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Abstract

We show in this paper that a mapping f satisfies the following functional equation

d⊎
x2,··· ,xd+1

f(x1) = 2d

d+1∑
i=1

f(xi),

if and only if it is quadratic. In addition, we investigate generalized Hyers-Ulam stability problem
for the equation, and thus obtain an asymptotic property of quadratic mappings as applications.
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1. Introduction

The following stability problem had been formulated by Ulam [22] concerning the stability of
group homomorphisms. Thus one can ask stability of general functional equations as follows : if we
replace a given functional equation by a functional inequality, when can one assert that the solutions
of the inequality must be close to the solutions of the given equation? If the answer is affirmative, we
would say that a given functional equation is stable [15]. Gruber [7] remarked that Ulam’s problem is
of particular interest in probability theory and in the case of functional equations of different types.

We wish to note that stability properties of different functional equations can have applications
to unrelated fields. For instance, Zhou [23] used a stability property of the functional equation f(x−
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y)+f(x+y) = 2f(x) to prove a conjecture of Ditzian about the relationship between the smoothness
of a mapping and the degree of its approximation by the associated Bernstein polynomials.

Now, a square norm on an inner product space satisfies the important parallelogram equality
‖x+y‖2 +‖x−y‖2 = 2(‖x‖2 +‖y‖2) for all vectors x, y. If 4ABC is a triangle in a finite dimensional

Euclidean space and I is the center of the side BC, then the following identity ‖
−→
AB‖2 + ‖

−→
AC‖2 =

2(‖
−→
AI‖2 + ‖

−→
CI‖2) holds for all vectors A,B and C. The following functional equation which was

motivated by these equalities

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) (1.1)

is called a quadratic functional equation, and every solution of the equation (1.1) is said to be a
quadratic mapping. The quadratic functional equation and several other functional equations are
useful to characterize inner product spaces [1, 2, 16, 20].

Skof [21] was the first author to solve the Ulam problem for additive mappings on a restricted
domain. Jung [9] and Rassias [14] investigated the Hyers-Ulam stability for additive and quadratic
mappings on restricted domains. The stability problems of several functional equations have been
extensively investigated by a number of authors [4, 5, 8, 11, 17] and there are many interesting results
concerning this problem [18, 19].

On the other hand, Jung [10] and Bae et.al. [3] have generalized the equation (1.1) to the equation
of 3-variables

f(x+ y + z) + f(x− y + z) + f(x+ y − z) + f(−x+ y + z) = 4f(x) + 4f(y) + 4f(z), (1.2)

which was motivated by a parallelepiped equality

‖x+ y + z‖2 + ‖x− y + z‖2 + ‖x+ y − z‖2 + ‖x− y − z‖2 = 4‖x‖2 + 4‖y‖2 + 4‖z‖2,

for all vectors x, y and z in an inner product space. And then they have investigated the general
solution and stability problem for the functional equation. Now we are going to extend the equations
(1.1) and (1.2) to a more generalized equation with (d + 1)-variables. For this purpose, we employ
the operator

⊎
x2
f(x1), which is defined in [13] as follows⊎

x2

f(x1) = f(x1 + x2) + f(x1 − x2)

for a given mapping f : E1 → E2 between vector spaces. Similarly, we define

2⊎
x2,x3

f(x1) =
⊎
x3

(⊎
x2

f(x1)
)

and inductively

d⊎
x2,··· ,xd+1

f(x1) =
⊎
xd+1

( d−1⊎
x2,··· ,xd

f(x1)
)

for all natural number d. Then it follows from definition that
2⊎

x2,x3

f(x1) =
2⊎

x3,x2

f(x1),
d⊎

x2,··· ,xk+1,0, · · · , 0︸ ︷︷ ︸
d−k

f(x1) = 2d−k
k⊎

x2,··· ,xk+1

f(x1), and (1.3)

d−1⊎
x2,··· ,xd

f(x1 + xd+1) +
d−1⊎

x2,··· ,xd

f(x1 − xd+1) =
d⊎

x2,··· ,xd+1

f(x1).
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In [12], the general solution of the following functional equation

d⊎
x2,··· ,xd+1

f(x1) + 2d(d− 1)
d+1∑
i=1

f(xi) = 2d−1
∑

1≤i<j≤d+1

(⊎
xj

f(xi)
)
,

has been determined and then the generalized Hyers-Ulam stability problem for the equation has
been investigated. Now, we consider the following functional equation,

d⊎
x2,··· ,xd+1

f(x1) = 2d

d+1∑
i=1

f(xi), (1.4)

for all (d + 1)-variables x1, · · · , xd+1, where d ≥ 1 is a natural number, which is motivated by a
(d+ 1)-dimensional parallel polyhedron equality

d⊎
x2,··· ,xd+1

‖x1‖2 = 2d

d+1∑
i=1

‖xi‖2

generated by x1, · · · , xd+1 in an inner product space. As a special case, we note that the equation
(1.4) reduces to the equation (1.1) in case d = 1 and (1.2) in case d = 2.

In this paper, we establish new theorems about the Ulam stability of Eq. (1.4) and apply our
results to the asymptotic behavior of functional equations on restricted domains.

2. Generalized stability of Eq. (1.4)

First of all, we present the general solution of Eq. (1.4) as follows.

Lemma 2.1. Let E1 and E2 be vector spaces. A mapping f : E1 → E2 satisfies the functional
equation (1.4) if and only if the mapping f satisfies the functional equation (1.1).

Proof . We first assume that f is a solution of the functional equation (1.4). Set xi := 0 in (1.4)
for all i = 1, · · · , d + 1 to get f(0) = 0. Putting xi := 0 in (1.4) for all i = 3, · · · , d + 1, we get
f(x1 + x2) + f(x1 − x2) = 2[f(x1) + f(x2)] for all x1, x2 ∈ E1 and so the mapping is quadratic.

Conversely, suppose the mapping f satisfies the functional equation (1.1). Then we first assume
by induction that f satisfies the equation

d−1⊎
x2,··· ,xd

f(x1) = 2d−1
d∑

i=1

f(xi) (2.1)

for all d-variables x1, · · · , xd ∈ E1. Putting x1 := x1 + xd+1 in (2.1), we get

d−1⊎
x2,··· ,xd

f(x1 + xd+1) = 2d−1
[
f(x1 + xd+1) +

d∑
i=2

f(xi)
]

(2.2)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ E1. Replacing xd+1 by −xd+1 in (2.2), we get

d−1⊎
x2,··· ,xd

f(x1 − xd+1) = 2d−1
[
f(x1 − xd+1) +

d∑
i=2

f(xi)
]

(2.3)
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for all (d+1)-variables x1, · · · , xd+1 ∈ E1. Adding the equation (2.2) to (2.3) and then utilizing (1.3),
we lead to the relation

d⊎
x2,··· ,xd+1

f(x1) = 2d−1
[
f(x1 + xd+1) + f(x1 − xd+1) + 2

d∑
i=2

f(xi)
]

= 2d

d+1∑
i=1

f(xi)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ E1. This completes the proof. �

From now on, we investigate the generalized Hyers-Ulam stability problem for the equation (1.4).
Thus we give conditions in order for a true mapping near an approximate mapping of the equation
(1.4) to exist. From now on, let X be a normed space and Y a Banach space unless we give any
specific reference. Let R+ denote the set of all nonnegative real numbers and d a positive integer
with d ≥ 1. Now before taking up the main subject, given a mapping f : X → Y , we define the
difference operator Df : Xd+1 → Y of the equation (1.4) by

Df(x1, x2, · · · , xd+1) :=
d⊎

x2,··· ,xd+1

f(x1)− 2d

d+1∑
i=1

f(xi)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ X, which acts as a perturbation of the equation (1.4).

Lemma 2.2. Suppose that there exists a mapping φ : X3 → R+ for which f : X → Y satisfies

‖Df(x1, x2, x3)‖ ≤ φ(x1, x2, x3) (2.4)

for all x1, x2, x3 ∈ X, and the series

∞∑
i=0

φ(3ix1, 3
ix2, 3

ix3)

9i

converges for all x1, x2, x3 ∈ X. Then there exists a unique quadratic mapping Q : X → Y defined by
Q(x) := limn→∞

f(3nx)
9n

for all x ∈ X, which satisfies the equation (1.2) and the inequality∥∥∥∥f(x)− f(0)

2
−Q(x)

∥∥∥∥ ≤ 1

9

∞∑
i=0

φ(3ix, 3ix, 3ix)

9i
+

1

18

∞∑
i=0

φ̂(3ix)

9i
(2.5)

for all x ∈ X, where the mapping φ̂ : X → Y is given by

φ̂(x) := min{φ(0, x, 0), φ(0, 0, x)} and 8‖f(0)‖ ≤ φ(0, 0, 0)

for all x ∈ X. Moreover, if f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then the mapping Q is homogeneous of degree 2 over R, that is, Q(tx) = t2Q(x) for all x ∈ X and
all t ∈ R.

Proof . If we replace (x1, x2, x3) by (0, x, 0) or (0, 0, x) in relation (2.4), one has the approximate
even condition of f as follows

2‖f(−x)− f(x)− 4f(0)‖ ≤ φ̂(x) := min{φ(0, x, 0), φ(0, 0, x)} (2.6)

for all x ∈ X. If we put (x, x, x) into (x1, x2, x3) in (2.4), we have

‖f(3x) + 2f(x) + f(−x)− 12f(x)‖ ≤ φ(x, x, x) (2.7)
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for all x ∈ X. Associating (2.6) with (2.7), we obtain

‖f(3x)− 9f(x) + 4f(0)‖ ≤ φ(x, x, x) +
1

2
φ̂(x), or ‖q(3x)− 9q(x)‖ ≤ φ(x, x, x) +

1

2
φ̂(x) (2.8)

for all x ∈ X, where q(x) := f(x)− f(0)
2
.

We define a sequence {Qn(x)} by

Qn(x) :=
q(3nx)

9n
, x ∈ X,

and claim that it is a convergent sequence. Now we figure out by (2.8)

‖Qi+1(x)−Qi(x)‖ =
1

9i

∥∥∥q(3i+1x)

9
− q(3ix)

∥∥∥ ≤ 1

9i+1

[
φ(3ix, 3ix, 3ix) +

1

2
φ̂(3ix)

]
and so we see that for any integers m,n with n > m ≥ 0,

‖Qm(x)−Qn(x)‖ ≤
n−1∑
i=m

‖Qi+1(x)−Qi(x)‖ ≤ 1

9

n−1∑
i=m

1

9i

[
φ(3ix, 3ix, 3ix) +

1

2
φ̂(3ix)

]
(2.9)

for all x ∈ X. The right hand side of the above inequality tends to 0 as m→∞ and thus the sequence
{Qn(x)} is Cauchy in Y, as desired. Therefore, we may define a mapping Q : X → Y as

Q(x) = lim
n→∞

q(3nx)

9n
= lim

n→∞

f(3nx)

9n

for all x ∈ X, and then by letting n→∞ in (2.9) with m = 0 we arrive at the formula (2.5).
We claim thatQ satisfies the equation (1.2). For this purpose, we calculate the following inequality

from (2.4)

‖DQn(x1, x2, x3)‖ =
1

9n
‖Df(3nx1, 3

nx2, 3
nx3)‖ ≤

1

9n
φ(3nx1, 3

nx2, 3
nx3),

which yields by letting n→∞ that DQ(x1, x2, x3) = 0 for all x1, x2, x3 ∈ X. Hence the mapping Q
is quadratic by Lemma 2.1.

To prove the afore-mentioned uniqueness, let φ1 : X3 → R+ be a mapping such that the functional
inequality

‖Df(x1, x2, x3)‖ ≤ φ1(x1, x2, x3)

holds for all x1, x2, x3 ∈ X and the series

∞∑
i=0

φ1(3
ix1, 3

ix2, 3
ix3)

9i

converges for all x1, x2, x3 ∈ X, and assume that there exists a quadratic mapping Q1 : X → Y
which satisfies the equation (1.2) and the inequality∥∥∥∥f(x)− f(0)

2
−Q1(x)

∥∥∥∥ ≤ 1

9

∞∑
i=0

φ1(3
ix, 3ix, 3ix)

9i
+

1

18

∞∑
i=0

φ̂1(3
ix)

9i
(2.10)

for all x ∈ X, where the mapping φ̂1 : X → Y is given by

φ̂1(x) := min{φ1(0, x, 0), φ1(0, 0, x)}.
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Since Q and Q1 are quadratic, we see that the equation Q(x) = 3−2nQ(3nx), Q1(x) = 3−2nQ1(3
nx)

hold for all x ∈ X and all n ∈ N. Thus it follows from inequalities (2.5) and (2.10) that∥∥∥∥f(3nx)

32n
−Q1(x)

∥∥∥∥ =
1

32n
‖f(3nx)−Q1(3

nx)‖

≤ 1

32n

(∥∥∥∥f(3nx)− f(0)

2
−Q1(3

nx)

∥∥∥∥+
‖f(0)‖

2

)
≤ 1

9

∞∑
i=n

φ1(3
ix, 3ix, 3ix)

9i
+

1

18

∞∑
i=n

φ̂1(3
ix)

9i
+
‖f(0)‖

9n2

for all x ∈ X and all n ∈ N. Therefore letting n → ∞, one has Q(x) − Q1(x) = 0 for all x ∈ X,
completing the proof of uniqueness. The proof is complete. �

The following lemma, which is similarly proved by way of (2.8), is an alternative result of the
previous lemma.

Lemma 2.3. Suppose that a mapping f : X → Y satisfies

‖Df(x1, x2, x3)‖ ≤ φ(x1, x2, x3)

for all x1, x2, x3 ∈ X. If the upper bound φ : X3 → R+ is a mapping such that the series

∞∑
i=1

9iφ
(x1

3i
,
x2
3i
,
x3
3i

)
converges for all x1, x2, x3 ∈ X, then there exists a unique quadratic mapping Q : X → Y defined by
Q(x) := limn→∞ 9nf

(
x
3n

)
for all x ∈ X, which satisfies the equation (1.2) and the inequality

‖f(x)−Q(x)‖ ≤ 1

9

∞∑
i=1

9iφ
( x

3i
,
x

3i
,
x

3i

)
+

1

18

∞∑
i=1

9iφ̂
( x

3i

)
for all x ∈ X, where the mapping φ̂ : X → Y is given by

φ̂(x) := min{φ(0, x, 0), φ(0, 0, x)}

for all x ∈ X. Moreover, if f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then the mapping Q is homogeneous of degree 2 over R.

We are going to investigate the generalized Hyers-Ulam stability problem for the functional equa-
tion (1.4) with d ≥ 2. That is, the following theorem says that if f is an approximate solution of the
equation (1.4) with its difference operator Df bounded by a convergent series, then we can find a
solution Q of the equation near f .

Theorem 2.4. Suppose that a mapping f : X → Y satisfies

‖Df(x1, x2, · · · , xd+1)‖ ≤ ε(x1, · · · , xd+1) (2.11)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ X, and that ε : Xd+1 → R+ is a mapping such that the series

∞∑
i=0

ε(3ix1, · · · , 3ixd+1)

32i
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converges for all x1, · · · , xd+1 ∈ X. Then there exists a unique quadratic mapping Q : X → Y defined
by Q(x) = limn→∞

f(3nx)
9n

for all x ∈ X, which satisfies the equation (1.4) and the inequality∥∥∥∥f(x) +
(d− 4)f(0)

4
−Q(x)

∥∥∥∥ ≤ 1

2d−29

∞∑
i=0

φ(3ix, 3ix, 3ix)

9i
+

1

2d−218

∞∑
i=0

φ̂(3ix)

9i
(2.12)

for all x ∈ X, where the mappings φ : X3 → Y and φ̂ : X → Y are given by

φ(x, y, z) := min︸︷︷︸
2≤i<j≤d+1

{
ε(x, 0, · · · , 0,

i︷︸︸︷
y , 0, · · · , 0,

j︷︸︸︷
z , 0, · · · , 0)

}
, (2.13)

φ̂(x) := min{φ(0, x, 0), φ(0, 0, x)},

and 2dd‖f(0)‖ ≤ ε(0, · · · , 0, ). Moreover, if f is measurable or f(tx) is continuous in t ∈ R for each
fixed x ∈ X, then the mapping Q is homogeneous of degree 2 over R.

Proof . Taking (x, 0, · · · , 0,
i︷︸︸︷
y , 0, · · · , 0,

j︷︸︸︷
z , 0, · · · , 0) instead of (x1, · · · , xd+1) in (2.11), we ob-

tain by virtue of (1.3)

2d−2‖Df(x, y, z)− 4(d− 2)f(0)‖ ≤ ε(x, 0, · · · , 0,
i︷︸︸︷
y , 0, · · · , 0,

j︷︸︸︷
z , 0, · · · , 0), or (2.14)

‖Dq(x, y, z)‖ ≤ 1

2d−2 ε(x, 0, · · · , 0,
i︷︸︸︷
y , 0, · · · , 0,

j︷︸︸︷
z , 0, · · · , 0)

for all x, y, z ∈ X, and all i, j with 2 ≤ i < j ≤ d+ 1, where q(x) := f(x) + (d−2)f(0)
2

. Considering a
mapping φ : X3 → Y defined by

φ(x, y, z) := min
{
ε(x, 0, · · · , 0,

i︷︸︸︷
y , 0, · · · , 0,

j︷︸︸︷
z , 0, · · · , 0) | 2 ≤ i < j ≤ d+ 1

}
,

we can rewrite the functional inequality (2.14) in the form

‖Dq(x, y, z)‖ ≤ 1

2d−2φ(x, y, z) (2.15)

for all x, y, z ∈ X. Applying Lemma 2.2 to the inequality (2.15), we obtain the desired results. The
proof is complete. �

Theorem 2.5. Suppose that for a positive integer d ≥ 2, a mapping f : X → Y satisfies

‖Df(x1, x2, · · · , xd+1)‖ ≤ ε(x1, · · · , xd+1)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ X, and that ε : Xd+1 → R+ is a mapping such that the series

∞∑
i=1

9iε
(x1

3i
, · · · , xd+1

3i

)
converges for all x1, · · · , xd+1 ∈ X. Then there exists a unique quadratic mapping Q : X → Y which
satisfies the equation (1.4) and the inequality

‖f(x)−Q(x)‖ ≤ 1

2d−29

∞∑
i=1

9iφ
( x

3i
,
x

3i
,
x

3i

)
+

1

2d−218

∞∑
i=1

9iφ̂
( x

3i

)
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for all x ∈ X, where the mappings φ : X3 → Y and φ̂ : X → Y are given by (2.13). The mapping Q
is defined by

Q(x) = lim
n→∞

9nf
( x

3n

)
for all x ∈ X. Moreover, if f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then the mapping Q is homogeneous of degree 2 over R.

Remark 2.6. If d = 2 in Theorem 2.4 and Theorem 2.5, then the results exactly coincide with
Lemma 2.2 and Lemma 2.3.

The following two theorems are an answer to a generalized Hyers-Ulam stability problem of
different types for the equation (1.4) with d ≥ 1.

Theorem 2.7. Suppose that for a positive integer d ≥ 1, a mapping f : X → Y satisfies

‖Df(x1, x2, · · · , xd+1)‖ ≤ ε(x1, · · · , xd+1)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ X, and that ε : Xd+1 → R+ is a mapping such that the series

∞∑
i=0

ε(2ix1, · · · , 2ixd+1)

22i

converges for all x1, · · · , xd+1 ∈ X. Then there exists a unique quadratic mapping Q : X → Y defined
by Q(x) = limn→∞

f(2nx)
4n

for all x ∈ X, which satisfies the equation (1.4) and the inequality∥∥∥∥f(x) +
(2d− 3)f(0)

3
−Q(x)

∥∥∥∥ ≤ 1

2d+1

∞∑
i=0

φ(2ix, 2ix)

4i

for all x ∈ X, where the mapping φ : X2 → Y is given by

φ(x, y) := min
{
ε(x, 0, · · · , 0,

i︷︸︸︷
y , 0, · · · , 0) | 2 ≤ i ≤ d+ 1

}
. (2.16)

Moreover, if f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ X, then the mapping
Q is homogeneous of degree 2 over R.

Proof . If we take (x, 0, · · · , 0,
i︷︸︸︷
y , 0, · · · , 0) instead of (x1, · · · , xd+1) in (2.11), we obtain by virtue

of (1.3)

2d−1‖Df(x, y)− 2(d− 1)f(0)‖ ≤ ε(x, 0, · · · , 0,
i︷︸︸︷
y , 0, · · · , 0), or (2.17)

‖Dq(x, y)‖ ≤ 1

2d−1 ε(x, 0, · · · , 0,
i︷︸︸︷
y , 0, · · · , 0)

for all x, y ∈ X, and all i with 2 ≤ i ≤ d+ 1, where q(x) := f(x)+(d−1)f(0). Considering a mapping
φ : X2 → Y defined by

φ(x, y) := min
{
ε(x, 0, · · · , 0,

i︷︸︸︷
y , 0 · · · , 0) | 2 ≤ i ≤ d+ 1

}
,
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we can rewrite the functional inequality (2.17) in the form

‖q(x+ y) + q(x− y)− 2q(x)− 2q(y)‖ ≤ 1

2d−1φ(x, y)

for all x, y ∈ X. Now applying the same procedure of direct method [6] to the last relation, we get
the desired results. The proof is complete. �

Theorem 2.8. Suppose that for a positive integer d ≥ 1 a mapping f : X → Y satisfies

‖Df(x1, x2, · · · , xd+1)‖ ≤ ε(x1, · · · , xd+1)

for all (d+ 1)-variables x1, · · · , xd+1 ∈ X, and that ε : Xd+1 → R+ is a mapping such that the series

∞∑
i=1

4iε
(x1

2i
, · · · , xd+1

2i

)
converges for all x1, · · · , xd+1 ∈ X. Then there exists a unique quadratic mapping Q : X → Y defined
by Q(x) = limn→∞ 4nf

(
x
2n

)
for all x ∈ X, which satisfies the equation (1.4) and the inequality

‖f(x)−Q(x)‖ ≤ 1

2d+1

∞∑
i=1

4iφ
( x

2i
,
x

2i

)
for all x ∈ X, where the mapping φ : X2 → Y is given by (2.16). Moreover, if f is measurable or
f(tx) is continuous in t ∈ R for each fixed x ∈ X, then the mapping Q is homogeneous of degree 2
over R.

3. Approximately quadratic mappings on restricted domains

In this section, we are planning to investigate the stability problem for the equation (1.4) on
a restricted domain. As results, we have corollaries with regard to an asymptotic property of the
equation (1.4).

Theorem 3.1. Let d be a positive integer with d ≥ 2. Suppose that there exist a nonnegative real
number ε and a positive real r for which a mapping f : X → Y satisfies

‖Df(x1, x2, · · · , xd+1)‖ ≤ ε (3.1)

for all (d + 1)-variables x1, · · · , xd+1 ∈ X with
∑d+1

i=1 ‖xi‖ ≥ r. Then there exists a unique quadratic
mapping Q : X → Y which satisfies the equation (1.4) and the inequality∥∥∥∥f(x) +

(d− 2)f(0)

2
−Q(x)

∥∥∥∥ ≤ 15ε

2d+1
(3.2)

for all x ∈ X. Moreover, if f is measurable or f(tx) is continuous in t ∈ R for each fixed x ∈ X,
then the mapping Q is homogeneous of degree 2 over R.
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Proof . If we take (x1, x2, x3, 0, · · · , 0) instead of (x1, · · · , xd+1) in (3.1) with
∑3

i=1 ‖xi‖ ≥ r, we
obtain by virtue of (2.14)

‖Dq(x1, x2, x3)‖ ≤
1

2d−2 ε (3.3)

for all x1, x2, x3 ∈ X with
∑3

i=1 ‖xi‖ ≥ r. Specially, we have 8‖q(0)‖ ≤ ε
2d−2 by setting x2, x3 := 0

and x1 := t with ‖t‖ ≥ r in (3.3). Thus it follows from (3.3) that

‖Dq(x1, x2, x3)− 8q(0)‖ ≤ 2

2d−2 ε ≤
10

2d−2 ε (3.4)

for all x1, x2, x3 ∈ X with
∑3

i=1 ‖xi‖ ≥ r.
Now assume

∑3
i=1 ‖xi‖ < r. And choose a t ∈ X with ‖t‖ ≥ 2r. Then it holds clearly

‖x1 ± 2t‖ ≥ r, ‖x2 ± t‖ ≥ r, and ‖x3 ± t‖ ≥ r.

Therefore from (3.1), (3.3) and the following functional identity

2
[
q(x1 + x2 + x3) + q(x1 − x2 + x3) + q(x1 + x2 − x3) + q(x1 − x2 − x3)

−4q(x1)− 4q(x2)− 4q(x3)− 8q(0)
]

=
[
q(x1 + x2 + x3) + q(x1 − x2 + x3 − 2t) + q(x1 + x2 − x3 + 2t)

+q(x1 − x2 − x3)− 4q(x1)− 4q(x2 + t)− 4q(x3 − t)
]

+
[
q(x1 + x2 + x3) + q(x1 − x2 + x3 + 2t) + q(x1 + x2 − x3 − 2t)

+q(x1 − x2 − x3)− 4q(x1)− 4q(x2 − t)− 4q(x3 + t)
]

+
[
q(x1 + x2 + x3 + 2t) + q(x1 − x2 + x3) + q(x1 + x2 − x3)

+q(x1 − x2 − x3 − 2t)− 4q(x1)− 4q(x2 + t)− 4q(x3 + t)
]

+
[
q(x1 + x2 + x3 − 2t) + q(x1 − x2 + x3) + q(x1 + x2 − x3)

+q(x1 − x2 − x3 + 2t)− 4q(x1)− 4q(x2 − t)− 4q(x3 − t)
]

+
[
− q(x1 + x2 + x3 − 2t)− q(x1 − x2 + x3 − 2t)− q(x1 + x2 − x3 − 2t)

−q(x1 − x2 − x3 − 2t) + 4q(x1 − 2t) + 4q(x2) + 4q(x3)
]

+
[
− q(x1 + x2 + x3 + 2t)− q(x1 − x2 + x3 + 2t)− q(x1 + x2 − x3 + 2t)

−q(x1 − x2 − x3 + 2t) + 4q(x1 + 2t) + 4q(x2) + 4q(x3)
]

+4
[
q(x2 + t) + q(x2 − t) + q(x2 + t) + q(x2 − t)− 4q(x2)− 4q(t)− 4q(0)

]
+4
[
q(x3 + t) + q(x3 − t) + q(x3 + t) + q(x3 − t)− 4q(x3)− 4q(t)− 4q(0)

]
+2
[
− q(x1 + 2t)− q(x1 − 2t)− q(x1 + 2t)− q(x1 − 2t) + 4q(x1) + 4q(2t) + 4q(0)

]
+4
[
− q(2t)− q(0)− q(2t)− q(0) + 4q(t) + 4q(t) + 4q(0)

]
,

we get

‖Dq(x1, x2, x3)− 8q(0)‖ ≤ 10

2d−2 ε (3.5)

for all x1, x2, x3 ∈ X with
∑3

i=1 ‖xi‖ < r. Hence the last functional inequality holds for all x1, x2, x3 ∈
X in view of (3.4). Applying the same manner as (2.6) together with (2.7) to the last inequality
(3.5), we obtain

‖q(3x)− 9q(x)‖ ≤ 15

2d−2 ε,

for all x ∈ X. By the same manner as Lemma 2.2, we obtain the desired results. The proof is
complete. �
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Theorem 3.2. Suppose that there exist a nonnegative real number ε and a positive real r for which
a mapping f : X → Y satisfies

‖Df(x1, x2, · · · , xd+1)‖ ≤ ε (3.6)

for all (d + 1)-variables x1, · · · , xd+1 ∈ X with
∑d+1

i=1 ‖xi‖ ≥ r. Then there exists a unique quadratic
mapping Q : X → Y which satisfies the equation (1.4) and the inequality

‖f(x) + (d− 1)f(0)−Q(x)‖ ≤ 3ε

2d

for all x ∈ X.

Proof . Replacing (x1, · · · , xd+1) in (3.6) by (x1, x2, 0, · · · , 0) with
∑2

i=1 ‖xi‖ ≥ r, we obtain by
virtue of (2.17)

‖q(x1 + x2) + q(x1 − x2)− 2q(x1)− 2q(x2)‖ ≤
1

2d−1 ε (3.7)

for all x1, x2 ∈ X with
∑2

i=1 ‖xi‖ ≥ r, where q(x) := f(x) + (d − 1)f(0). Now using the same
argument as that of (3.7), we get

‖q(x1 + x2) + q(x1 − x2)− 2q(x1)− 2q(x2)− q(0)‖ ≤ 9ε

2d−1 · 2
(3.8)

for all x1, x2 ∈ X with ‖x1‖ + ‖x2‖ < r. Consequently, the last functional inequality holds for all
x1, x2 ∈ X in view of (3.7). Now letting (x1, x2) := (x, x) in (3.8), we obtain

‖q(2x)− 4q(x)‖ ≤ 9ε

2d−1 · 2
for all x ∈ X. Now applying a standard procedure of direct method to the last inequality, we obtain
the desired results. �

We note that if we define

Sd+1 = {(x1, · · · , xd+1) ∈ Xd+1 : ‖xi‖ < r, ∀i = 1, · · · , d+ 1}

for some fixed r > 0, then we have{
(x1, · · · , xd+1) ∈ Xd+1 :

d+1∑
i=1

‖xi‖ ≥ (d+ 1)r
}
⊂ Xd+1 \ Sd+1.

Thus the following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. If a mapping f : X → Y satisfies the inequality (3.1) for all (x1, · · · , xd+1) ∈
Xd+1 \ Sd+1, then there exists a unique quadratic mapping Q : X → Y which satisfies the equation
(1.4) and the inequality (3.2).

From Theorem 3.1 and Theorem 3.2, we get the following corollaries concerning an asymptotic
property of quadratic mappings.
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Corollary 3.4. A mapping f : X → Y with f(0) = 0 is quadratic if and only if

‖Df(x1, x2, · · · , xd+1)‖ → 0.

Corollary 3.5. A mapping f : X → Y with f(0) = 0 is quadratic if and only if there exists a
positive real r > 0 such that

sup
x1,··· ,xd+1

{
‖Df(x1, x2, · · · , xd+1)‖ :

d+1∑
i=1

‖xi‖ ≥ r
}

is bounded for all infinitely many d ≥ 1.

We also have by Theorem 2.7 the following result for an asymptotic property of quadratic map-
pings.

Corollary 3.6. A mapping f : X → Y with f(0) = 0 is quadratic if and only if

sup
x1,··· ,xd+1

‖Df(x1, x2, · · · , xd+1)‖

is bounded for all infinitely many d ≥ 1.

Proof . Let supx1,··· ,xd+1
‖Df(x1, x2, · · · , xd+1)‖ ≤ M < ∞ for all infinitely many d ≥ 1. Then for

each d ≥ 1, there exists a unique quadratic mapping Qd : X → Y which satisfies the equation (1.4)
and the inequality

‖f(x)−Qd(x)‖ ≤ M

2d−13

for all x ∈ X by Theorem 2.7. Let m be a positive integer with the stated property and m > d.
Then, we obtain

‖f(x)−Qm(x)‖ ≤ M

2m−13
≤ M

2d−13

for all x ∈ X. The uniqueness of Qd implies that Qm = Qd for m with m > d, and so

‖f(x)−Qd(x)t‖ ≤ M

2m−13

for all x ∈ X. By letting m→∞, we conclude that f is itself quadratic.
The reverse assertion is trivial. �
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