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Abstract

In this paper, we introduce and study a new class of soft sets, called soft b∗-closed and soft b∗-open
sets. We study several characterizations and properties of these classes of sets.
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1. Introduction and Preliminaries

In 1999, Molodtsov [8], instigated The concept of soft set as a new Mathematical tool to deal with
uncertainties problems in different fields of science. Kannan [7] defined soft generalized closed and
open sets in soft topological spaces. I. Arockiarani and A. Arokialancy [10] defined soft β− open
sets and continued to study weak forms of soft open sets in soft topological space.
Later, Akdag and Ozkan [1] defined softα−open, while the soft b-open are studied by Metin and
Alkan [2]. The b∗−closed sets were studied by S. Muthuvel, R. Parimelazhagan [9]. In this work we
introduce the soft version of b∗−open sets and b∗−closed sets, and study some properties of these
sets and give some new result in this filed.

Definition 1.1. [8] Let Z be an initial universe set, P (Z) the power set of Z, and A a set of
parameters. A pair (F,A), where F is a map from A to P (Z), is called a soft set over Z. In what
follows we denote by SS(Z,A) the family of all soft sets overZ.

Definition 1.2. [8] The soft set (F,A) ∈ SS(Z,A), where F (p) = φ, for every p ∈ A is called
A-null soft set of SS(Z,A) and denoted by φ̃. The soft set (F,A) ∈ SS(Z,A), where F (p) = Z, for
everyp ∈ A is called the A-absolute soft set of SS(Z,A) and denoted by Z̃.
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Definition 1.3. [8] Let τ be a collection of soft open sets over Z, then τ is said to be soft topological
space if

(1) φ̃ and Z̃ belong to τ .

(2) The union of any subcollection of soft sets of τ belongs to τ .

(3) the intersection of any two soft sets in τ belongs to τ .

Definition 1.4. [10] Let (Z, τ, A) be a soft topological space and (F,A) ∈ SS(Z,A). Then

(1) The soft closure of (F,A) is the soft set cl(F,A) = ∩{(S,A) : (S,A) ∈ τ c, (F,A) ⊆ (S,A)}.

(2) The soft interior of (F,A) is the soft set int(F,A) = ∪{(S,A) : (S,A) ∈ τ, (S,A) ⊆ (F,A)}.

Definition 1.5. A soft set (F,A) of a soft topological space (Z, τ, A) is said to be

(1) Soft α- open [2] if (F,A) ⊂ int(cl(int((F,A)))),

(2) Soft preopen [4] if (F,A) ⊂ int(cl((F,A))),

(3) Soft semi - open [1] if (F,A) ⊂ cl(int((F,A))),

(4) Soft β-open [4] if (F,A) ⊂ cl(int(cl((F,A)))).

Definition 1.6. [2] A set (P,A) ∈ SS(Z,A) is called Soft b-open [Soft b-closed] iff (P,A) ⊂
int(cl((P,A))) ∪ cl(int((P,A))))[(P,A) ⊃ int(cl((P,A))) ∩ cl(int((P,A)))], We denote it by sb-open
(sb-closed). We will denoted the family of all soft b-open sets by SbO(Z).

Definition 1.7. [6] A set(P,A) ∈ SS(Z,A) is called soft bc-open (sbc-open) if for any x ∈ (P,A) ∈
SbO(Z), there is a soft closed set (S,A) such that x ∈ (S,A) ⊂ (P,A).

Definition 1.8. [7] Let (Z, τ, A) be a soft topological space. A subset (S,A) of Z is said to be soft
generalized closed in Z if cl(S,A) ⊆ (L,B) whenever (S,A) ⊆ (L,B) where (L,B) is soft open set
in Z. we denote it by sg − closed.

Definition 1.9. Let (P,A) be a soft set of a soft topological space (Z, τ, A), then

(1) [10] Soft pre-intirior of (P,A) in Z is defined by

sP int((P,A)) = ∪{(L,A) : (L,A) is a soft preopen set and (L,A) ⊂ (P,A)}.

(2) Soft pre-closure of (P,A) in Zis defined by

sPcl((P,A)) = ∩{(H,A) : (H,A)is a soft preclosed set and (P,A) ⊂ (H,A)}.

(3) [2] Soft b-interior of (P,A) in Z is defined by

sbint((P,A)) = ∪{(L,A) : (L,A)is a soft b-open set and(L,A) ⊂ (P,A)}.

(4) Soft b-closure of a soft set (P,A) in Z is defined by
sbcl((P,A)) = ∩{(H,E) : (H,E) is a soft b-closed set and (P,A) ⊂ (H,E)}.
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Clearly sbcl((P,A)) (resp., sPcl((P,A))) is the smallest soft b-closed (resp. soft pre-closed) set
over Z which contains (P,A) and sbint((N,A)) (resp. sP int((P,A))) is the largest soft b-open (resp.
soft pre-open) set over Z which is contained in (P,A)).

Definition 1.10. [3] Let (Z, τ, A) be a soft topological space. A soft set (S,A) of Z is said to be
Soft generalized b-closed (briefly soft gb-closed) if sbcl(S,A) ⊆ (P,B) whenever (S,A) ⊆ (P,B) and
(P,B) ∈ τ .

The main results In this part we go to introduce the concepts of:
soft b∗−closed, soft b∗−open sets and give some properties of these two concepts, moreover, we study
the relation between these new concepts.
Now we give the main part of this work,

2. Soft b∗-closed and some properties

Definition 2.1. A soft set (P,A) of a soft topological space (Z, τ, A) is called a Soft b∗−closed
(briefly sb∗−closed) if int(cl(P,A)) ⊆ (S,A), whenever (P,A) ⊂ (S,A) and (S,A) is soft b−open.

Theorem 2.2. If a soft subset (S,A) of a soft topological space Z is soft b-closed then it is Soft
b∗−closed.
Proof . Suppose (S,A) is a soft b-closed, let (L,A) be an open set containing (S,A) in Z, then
cl(S,A) ⊂ (L,A). Now int(cl(S,A) ⊂ cl(S,A) ⊂ (L,A). Thus (S,A) is Soft b∗-closed. �

Remark 2.3. The following example shows that the converse of the theorem 2.2 need not true in
general.

Example 2.4. Let Z = {h1, h2, h3, h4}, A = {e1, e2, e3}and τ = {φ̃, Z̃, (P1, A), (P2, A), . . . , (P15, A)}
where (P1, A), (P2, A), . . . , (P15, A) are soft set over Z, define as follows:

(P1, A) = {(e1, {h1}), (e2, {h2, h3}), (e3, {h1, h4})},
(P2, A) = {(e1, {h2, h4}), (e2, {h1, h3, h4}), (e3, {h1, h2, h4})},
(P3, A) = {(e2, {h3}), (e3, {h1})},
(P4, A) = {(e1, {h1, h2, h4}), (e2, Z̃), (e3, Z̃)},
(P5, A) = {(e1, {h1, h3}), (e2, {h2, h4}), (e3, {h2})},
(P6, A) = {(e1, {h1}), (e2, {h2})},
(P7, A) = {(e1, {h1, h3}), (e2, {h2, h3, h4}), (e3, {h1, h2, h4})},
(P8, A) = {(e2, {h4}), (e3, {h2})},
(P9, A) = {(e1, Z̃), (e2, Z̃), (e3, {h1, h2, h3})},

(P10, A) = {(e1, {h1, h3}), (e2, {h2, h3, h4}), (e3, {h1, h2})},
(P11, A) = {(e1, {h2, h3, h4}), (e2, Z̃), (e3, {h1, h2, h3})},
(P12, A) = {(e1, {h1}), (e2, {h2, h3, h4}), (e3, {h1, h2, h4})},
(P13, A) = {(e1, {h1}), (e2, {h2, h4}), (e3, {h2})},
(P14, A) = {(e1, {h3, h4}), (e2, {h1, h2})},
(P15, A) = {(e1, {h1}), (e3, {h2, h3}), (e3, {h1})}.



1238 Hameed, Ibrahem, El-Seidy

Then τ is a soft topology on Z, and soft closed sets are Z̃, φ̃, (P1, A)c, (P2, A)c, (P3, A)c, . . . , (P15, A)c.
Let us take (K,A) = {(e1, {h2, h4}), (e2, {h1, h3}), (e3, {h1, h3, h4})} is sb-open and take (M,A) =
{(e1, {h2}), (e2, {h1}), (e3, {h1, h3})} is a soft set where (M,A) ⊂ (K,A) then (M,A) is sb∗-closed
but not sb-closed.

Theorem 2.5. If a soft subset (S,A) of space Z is both soft open and sb∗-closed then it is soft closed.
Proof . Suppose a subset (S,A) of Z is both soft open and soft sb∗−closed. Now int(cl(S,A)) ⊆
cl(S,A) ⊆ (S,A). Then cl(S,A) ⊆ (S,A). Therefore (S,A) is closed. �

Theorem 2.6. A soft set (P,A) is sb∗−closed if and only if int(cl(P,A))− (P,A) contains no non-
empty soft closed set.
Proof . Suppose (S,A) is a non-empty soft closed subset of int(cl(P,A)). Now int(cl(P,A)) −
(P,A) ⊆ (P,A) implies int(cl(P,A))∩ (P,A)c ⊆ (S,A), since int(cl(P,A))− (P,A) = int(cl(P,A))∩
(P,A)c. Thus int(cl(P,A)) ⊆ (S,A). Now (P,A)c ⊆ (S,A) implies (S,A)c ⊆ (P,A). Here (S,A)c

is soft open and (P,A) is sb∗-closed, we have (S,A)c ⊆ int(cl(P,A)). Thus (S,A) ⊆ [int(cl(P,A))]c.
Hence int(cl(P,A)) ∩ [int(cl(P,A))]c ⊆ (S,A) = φ. i.e. (S,A) = φ implies int(cl(P,A)) − (P,A)
contains no non empty soft closed set. Conversely, Let (K,A) ⊆ (P,A) is sb−open. Suppose that
int(cl(P,A)) is contained in (K,A), then int(cl(P,A)) ∩ (K,A)c is a non-empty soft closed set of
int(cl(P,A)) − (P,A) which is contradiction. Therefore (K,A) ⊆ int(cl(P,A)) and hence (P,A) is
sb∗-closed. �

Corollary 2.7. Let (F,A) be a sgb-closed set then (P,A) is sb∗-closed if and only if int(cl(P,A))−
(P,A) is soft closed.
Proof . Let (P,A) be sgb−closed set. If (P,A) is sb∗-closed, then we have int(cl(P,A))− (F,A) =
φ which is soft closed set. Conversely, let int(cl(P,A)) − (P,A) be soft closed. Then by 2.6
int(cl(P,A)) − (P,A) doesn’t contain a non-empty soft closed subset and since int(cl(P,A)) is soft
closed subset of itself.
Then int(cl(P,A))−(P,A) = φ. Thus implies that (P,A) = int(cl(P,A)) and so (P,A) is sb∗-closed.
�

Theorem 2.8. Let (S,A) ⊆ (P,A) ⊆ Z, (S,A)is sb∗-closed set relative to (P,A) and (P,A) is both
sb-open and sb∗-closed subset of Z, then (S,A) is sb∗-closed set relative to Z.
Proof . Let (K,A) ⊆ (S,A)and (K,A) be a sb-open set in Z. But given that (S,A) ⊆ (P,A) ⊆ Z,
therefore (S,A) ⊆ (P,A) and (K,A) ⊆ (S,A). This implies (P,A) ∩ (K,A) = (S,A). Since
(S,A) is sb∗-closed set relative to (P,A), (P,A) ∩ (K,A) ⊆ int(cl(P,A)). i.e. (P,A) ∩ (K,A) ⊆
(P,A) ∩ int(cl(P,A)) implies (K,A) ⊆ (P,A) ∩ int(cl(P,A)).
Thus (K,A)∪[int(cl(S,A))]c ⊆ (P,A)∩int(cl(S,A))∪[int(cl(S,A))]c implies (K,A)∪[int(cl(S,A))]c ⊆
(P,A)∪[int(cl(S,A))]c. Since (P,A) is sb∗-closed in Z, we have (K,A)∪[int(cl(S,A))]c ⊆ int(cl(P,A)).
Also (S,A) ⊆ (P,A) implies int(cl(P,A)) ⊆ int(cl(S,A)).
Thus (K,A) ∪ [int(cl(S,A))]c ⊆ int(cl(P,A)) ⊆ int(cl(S,A)). Therefore (K,A) ⊆ int(cl(S,A)),
since int(cl(S,A)) is not contained in [int(cl(S,A)]c. Thus (S,A) is sb∗-closed relative to Z. �

Theorem 2.9. Let (P,A) ⊆ Y ⊆ Z and supposed that (P,A) is sb∗-closed in Z then (P,A) is
sb∗-closed in Y .
Proof . Given that (P,A) ⊆ Y ⊆ Z and (P,A) is sb∗-closed in Z. To show that (P,A) is sb∗-closed
relative to Y . Let Y ∩ (S,A) ⊆ (P,A) where (S,A)is sb − open inZ. Since (P,A) is sb∗-closed
in Z, (S,A) ⊆ (P,A) implies (S,A) ⊆ int(cl(P,A)) i.e. Y ∩ (S,A) ⊆ Y ∩ int(cl(P,A)) where
Y ∩ int(cl(P,A)) is interior of closure of (P,A) in Y . This (P,A) is sb∗-closed in Y . �
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Theorem 2.10. If a soft subset (P,A) of a soft topological space (Z, τ, A) is soft preclosed then it is
sb∗−closed.
Proof . Suppose (P,A) is soft preclosed, (S,A) be a sb-open set containing (P,A). All (P,A) is
preclosed (P,A) ⊆ int(cl(P,A)). Thus (P,A) is sb∗-closed in Z. �

Remark 2.11. The following example shows that the converse of the theorem 2.10 need not true in
general.

Example 2.12. Let Z = {h1, h2, h3, h4}, A = {e1, e2, e3} and let (Z, τ, A) be soft topological space.
consider the soft topology τ on Z given in example 2.4.
Then, let us take soft set (S,A) = {(e1, {h2, h4}), (e2, {h3}), (e3, {h1})}, then
int(cl(S,A)) = {(e3, {h1}), (e2, {h3}) ⊆ (K,A) whenever (S,A) ⊆ (K,A) and (K,A) is sb-open.
Therefore, (S,A) is sb∗-closed set but not soft preclosed set.

Theorem 2.13. Every soft α-closed set is soft b∗-closed.
Proof . Suppose (P,A) be a soft α-closed set in Z. Let (S,A) be a soft open set in Z such that
(P,A) ⊆ (S,A). Since (P,A) is soft α-closed set. Then sαcl(P,A) ⊆ (S,A).
Now αcl(P,A) ⊆ cl(int(P,A)) ⊆ (S,A) . Since every soft open is soft b-open.
Therefore, (P,A) is soft b∗-closed set in Z. �

3. Soft b∗-open sets

Definition 3.1. A soft set (P,A) is called Soft b∗-open set (briefly sb∗-open) if it’s complement
(P,A)c is soft b∗-closed. The family of all sets of sb∗-open denoted by Sb∗O(Z).

Theorem 3.2. If a set (P,A) of a soft topological space Z is sg−open, then it is sb∗-open but not
conversely.
Proof . Let (P,A) be a sg−open set in space Z. Then (P,A)c is sb∗-closed. Therefore (P,A) is
sb∗-open in Z. �

Remark 3.3. The following example shows that the converse of the Theorem 3.2 need not true in
general.

Example 3.4. Let Z = {h1, h2, h3, h4}, A = {e1, e2, e3} and let (Z, τ, A) be soft topological space
over Z. consider the soft topology τ on Z given in example 2.4.
Then, let us take soft set (M,A) = {(e1, {h1, h3}), (e2, {h1, h2, h4}), (e3, {h2, h3, h4})} is soft sb∗−open
but not soft g−open.

Theorem 3.5. A set (S,A) of space Z is sb∗−open if and only if (P,A) ⊆ cl(int(S,A)) whenever
(P,A) is soft closed and (P,A) ⊆ (S,A)).
Proof . We have (S,A) is sb∗−open. Then (S,A)c is sb∗-closed. Let (P,A) be a soft closed set in Z
contained in (S,A), then (P,A)c is an open set in Z containing (S,A)c. Since (S,A)c is sb∗−closed,
int(cl(S,A)c) ⊆ (P,A)c taking complement on both sides, then (P,A) ⊆ cl(int(S,A))c. Conversely,
we have (P,A)c is contained in cl(int(S,A)) whenever (P,A) is contained in (S,A) and (P,A) is soft
closed in Z. Let (K,A) be a soft open set containing (P,A)c, then (K,A)c ⊆ cl(int(S,A)c) taking
complement on both side we get int(cl(S,A)c) ⊆ (K,A). Hence (S,A)c is sb∗-closed. Therefore (S,A)
is sb∗−open. �

Theorem 3.6. The following are true in general.
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(1) Every soft open is soft b∗−open.

(2) Every soft α−open is soft b∗−open.

(3) Every soft b∗−open set is soft b−open.

Proof . The proof is Obvious. �

Definition 3.7. Let (Z, τ, A) be a soft topological space. A subset (F,A) ⊆ Z is called a sb∗−neighbourhood
(briefly sb∗−nbd) of a point x ∈ Z if there exists an sb∗−open set (P,A) such that x ∈ (P,A) ⊆ (F,A).

Definition 3.8. Let (Z, τ, A) be a soft topological space. A subset (F,A) ⊆ Z is called a sb∗−neighbourhood
of (S,A) ⊆ Z if there exists an sb∗−open set (P,A) such that (S,A) ∈ (P,A) ⊆ (F,A).

Remark 3.9. The family of all sb∗−neighbourhood of a point x ∈ Z is a sb∗−neighbourhood system
of x and it denoted by sb∗N(x).

Theorem 3.10. Let (Z, τ, A) be a soft topological space and for each x ∈ Z, then we have the
following result:

(1) For every x ∈ Z, sb∗N(x) 6= φ.

(2) (N,A) ∈ sb∗N(x) =⇒ x ∈ (N,A).

(3) (N,A) ∈ sb∗N(x), (N,A) ⊆ (M,A) =⇒ (M,A) ∈ sb∗N(x).

(4) (N,A) ∈ sb∗N(x), (N,A) =⇒ there exists(M,A) ∈ sb∗N(x)such that(M,A) ⊆ (N,A)and (M,A) ∈
sb∗N(y)for every y ∈ (M,A).

Proof .

(1) Since Z is a sb∗−open set, it is an sb∗−neighbourhood for everyx ∈ Z. Hence sb∗N(x) 6= φ for
every x ∈ Z.

(2) If (N,A) ∈ sb∗N(x), then (N,A) is an sb∗−neighbourhood of x. By definition of sb∗−neighbourhood,
x ∈ (N,A).

(3) Let (N,A) ∈ sb∗N(x) and (N,A) ⊆ (M,A). Then there is an sb∗−open set (P,A) such that
x ∈ (P,A) ⊆ (N,A), since (N,A) ⊆ (M,A), x ∈ (P,A) ⊆ (M,A). Therefore, (M,A) is an
sb∗−neighbourhood of x. Hence (M,A) ∈ sb∗N(x).

(4) If (N,A) ∈ sb∗N(x), then x ∈ (M,A) ⊆ (N,A), where (M,A) is an sb∗−open set, then it is
an sb∗−neighbourhood of each its points. Therefore, (M,A) ∈ sb∗N(y)for every y ∈ (M,A).

�

Definition 3.11. Let (P,A) be a soft subset of Z. Then
sb∗int(P,A) = ∪{(L,A) : (L,A)is a soft b∗ − open set and (L,A) ⊂ (P,A)}.

Definition 3.12. Let (P,A) be a soft subset of Z. A point x ∈ Z is said to be an sb∗int point of
(P,A) if (P,A) is an sb∗−neighbourhood of x.
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Proposition 3.13. Let (P,A) be a soft subset of Z, then
sb∗int(P,A) = ∪{x : x is an interior point of (P,A)}.
Proof . Let (P,A) be a soft subset of Z, then
x ∈ sb∗int(P,A)⇐⇒ x ∈ ∪{(L,A) : (L,A) is a soft b∗ − open set and (L,A) ⊂ (P,A)}.
⇐⇒ there exists an sb∗−open set (L,A) such that x ∈ (L,A) ⊆ (P,A).
⇐⇒ (P,A) is an sb∗nbd of the point x
⇐⇒ x is an sb∗int point of (P,A).
Hence sb∗int(P,A) = ∪{x : x is an interior point of (P,A)}. �

Theorem 3.14. In a soft topological space Z the following hold for sb∗int.

(1) sb∗int(Z) = Z and sb∗int(φ) = φ.

(2) sb∗int(P,A) ⊆ (P,A).

(3) If (S,A) is any sb∗int−open set contained in (P,A), then (S,A) ⊆ sb∗int(P,A).

(4) If (P,A) ⊆ (S,A), then sb∗int(P,A) ⊆ sb∗int(S,A).

(5) sb∗int(sb∗int(P,A)) = sb∗int(P,A).

(6) sb∗int(Z − (P,A)) ⊆ Z − (sb∗int(P,A)).

(7) sb∗int((P,A)− (S,A)) ⊆ sb∗int(P,A)− sb∗int(S,A).

Proof . The proof is Obvious. �

Theorem 3.15. If a soft subset (P,A) of Z is sb∗−open, then sb∗int(P,A) = (P,A).
Proof . Let (P,A) be an sb∗−open set of Z. we know that sb∗int(P,A) ⊆ (P,A). Since (P,A)
is an sb∗−open set contained in (P,A). By Theorem 3.14 (3), (P,A) ⊆ sb∗int(P,A) implying
sb∗int(P,A) = (P,A). �

Theorem 3.16. If (P,A) and (S,A) are soft subsets of Z, then
sb∗int(P,A) ∪ sb∗int(S,A) ⊆ sb∗int((P,A) ∪ (S,A)).
Proof . We know that (P,A) ⊆ (P,A) ∪ (S,A) and (S,A) ⊆ (P,A) ∪ (S,A). So sb∗int(P,A) ⊆
sb∗int(P,A) ∪ (S,A)) and sb∗int(S,A) ⊆ sb∗int((P,A) ∪ (S,A)). This implies that
sb∗int(P,A) ∪ sb∗int(S,A) ⊆ sb∗int((P,A) ∪ (S,A)). �

Definition 3.17. Let (P,A) be a soft subset of a soft space Z. Then the soft b∗−closure of (P,A) is
defined as the intersection of all soft b∗−closed set containing (P,A), that is sb∗cl(P,A) = ∩{(H,E) :
(H,E) is a soft b∗ − closed set and (P,A) ⊂ (H,E)}.

Theorem 3.18. If (P,A) and (S,A) are soft subset of a space Z, then

(1) sb∗cl(Z) = Z and sb∗cl(φ) = φ.

(2) (P,A) ⊆ sb∗cl(P,A).

(3) If (S,A) is any sb∗−closed set containing (P,A), then sb∗cl(P,A) ⊆ (S,A).

(4) If (P,A) ⊆ (S,A), then sb∗cl(P,A) ⊆ sb∗cl(S,A).
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(5) sb∗cl(P,A) = sb∗cl(sb∗cl(P,A)).

Proof . The proof is Obvious. �

Theorem 3.19. If a soft subset (P,A) of Z is sb∗−closed, then sb∗cl(P,A) = (P,A).
Proof . Let (P,A) be an sb∗−closed set of Z. Since (P,A) ⊆ Z and (P,A) is an sb∗−closed set
sb∗cl(P,A) ⊆ (P,A), also (P,A) ⊆ sb∗cl(P,A). Hence sb∗cl(P,A) = (P,A). �

Theorem 3.20. If (P,A) and (S,A) are soft subsets of Z, then sb∗cl((P,A)∩(S,A)) ⊆ sb∗cl(P,A)∩
sb∗cl(S,A).
Proof . Let(P,A) and (S,A) is a soft subset of Z. Clearly (P,A) ∩ (S,A) ⊆ (P,A) and (P,A) ∩
(S,A) ⊆ (S,A), then sb∗cl((P,A) ∩ (S,A)) ⊆ sb∗cl(P,A) and sb∗cl((P,A) ∩ (S,A)) ⊆ sb∗cl(S,A).
Hence sb∗cl((P,A) ∩ (S,A)) ⊆ sb∗cl(P,A) ∩ sb∗cl(S,A). �
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