 75 < 0 (2.3)

As the divergence flow and sum of Lyapunov exponents are negative, the system (2.1) is obviously
dissipative with an exponential contraction rate:

dV

dt
= e−8.75t

The volume of the trajectories of the dynamical system shrinks to zero exponentially as t → ∞
with −8.75 rate in the dynamical system (2.1).

The system (2.1) is linearized for the zero equilibirum point, the jacobian matrix is,

J(0,0,0) =


a 0 0 0
0 b 0 0
0 0 c 0.2
d 0 0 0.05

 =


5 0 0 0
0 −10 0 0
0 0 −3.8 0.2

0.4 0 0 0.05

 (2.4)

By using | J − λI |= 0, the characteristic equation is obtained as

λ4 + 8.75λ3 − 31.44λ2 − 188.45λ1 + 9.5 = 0 (2.5)

From the characteristic equation, eigenvalues are calculated as λ1 = −3.8, λ2 = 0.05, λ3 = 5 and
λ4 = −10 Obviously, zero equilibrium point (0, 0, 0, 0) is unstable due to the positive eigenvalues.
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Figure 3: The times series of the system with controller activated at 80 s with α = 1 and v = 0.

3. Control of 4D Hyperchaotic System

In this section, the passive control technique is used to control the hyperchaotic system around
the unstable equilibrium point at origin. The controlled hyperchaotic system is given by,

ẋ = −yz + ax+ u1

ẏ = xz + by

ż = (1/3)xy + cz + 0.2w

ẇ = dx+ 0.5yz + 0.05w + u2

(3.1)

where u1 and u2 are the control input vectors which drive the hyperchaotic system to zero equilibirum
point.

Supposing the variables,

z =

(
z1
z2

)
=

(
y
z

)
y =

(
y1
y2

)
=

(
x
w

) (3.2)

and then, the controlled system can be described by generalized form of passive control theory.

ż1 = y1z2 + bz1

ż2 = (1/3) y1z1 + cz2 + 0.2y2

ẏ1 = −z1z2 + ay1 + u1

ẏ2 = dy1 + 0.5z1z2 + 0.05y2 + u2

(3.3)
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(a) (b)

Figure 4: The phase planes of the controlled system with different α values.

So, writing the general form as in passive control as follows. [24, 25, 26],

ż = f0(z) + p(z, y)y,

ẏ = b(z, y) + a(z, y)u
(3.4)

where

f0(z) =

[
bz1
cz2

]
p(z, y) =

[
z2 0

1/3z1 0.2

]
b(z, y) =

[
−z1z2 + ay1

dy1 + 0.5z1z2 + 0.05y2

]
a(z, y) =

[
1 0
0 1

]
Selecting the following storage function,

W (z) =
1

2
(z1

2 + z2
2) (3.5)

is the Lyapunov function of f0(z) with W (0) = 0.

Ẇ =
d

dt
W (z) =

∂W (z)

∂z
f0(z) =

[
z1 z2

] [bz1
cz2

]
= bz21 + cz22 (3.6)

where b and c are negative, so
bz21 + cz22 ≤ 0 (3.7)

f0(z) is globally asymptotically stable, as W (z) ≥ 0 and Ẇ (z) ≤ 0, it can be achieved that the
zero dynamics of the controlled system (3.1) is Lyapunov stable. The system with controller can be
said to be equivalent to a passive system and it becomes minimum phase.
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Using passive control theory, the control signal u is achieved by

u = a(z, y)−1

[
−bT (z, y)− ∂

∂z
W (z)p(z, y)− αy + v

]
(3.8)

According to the passive control theory [25], the system (3.3) is a passive system. u control signal
from the property of passive control theory can be defined as,

u1 = yz − (a+ α)x− xy − 1/3xz + v1

u2 = −dx− 0.5yz − 0.2z − (0.05 + α)w + v2
(3.9)

where α is a positive parameter, u = (u1, u2)
T and v = (v1, v2)

T are the control and an external
input vector respectively.

4. Numerical simulations

In this section, numerical simulations have been performed to show the effectiveness and feasibility
of the proposed control method on 4D hyperchaotic system. The parameters used in simulations are
a = 5, b = −10, c = −3.8, d = 0.4 and the initial state values x(0) = 0.2, y(0) = 0.1, z(0) =
0.1, w(0) = 0.2.

The passivity-based control signal with external input v = 0 is applied to the 4D hyper chaotic
system at t = 80 s. The trajectories of the controlled system are shown in Fig. 3. Also, the phase
diagrams of the controlled chaotic system with passivity-based controller activated in the beginning
of the simulations are shown in Fig. 4. Moreover, the effect of the α parameter of the controller is
investigated. As can be seen in Fig. 4, the controlled system converges faster to the zero equilibrium
point, as α parameter increases. As we can see from these Figs. 3 and 4, the passivity based controller
(3.9) can effectively stabilize and derive the chaotic system to the equilibrium point (0, 0, 0, 0).

5. Conclusion

In this paper, dynamical analyses of the 4D hyperchaotic system are presented by Lyapunov
exponents, Kaplan-Yorke dimension, eigenvalues, times series and phase spaces. Moreover, passive
control scheme is investigated for 4D hyperchaotic system which was generated from 3D autonomous
system by adding nonlinear controller. We have proposed a passive controller to asymptotically sta-
bilize a 4D hyperchaotic system to zero equilibrium point based on the stability features of a passive
system. The proposed controller can be easily applied in practical applications due to its simplic-
ity and efficiency. Simulation results have demonstrated that the proposed controller can effectively
suppress the hyperchaos in the system and stabilize the hyperchaotic system at zero equilibrium point.

Conflict of interest. On behalf of all authors, the corresponding author states that there is no
conflict of interest.
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