

http://www.ijnaa.semnan.ac.ir On α^* — Continuous and Contra α^* — Cont

On α^* – Continuous and Contra α^* – Continuous Mappings in Topological Spaces with Soft Setting

Nadia M. Ali Abbas^a, Shuker Mahmood Khalil^{b,*}, Alaa Abdullah Hamza^c

Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 1107-1113

ISSN: 2008-6822 (electronic)

^aMinistry of Education, Directorate General of Education/ Baghdad/ Al-Kark/3, Iraq.

^bDepartment of Mathematics, College of Science, University of Basrah, Basrah 61004, Iraq. ^cMinistry of Education, The General Directorate For Al-Najaf Al Ashraf, Iraq.

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this work, some new connotations of continuous mappings such as α^* - continuous mapping $(\alpha^* - CM)$, irresolute α^* - mapping $(I\alpha^* - CM)$, and strongly α^* - continuous mapping $(S\alpha^* - CM)$ are studied and some of their characteristics are discussed. In other side, new some classes of contra continuous mappings are investigated in this work, they are called contra α^* - continuous mappings $(C\alpha^* - CMs)$. Finally they are studied in soft setting.

Subject Classification: 54 A10, 54C10, 54 A05

Keywords: α - open sets, α^* - open sets, α^* - regular spaces.

1. Introduction

In general the concept of mappings is so useful notion in topology and mathematic. In this work, we study a new classes of mapping that are called α^* – continuous and contra α^* – continuous mappings; the connotation of the α – open set ($\alpha - OS$) was first introduced by O. Njasted in 1965 [1], where the homely of all ($\alpha - OSs$) in (X, τ) is also topology on X and it is finer than τ [2]. G. Navalagi defined the connotation of semi α – open sets (Se $\alpha - OSs$)([3], [4]). The connotation of α^* – open set ($\alpha^* - OS$) was first shown in 2019 by Nadia M. Ali and Shuker M. Khalil for more details see [5] the concept is an extension of ($\alpha - OS$), it is robustly weaker than ($\alpha - OSs$) and bigger than (Se α – OSs). The notion of Contra continuity is given in 1998 by Dontchev [6]. The mathematical idea of these notions were studied in non-classical sets, where some types of sets and maps can be extended in non-classical sets like fuzzy sets, nano set, permutation sets and so on and

^{*}Corresponding author

Received: September 2020 Revised: March 2021

applied in topology and algebra see ([7]-[32]). In this research attempt has been considered to apply the concept of $(\alpha^* - OSs)$ to consider some kinds of $(\alpha^* - CMs)$ like; $(I\alpha^* - CMs)$, $(S\alpha^* - CMs)$ and $(C\alpha^* - CMs)$. The interior (resp., closure, α - interior, α - closure) of a subset A of a topological space (TS) will be referred as int(A) (resp., α int (A), cl(A), acl(A)).

2. Preliminaries

Here, some definitions and characteristics of $(\alpha^* - OS)$ which we need in our work are recalled.

Definition 2.1. ([1], [3], [5]) Let A be a set in (TS) X. We say A is α -open set $(\alpha - OS)$ (resp., semi α - open set $(Se\alpha - OS), \alpha^*$ - open set $(\alpha^* - OS)$) if $A \subseteq int(cl(int(A)))$ (resp., $A \subseteq cl(int(cl))$) or equivalently $A \subseteq cl(int(A)), A \subseteq int_{\alpha} (cl(int_{\alpha}(A)))$). Also, their complement are called α - closed set $(\alpha - CS)$ (resp., semi α - closed set $(Se\alpha - CS), \alpha^*$ - closed set $(\alpha^* - CS)$). The symbol of above sets and their complement are referred as $\alpha - O(X)$ (resp., $Se\alpha - O(X), \alpha^* - O(X)$), $\alpha - C(X)$ (resp., $se\alpha - C(X), \alpha^* - C(X)$).

Proposition 2.2. [5] (1) Every (OS) (resp., α - open, clopen) set is (α^* - OS), (2) Every (α^* - OS) is (se α - OS).

Proposition 2.3. [5] (1) If $\{G_{\lambda}\}_{\lambda \in \Gamma}$ is a collection of $(\alpha^* - OSs)$, then their union is also $(\alpha^* - OSs)$, (2) If A is $(\alpha^* - OS)$ and B is (OS), then $A \cap B$ is $(\alpha^* - OS)$.

Proposition 2.4. [5] Let X_1 and X_2 be two topological spaces (TSs), $A_1 \subseteq X_1$ and $A_2 \subseteq X_1$. Then A_1 and A_2 are $(\alpha^* - OSs)$ (resp., $(\alpha^* - CSs)$) in X_1 and X_2 , respectively if and only if $A_1 \times A_2$ is $(\alpha^* - OS)$ (resp., $(\alpha^* - CS)$) in $X_1 \times X_2$.

Theorem 2.5. Assume W is a subspace of Z satisfy $G \subseteq W \subseteq Z$. Then; (i) if $G \in \alpha^* - O(Z)$, then $G \in \alpha^* - O(W)$ (ii) if $G \in \alpha^* - O(W)$, then $G \in \alpha^* - O(Z)$, where W is a closed subspace of Z.

Definition 2.6. ([34]) A (TS) X is called: (i) Ultra $-T_2$ if for any $t \neq h \in Z$, there exist two disjoint closed sets (DCSs) T, H satisfy $t \in T, h \in H$ (ii) Ultra Normal if for each T, F closed sets (CSs) with $T \neq \phi \neq F$ and $T \cap F = \phi$. Then, $\exists D, H$ two (CSs) with $D \cap H = \phi$ and $T \subseteq D, F \subseteq H$, (iii) Strongly closed if for any homely of (CSs) that form a cover of x has a finite sub-homely that form a cover of X too.

Definition 2.7. ([36]) Assume (\int, A) is soft subset in soft topological space (STS) (Ψ, E, ℓ) . We say (\int, A) is a soft α - open set $(S\alpha - OS)$ if $(\int, A) \cong int^S (cl^S (int^S (\int, A)))$ and its complement is called soft α - closed set $(S\alpha - CS)$. The intersection of all soft closed sets (SCSs) [res. (S\alpha - CSs)] which containing (\int, A) is called soft closure [resp., soft α - closure] of (\int, A) and referred as $cl^S (\int, A) (cl^S_\alpha (\int, A))$. Moreover, the union of all soft open sets (SOSs) [resp., $(S\alpha - OSs)$] is contained in (\int, A) is called soft interior [res. soft α - interior] of (\int, A) and referred as int $S (\int, A)$ (int $\alpha^S (\int, A)$).

Definition 2.8. ([35]) Assume (Ψ, E) and (Ψ', E') are two soft spaces and $u : \Psi \to \Psi', p : E \to E'$ are two maps. We say $L : (\Psi, E) \to (\Psi', E')$ is a soft mapping (SM) and recognized as:, $(L(\int, A), B)$ in (Ψ', E') whenever (\int, A) in $(\Psi, E), B = P(A) \subseteq K$ and $L(\int, A)(\omega) = u(\bigcup_{\alpha \in p^{-1}(\omega) \cap A} \int(\alpha))$, for $\omega \in K$ $(L(\int, A), K)$ is referred as $(L(\int, A), when B = K)$. **Definition 2.9.** ([33]) Let (Ψ, E, ℓ) be a (STS) has soft subset (\int, A) . Then (\int, A) is said to be a soft α^* – open set (S α^* – OS) if $(f, A) \subseteq \operatorname{int}^s_{\alpha}(cl^s(\operatorname{int}^s_{\alpha}(I, A)))$ and its complement is called soft α^* -closed set (S α^* – CS).

Definition 2.10. ([33]) Let(Ψ, E, ℓ) and (Ψ', E', ℓ') be (STSs) and $L : (\Psi, E) \to (\Psi', E')$ be a (SM), then L is said to be a soft contra α^* – continuous mapping (SC α^* – CM), if for each (\int, A) $\in \ell', L^{-1}((\int, A))$ is (S α^* – CS) in(Ψ, E, ℓ)

3. Some New Classes of α^* – Continuity

Some new classes of α^* – continuity such as; irresolute α^* – continuous mapping $(I\alpha^* - CM)$, stronger α^* – continuingous mapping $(S\alpha^* - CM)$ and contra α^* - continuous mapping $(C\alpha^* - CM)$ in this section are investigated. Also, their relationships among them are given.

Definition 3.1. Assume W_1 and W_2 are (TSs) and $h: W_1 \to W_2$ is any map from W_1 into W_2 . We say h is α^* - continuous mapping ($\alpha^* - CM$) (resp., irresolute α^* - continuous mapping ($I\alpha^* - CM$), stronger α^* - continuous mapping ($S\alpha^* - CM$)) mapping if each G(OS) (resp., $\alpha^* - OS$) in W_2 , then $h^{-1}(G)$ is $\alpha^* - OS($ resp., (OS)) in W_1

Lemma 3.2. (1) Every $(\alpha^* - CM)$ is $(I\alpha^* - CM)$, (2) Every $(I\alpha^* - CM)$ is $(S\alpha^* - CM)$.

Proof. It follows from [Proposition (2.2)]. \Box

Theorem 3.3. Assume W_1 and W_2 are (TSs) and $h: W_1 \to W_2$. Then, (i) If h is $(\alpha^* - CM)$, then $h|_G: G \to W_2$ is (ii) If h is $(I\alpha^* - CM)$, then $h|_G: G \to W_2$ is also, where G is (OS) also, where G is (OS) of W_1 , of W_1 , (iii) If h is $(S\alpha^* - CM)$, then $h|_G: G \to W_2$ is also, where G is $(\alpha^* - OS)$ of W_1 .

Proof. (i) Assume B is an (OS) in W_2 , since h is $(\alpha^* - CM)$, then $h^{-1}(B)$ is $(\alpha^* - OS)$ in W_1 , since G is (OS) in W_1 . Hence, by Proposition (2.3) we have $h^{-1}(B) \cap G$ is $(\alpha^* - OS)$ in W_1 , but $(h|_G)^{-1}(B) = h^{-1}(B) \cap G$, thus by Theorem $(2.5)(h|_G)^{-1}(B)$ is α^* open in G. (ii) and (iii) are similar to (i). \Box

Theorem 3.4. Suppose $h: W_1 \to W_2$ is any mapping and $W_1 = T \cup H$, where T, H are disjoint sets in W_1 . Then, (i) h is $(\alpha^* - CM)$ iff $h|_T$ and $h|_H$ are also, where T, H are open sets, (ii) h is $(I\alpha^* - CM)$ iff $h|_T$ and $h|_H$ are also, where T, H are open sets, (iii) h is $(S\alpha^* - CM)$ iff $h|_T$ and $h|_H$ are also, where T, H are open sets, (iii) h is $(S\alpha^* - CM)$ iff $h|_T$ and $h|_H$ are also, where T, H are open sets.

Proof. (i) Necessity: Suppose that G is (OS) in W_2 , since $h|_T$ and $h|_H$ are $(\alpha^* - CM)$, then $(h|_T)^{-1}(G)$ and $(h|_H)^{-1}(G)$ are $(\alpha^* - OS)$ in W_1 . So, their union is also, see Proposition (2.3) However, $h^{-1}(G) = (h|_T)^{-1}(G) \cup (h|_H)^{-1}(G)$ and hence $h^{-1}(G)$ is $(\alpha^* - OS)$ in W_1 . Thus h is $(\alpha^* - CM)$. Sufficiency: Follows by using Theorem (3.3). The proofs of (i) and (iii) are the same way of proof (i). \Box

Theorem 3.5. Suppose $h: W_1 \to W_2$ is any mapping and $h_T: h^{-1}(T) \to T$ is defined as $h_T(t) = h(t)$, for any set T in W_2 and $t \in h^{-1}(T)$. Then, (i) If h is $(\alpha^* - CM)$, then h_T is also, where T is (OS) in W_2 , (ii) If h is $(I\alpha^* - CM)$ (resp., $(S\alpha^* - CM)$), then h_T is also, where T is closed set (CS) in W_2 .

Proof. We shall prove the second case. The first case is similar to (ii). Suppose that B is $(\alpha^* - OS)$ in T, since T is (CS) in W_2 , then B is $(\alpha^* - OS)$ in W_2 , see Theorem (2.5-(ii)). Also, since h is $(I\alpha^* - CM)$ (resp., $(S\alpha^* - CM)$), then $h^{-1}(B)$ is $(\alpha^* - OS)$ (resp., (OS)) in W_1 . Therefore, $h^{-1}(B)$ is $(\alpha^* - OS)$ (resp., (OS)) in $h^{-1}(T)$, see Theorem (2.5-(i)). \Box

Theorem 3.6. Suppose X_1, X_2, X_3 are three (TSs) $L : X_1 \to X_2$ and $X_2 \subseteq X_3$. If $L : X_1 \to X_2$ is $(\alpha^* - CM)$ (resp. $(I\alpha^* - CM), (S\alpha^* - CM))$, then $L : X_1 \to X_3$ is also.

Proof. Assume A is (OS) (resp., $(\alpha^* - OS)$) in X_3 , then A is (OS) (resp., $(\alpha^* - OS)$) in X_2 , see Theorem (2.5 – (i)) and hence $L^{-1}(A)$ is α^* – open set (resp., $(\alpha^* - OS, open)$) in X_1 . Now, we recall that the set $\{(x, L(x)), x \in X\} \subseteq X \times Y$ is called the graph of the mapping $L : X \to Y$ and is denoted by G(L). \Box

Theorem 3.7. Suppose W_1 and W_2 are two (TSs), $h: W_1 \to W_2$ is any mapping and $L: W_1 \to W_1 \times W_2$ be a graph mapping of h defined by $L(t) = (t, h(t)), \forall t \in W_1$. If L is $(\alpha^* - CM)($ resp., $(I\alpha^* - CM), (S\alpha^* - .CM))$, then h is also.

Proof. Assume that K is (OS) (resp., $(\alpha^* - OS)$) in W_2 , since W_1 is (OS) (resp., $(\alpha^* - OS)$) in any (TS). Hence, $W_1 \times K$ is (OS) (resp., $(\alpha^* - OS)$) in $W_1 \times W_2$, see Theorem (2.4). Therefore, $L^{-1}(W_1 \times K) = h^{-1}(K)$ is α^* - open (resp., $(\alpha^* - OS)$, (OS)) in W_1 . Hence, the proof is complete. \Box

4. Contra α^* – continuity

New class of α^* - continuity is called contra α^* - continuous mapping (C α^* - CM). and some theorems are shown in this section.

Definition 4.1. Assume W_1 and W_2 are two (TSs) and $h: W_1 \to W_2$ is a mapping, then h is called contra α^* - continuous mapping $(C\alpha^* - CM)$. If $h^{-1}(K)$ is $(\alpha^* - CS)$ in W_1 , for any (OS)K in W_2 .

Theorem 4.2. The following statements are equivalent, if $h: W_1 \to W_2$ is a mapping: (i) h is $(C\alpha^* - CM)$ (ii) for each $t \in W_1$ and each (CS) K in W_2 containing h(t), there exists $(\alpha^* - OS) B$ in W_1 , such that $t \in B, h(B) \subseteq K$, (iii) for every (CS) K of W_2 , then $h^{-1}(K)$ is $(\alpha^* - OS)$ of W_1 .

Proof. (i) \rightarrow (ii): Assumet $\in W_1$, and K is any (CS) in W_2 , then K^c is (OS) in W_2 , thus $h^{-1}(K^c)$ is $(\alpha^* - CS)$ in W_1 , but $h^{-1}(K^c) = [h^{-1}(K)]^c$, hence $h^{-1}(K)$ is $(\alpha^* - OS)$ in W_1 , and $t \in h^{-1}(K)$. Put $B = h^{-1}(K)$, thus $h(B) \subseteq K$. (ii) \rightarrow (iii): Assume that K is a closed set in W_2 and $t \in h^{-1}(K)$, then $h(t) \in K$ and hence there exists $(\alpha^* - OS) B$ containing $t, h(B) \subseteq K$, thus $t \in B = h^{-1}(K)$. So $h^{-1}(K) = \bigcup \{B_t \mid t \in h^{-1}(K)\}$. Hence by Theorem (2.3 – (1)) we get $h^{-1}(K)$ is $(\alpha^* - OS)$ in W_1 . (iii) \rightarrow (i): Obvious. \Box

Theorem 4.3. The restriction L_A of $(C\alpha^* - CM)L : X \to Y$ to $(\alpha^* - CS)A \subseteq X$ is also $(C\alpha^* - CM)$.

Proof. Assume *B* is (OS) in *Y*, thus $L^{-1}(B)$ is $(\alpha^* - CS)$ in *X*, since *A* is $(\alpha^* - CS)$ in *X*. Then $L^{-1}(B) \cap A$ is also $(\alpha^* - CS)$ inXand hence it is also $(\alpha^* - CS)$ in *A*, see [Theorem (2.5-(i))], but $(L|_A)^{-1}(B) = L^{-1}(B) \cap A$ hence the proof is complete. \Box

Theorem 4.4. If $L: X \to Y$ is $(C\alpha^* - CM)$, then $L_A: L^{-1}(A) \to A$ is also, where A is (CS) in Y.

Proof. Assume B is (CS) in A, since A is (CS) in Y, thus B is (CS) in Y, then $L^{-1}(B)$ is $(\alpha^* - OS)$ in X, since $L^{-1}(B) \subseteq L^{-1}(A) \subseteq X$, then $L^{-1}(B)$ is $(\alpha^* - OS)$ in $L^{-1}(A)$, see [Theorem (2.5 - (i))].

Theorem 4.5. Assume X and Y are two (TSs), $L: X \to Y$ is a mapping and $X = A \cup B$, where A, B are disjoint $(\alpha^* - CSs)$ in X. Then $L|_A$ and $L|_B$ are $(C\alpha^* - CMs)$ iff L is $(C\alpha^* - CM)$

Proof. Necessity: Follows by using Theorem (4.3). Sufficiency: Assume that G is (CS) in Y, since $L|_A$ and $L|_B$ are $(C\alpha^* - CMs)$, thus $(L|_A)^{-1}(G)$ and $(L|_B)^{-1}(G)$ are $(\alpha^* - OS)$ in X. So, their union is also, see [Proposition (2.3)]. But $L^{-1}(G) = (L|_A)^{-1}(G) \cup (L|_B)^{-1}(G)$ and hence the proof is complete. \Box

Definition 4.6. A (TS) W is called: (i) α^*T_2 (resp., Ultra- $_{\alpha^*}T_2$) space if for each $t \neq d \in W$, there (ii) α^* – Ultra Normal exist two disjoint (α^* – OSs) (resp., (α^* – CSs)) T, D satisfyt \in T, $d \in D$ space if for each pair nonempty (DCSs) can be separated by disjoint (α^* – clopen), (iii) α^* – Compact space (α^*C – space) if for each α^* – open cover of W has a finite subcover.

Theorem 4.7. Suppose $h: W_1 \to W_2$ is injective $(C\alpha^* - CM)$ and W_2 is T_2 -space. Then W_1 is Ultra $-_{\alpha^*}T_2$ space.

Proof. Assume $\neq d \in W_1$, since h is injective, then $h(t) \neq h(d)$ in W_2 , since W_2 is T_2 - space, then there exist two (DOSs) T, D satisfy $h(t) \in T, h(d) \in D$. Since h is $(C\alpha^* - CM)$, then $h^{-1}(T), h^{-1}(D)$ are $(\alpha^* - CS)$ in W_1 containing t, d and $h^{-1}(T) \cap h^{-1}(D) = \varphi = h^{-1}(T \cap D)$. Hence W_1 is Ultra- $_{\alpha^*}T_2$ space. \Box

Theorem 4.8. Suppose $L: X \to Y$ is injective $(C\alpha^* - CM)$ and Y is Ultra T_2 - space. Then X is α^*T_2 space.

Proof. Take $x \neq y$ in X, since L is injective, then $f(x) \neq f(y)$ in Y, since Y is Ultra T_2 - space, then there exist two (DCSs) A, B satisfy $L(x) \in A, L(y) \in B$. Since L is $(C\alpha^* - CM)$, then $L^{-1}(A), L^{-1}(B)$ are $(\alpha^* - OSs)$ in X containing x, y and $L^{-1}(A) \cap L^{-1}(B) = {}_L^{-1}(A \cap B) = L^{-1}(\varphi) = \varphi$. Then X is ${}_{\alpha^*}T_2$ space. \Box

Theorem 4.9. Suppose $h: W_1 \to W_2$ is closed injective $(C\alpha^* - CM)$ and W_2 is Ultra Normal space. Then W_1 is α^* -Ultra Normal space.

Proof. Assume A_1, A_2 are two (CSs) in W_1 with $A_1 \cap A_2 = \varphi$, since h is closed mapping, then $h(A_1), h(A_2)$ are (CSs) in W_2 , since W_2 is Ultra Normal space, then there exist two disjoint clopen sets B_1, B_2 in W_2 satisfy $h(A_1) \subseteq B_1, h(A_2) \subseteq B_2$. Hence $A_1 \subseteq h^{-1}(B_1), A_2 \subseteq h^{-1}(B_2)$. Since h is injective $(C\alpha^* - CM)$, then $h^{-1}(B_1), h^{-1}(B_2)$ are disjoint α^* – clopen sets. Thus W_1 is α^* -Ultra Normal space. \Box

Theorem 4.10. Supposeh: $W_1 \to W_2$ is closed surjective $(C\alpha^* - CM)$ and W_1 is $(\alpha^*C - space)$ Then W_2 is strongly closed space. **Proof**. Assume $\{V_i \mid i \in I\}$ is any closed cover of W_2 , since h is $(C\alpha^* - CM)$, then $\{h^{-1}(V_i) \mid i \in I\}$ is α^* -open cover of W_1 , but W_1 is $(\alpha^* \text{ C- space})$, thus W_1 has finite subcover. That means $W_1 = \bigcup_{i \in I} h^{-1}(V_i)$ and hence $(h(W_1) = h(\bigcup_{i \in I_0} h^{-1}(V_i)) = \bigcup_{i \in I_0} hh^{-1}(V_i) \Rightarrow W_2 = \bigcup_{i \in I_0} V_i(M_1)$ since h is surjective). Thus W_2 is strongly closed space. \Box

Theorem 4.11. If $L : (\Psi, E) \to (\Psi', E')$ is $(SC\alpha^* - CM)$, then $L_{(f,A)} : L^{-1}((f,A)) \to (f,A)$ is also, where (f, A) is (SCS) in (Ψ', E') .

Proof. Suppose that (Θ, B) is a (SCS) in (\int, A) , thus (Θ, B) is (SCS) in (Ψ', E') (since (\int, A) is (SCS) in (Ψ', E')). Then $L^{-1}((\Theta, B))$ is $(S\alpha^* - OS)$ in (Ψ, E) , since $L^{-1}((\Theta, B)) \subseteq L^{-1}((\int, A)) \subseteq (\Psi, E)$, then $L^{-1}((\Theta, B))$ is $(S\alpha^* - OS)$ in $L^{-1}((\int, A))$. \Box

Theorem 4.12. Assume (Ψ, E) and (Ψ', E') are two (STSs), $L : (\Psi, E) \to (\Psi', E')$ be any (SM) and $(\Psi, E) = (\int, A) L(\Theta, B)$, where $(\int, A), (\Theta, B)$ are disjoint $(S\alpha^* - CSs) in(\Psi, E)$. Then $L|_{(\int, A)}$ and $L|_{(\theta,B)}$ are $(SC\alpha^* - CMs)$ iff L is $(SC\alpha^* - CM)$

Proof. Necessity: Follows by using Theorem (3.4) in [33]. Sufficiency: Assume that (H, M) is (SCS) in (Ψ', E') , since $L|_{(f,A)}$ and $L|_{(\theta,B)}$ are $(SC\alpha^* - CMs)$, thus $\left(L|_{(f,A)}\right)^{-1}(H, M)$ and $\left(L|_{(\theta,B)}\right)^{-1}((H,M))$ are $(S\alpha^* - OSs)$ in (Ψ, E) . So, their union is also. But $L^{-1}((H,M)) = \left(h|_{(f,A)}\right)^{-1}((H,M)) \coprod \left(h|_{(\theta,B)}\right)^{-1}((H,M))$ and hence the proof is complete. \Box

References

- [1] O. Njstad, On some classes of nearly open sets, Pacific Journal Mathematics, 15(3), (1965), 961-970.
- [2] N. M. Abbas, On Some Types of Weakly Open Sets, M. SC. Thesis, Baghdad University, (2004).
- [3] G.B.Navalagi, Definition Bank in general topology, Topogy Atlas, (2002).
- [4] H.A. Othman, New Types of α -continuous mapping, Mustansiriya University, Thesis, (2004).
- [5] N. M. Ali and S. M. Khalil, On α^{*} Open Sets in Topological Spaces, IOP Conference Series: Materials Science and Engineering, 5 7 1(2019) 012021, doi: 10.1088 / 1757-899 X / 571 / 1 / 012021.
- [6] J. Dontchev, Survey on preopen sets, Japan, August, (1998), 1-8.
- [7] A. R. Nivetha, M. Vigneshwaran, N. M. Ali Abbas and S. M. Khalil, On $N_{*g\alpha}$ continuous in topological spaces of neutrosophy, Journal of Interdisciplinary Mathematics, 24(3),(2021), 677-685
- [8] S. M. Khalil, & F. Hameed, An algorithm for the generating permutation algebras using soft spaces. Journal of Taibah University for Science, 12(3),(2018), 299-308.
- S. M. Khalil and M. H. Hasab, Decision making using new distances of intuitionistic fuzzy sets and study their application in the universities, INFUS, Adv. Intel. Syst. Comput. 1197 (2020), 390-396.
- [10] S. M. Khalil and A. Rajah, Solving the Class Equation $x^d = \beta$ in an Alternating Group for each $\beta \in H \cap C^{\alpha}$ and $n \notin \theta$, Journal of the Association of Arab Universities for Basic and Applied Sciences, 10,(2011), 42-50
- [11] S. M. Khalil and A. Rajah, Solving Class Equation $x^d = \beta$ in an Alternating Group for all $n \in \theta \& \beta \in H_n \cap C^{\alpha}$, journal of the Association of Arab Universities for Basic and Applied Sciences, 16(2014), 38-45.
- [12] S. M. Khalil, Enoch Suleiman and Modhar M. Torki, Generated New Classes of Permutation I/B-Algebras, Journal of Discrete Mathematical Sciences and Cryptography, (2021), to appear
- [13] S. M. Khalil, The Permutation Topological Spaces and their Bases, Basrah Journal of Science (A), 32(1), (2014), 28-42.
- [14] S. M. Khalil and N. M. A. Abbas, On Nano with Their Applications in Medical Field, AIP Conference Proceedings 2290, 040002 (2020).
- [15] S. M. Khalil, New category of the fuzzy d-algebras, Journal of Taibah University for Science, 12(2), (2018),143-149.
- [16] N. M. Ali Abbas, S. M. Khalil and M. Vigneshwaran, The Neutrosophic Strongly Open Maps in Neutrosophic Bi-Topological Spaces, Journal of Interdisciplinary Mathematics, 24(3), (2021), 667-675.

- [17] K. Damodharan, M. Vigneshwaran and S. M. Khalil, $N_{\delta^* g\alpha}$ -Continuous and Irresolute Functions in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems, 38(1)(2020), 439-452.
- [18] M. M. Torki and S. M. Khalil, New Types of Finite Groups and Generated Algorithm to Determine the Integer Factorization by Excel, AIP Conference Proceedings 2290, 040020 (2020).
- [19] S. M. Khalil and N. M. Abbas, Applications on New Category of the Symmetric Groups, AIP Conference Proceedings 2290, 040004 (2020).
- [20] S. M. Khalil and F. Hameed, Applications on Cyclic Soft Symmetric Groups, IOP Conf. Series: Journal of Physics, 1530 (2020) 012046.
- [21] S. M. Saied and S. M. Khalil, Gamma Ideal Extension in Gamma Systems, Journal of Discrete Mathematical Sciences and Cryptography, (2021), to appear.
- [22] S. M. Khalil, Dissimilarity Fuzzy Soft Points and their Applications, Fuzzy Information and Engineering, 8(3), (2016), 281-294.
- [23] S. M. Khalil, F. Hameed, Applications of Fuzzy-Ideals in-Algebras, Soft Computing, 24(18), (2020), 13997-14004.
- [24] S. A. Abdul-Ghani, S. M. Khalil, M. Abd Ulrazaq, and A. F. Al-Musawi, New Branch of Intuitionistic Fuzzification in Algebras with Their Applications, International Journal of Mathematics and Mathematical Sciences, Volume 2018, Article ID 5712676, 6 pages.
- [25] S. M. Khalil, Decision making using algebraic operations on soft effect matrix as new category of similarity measures and study their application in medical diagnosis problems, Journal of Intelligent & Fuzzy Systems, 37, (2019), 1865-1877. doi: 10.3233/JIFS-179249.
- [26] S. M. Khalil, S. A. Abdul-Ghani, Soft M-Ideals and Soft S-Ideals in Soft S-Algebras, IOP Conf. Series: Journal of Physics, 1234 (2019) 012100.
- [27] S. M. Khalil and F. Hameed, An algorithm for generating permutations in symmetric groups using soft spaces with general study and basic properties of permutations spaces. J Theor Appl Inform Technol, 96(9), (2018), 2445-2457.
- [28] S. M. Khalil, M. Ulrazaq, S. Abdul-Ghani, Abu Firas Al-Musawi, σ -Algebra and σ -Baire in Fuzzy Soft Setting, Advances in Fuzzy Systems, Volume 2018, Article ID 5731682,10 pages.
- [29] M. A. Hasan, S. M. Khalil, and N. M. A. Abbas, Characteristics of the soft-(1, 2)-gprw closed sets in soft bi-topological spaces, Conference, IT-ELA 2020, 9253110, (2020), 103-108.
- [30] S. M. Khalil and A. Hassan, Applications of Fuzzy Soft ρ -Ideals in ρ -Algebras, Fuzzy Information and Engineering, 10(4),(2018), 467-475.
- [31] S. M. Khalil, Decision Making Using New Category of Similarity Measures and Study Their Applications in Medical Diagnosis Problems, Afrika Matematika, (2021), https://doi.org/10.1007/s13370-020-00866-2.
- [32] N. M. Ali Abbas and S. M. Khalil, On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces, Int. J. Nonlinear Anal. Appl. 12(1), (2021), 719-725.
- [33] M. A. Hasan, N. M. Ali Abbas and S. M. Khalil, On Soft α^{*} -Open Sets and Soft Contra α^{*} -Continuous Mappings in Soft Topological Spaces, Journal of Interdisciplinary Mathematics, 24(3),(2021), 729-734.
- [34] R. Stam, The algebra of bounded continuous functions into a non archimedean field, Pacific J Math, 50(1974), 169-185.
- [35] A. Kharal, & B. Ahmad, Mappings on soft classes. New Math. Nat. Comput., 7(3), (2011), 471481.
- [36] M. Shabir and M. Naz, On Soft topological spaces, Comp. And Math. with applications, 61(7), (2011), 1786-1799.