

Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 1235-1242 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.5002

On soft b^* -closed sets in soft topological space

Saif Z. Hameed^{a,*}, Fayza A. Ibrahem^b, Essam A. El-Seidy^b

^aDepartment of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq ^bDepartment of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we introduce and study a new class of soft sets, called soft b^* -closed and soft b^* -open sets. We study several characterizations and properties of these classes of sets.

Keywords: soft b-open set, soft b^* -closed set and soft b^* -open set.

1. Introduction and Preliminaries

In 1999, Molodtsov [8], instigated The concept of soft set as a new Mathematical tool to deal with uncertainties problems in different fields of science. Kannan [7] defined soft generalized closed and open sets in soft topological spaces. I. Arockiarani and A. Arokialancy [10] defined soft β - open sets and continued to study weak forms of soft open sets in soft topological space.

Later, Akdag and Ozkan [1] defined $\operatorname{soft}\alpha$ -open, while the soft b-open are studied by Metin and Alkan [2]. The b^* -closed sets were studied by S. Muthuvel, R. Parimelazhagan [9]. In this work we introduce the soft version of b^* -open sets and b^* -closed sets, and study some properties of these sets and give some new result in this filed.

Definition 1.1. [8] Let Z be an initial universe set, P(Z) the power set of Z, and A a set of parameters. A pair (F, A), where F is a map from A to P(Z), is called a soft set over Z. In what follows we denote by SS(Z, A) the family of all soft sets over Z.

Definition 1.2. [8] The soft set $(F, A) \in SS(Z, A)$, where $F(p) = \phi$, for every $p \in A$ is called A-null soft set of SS(Z, A) and denoted by $\tilde{\phi}$. The soft set $(F, A) \in SS(Z, A)$, where F(p) = Z, for every $p \in A$ is called the A-absolute soft set of SS(Z, A) and denoted by \tilde{Z} .

^{*}Corresponding author

Email addresses: saifzuhair_p@sci.asu.edu.eg (Saif Z. Hameed), mohamedelrefaee@hotmail.com (Fayza A. Ibrahem), esam-elsedy@hotmail.com (Essam A. El-Seidy)

Definition 1.3. [8] Let τ be a collection of soft open sets over Z, then τ is said to be soft topological space if

- (1) $\tilde{\phi}$ and \tilde{Z} belong to τ .
- (2) The union of any subcollection of soft sets of τ belongs to τ .
- (3) the intersection of any two soft sets in τ belongs to τ .

Definition 1.4. [10] Let (Z, τ, A) be a soft topological space and $(F, A) \in SS(Z, A)$. Then

- (1) The soft closure of (F, A) is the soft set $cl(F, A) = \cap \{(S, A) : (S, A) \in \tau^c, (F, A) \subseteq (S, A)\}$.
- (2) The soft interior of (F, A) is the soft set $int(F, A) = \bigcup \{ (S, A) : (S, A) \in \tau, (S, A) \subseteq (F, A) \}.$

Definition 1.5. A soft set (F, A) of a soft topological space (Z, τ, A) is said to be

- (1) Soft α open [2] if $(F, A) \subset int(cl(int((F, A)))))$,
- (2) Soft preopen [4] if $(F, A) \subset int(cl((F, A)))$,
- (3) Soft semi open [1] if $(F, A) \subset cl(int((F, A)))$,
- (4) Soft β -open [4] if $(F, A) \subset cl(int(cl((F, A))))$.

Definition 1.6. [2] A set $(P, A) \in SS(Z, A)$ is called Soft b-open [Soft b-closed] iff $(P, A) \subset int(cl((P, A))) \cup cl(int((P, A))))[(P, A) \supset int(cl((P, A))) \cap cl(int((P, A)))]$, We denote it by sb-open (sb-closed). We will denoted the family of all soft b-open sets by SbO(Z).

Definition 1.7. [6] A set $(P, A) \in SS(Z, A)$ is called soft bc-open (sbc-open) if for any $x \in (P, A) \in SbO(Z)$, there is a soft closed set (S, A) such that $x \in (S, A) \subset (P, A)$.

Definition 1.8. [7] Let (Z, τ, A) be a soft topological space. A subset (S, A) of Z is said to be soft generalized closed in Z if $cl(S, A) \subseteq (L, B)$ whenever $(S, A) \subseteq (L, B)$ where (L, B) is soft open set in Z. we denote it by sg - closed.

Definition 1.9. Let (P, A) be a soft set of a soft topological space (Z, τ, A) , then

- (1) [10] Soft pre-intirior of (P, A) in Z is defined by $sPint((P, A)) = \cup \{(L, A) : (L, A) \text{ is a soft preopen set and } (L, A) \subset (P, A)\}.$
- (2) Soft pre-closure of (P,A) in Z is defined by $sPcl((P,A)) = \cap \{(H,A) : (H,A) \text{ is a soft preclosed set and } (P,A) \subset (H,A) \}.$
- (3) [2] Soft b-interior of (P,A) in Z is defined by $sbint((P,A)) = \cup \{(L,A) : (L,A) \text{ is a soft b-open set } and(L,A) \subset (P,A) \}.$
- (4) Soft b-closure of a soft set (P, A) in Z is defined by $sbcl((P, A)) = \cap \{(H, E) : (H, E) \text{ is a soft b-closed set and } (P, A) \subset (H, E)\}.$

Clearly sbcl((P, A)) (resp., sPcl((P, A))) is the smallest soft b-closed (resp. soft pre-closed) set over Z which contains (P, A) and sbint((N, A)) (resp. sPint((P, A))) is the largest soft b-open (resp. soft pre-open) set over Z which is contained in (P, A)).

Definition 1.10. [3] Let (Z, τ, A) be a soft topological space. A soft set (S, A) of Z is said to be Soft generalized b-closed (briefly soft gb-closed) if $sbcl(S, A) \subseteq (P, B)$ whenever $(S, A) \subseteq (P, B)$ and $(P, B) \in \tau$.

The main results In this part we go to introduce the concepts of:

soft b^* -closed, soft b^* -open sets and give some properties of these two concepts, moreover, we study the relation between these new concepts.

Now we give the main part of this work,

2. Soft b^* -closed and some properties

Definition 2.1. A soft set (P, A) of a soft topological space (Z, τ, A) is called a Soft b^* -closed (briefly sb^* -closed) if $int(cl(P, A)) \subseteq (S, A)$, whenever $(P, A) \subset (S, A)$ and (S, A) is soft b-open.

Theorem 2.2. If a soft subset (S, A) of a soft topological space Z is soft b-closed then it is Soft b^* -closed.

Proof. Suppose (S, A) is a soft b-closed, let (L, A) be an open set containing (S, A) in Z, then $cl(S, A) \subset (L, A)$. Now $int(cl(S, A) \subset cl(S, A) \subset (L, A)$. Thus (S, A) is Soft b*-closed. \Box

Remark 2.3. The following example shows that the converse of the theorem 2.2 need not true in general.

Example 2.4. Let $Z = \{h_1, h_2, h_3, h_4\}, A = \{e_1, e_2, e_3\}$ and $\tau = \{\tilde{\phi}, \tilde{Z}, (P_1, A), (P_2, A), \dots, (P_{15}, A)\}$ where $(P_1, A), (P_2, A), \dots, (P_{15}, A)$ are soft set over Z, define as follows:

Then τ is a soft topology on Z, and soft closed sets are $\tilde{Z}, \tilde{\phi}, (P_1, A)^c, (P_2, A)^c, (P_3, A)^c, \dots, (P_{15}, A)^c$. Let us take $(K, A) = \{(e_1, \{h_2, h_4\}), (e_2, \{h_1, h_3\}), (e_3, \{h_1, h_3, h_4\})\}$ is sb-open and take $(M, A) = \{(e_1, \{h_2\}), (e_2, \{h_1\}), (e_3, \{h_1, h_3\})\}$ is a soft set where $(M, A) \subset (K, A)$ then (M, A) is sb^* -closed but not sb-closed.

Theorem 2.5. If a soft subset (S, A) of space Z is both soft open and sb^* -closed then it is soft closed. **Proof**. Suppose a subset (S, A) of Z is both soft open and soft sb^* -closed. Now $int(cl(S, A)) \subseteq cl(S, A) \subseteq (S, A)$. Then $cl(S, A) \subseteq (S, A)$. Therefore (S, A) is closed. \Box

Theorem 2.6. A soft set (P, A) is $sb^*-closed$ if and only if int(cl(P, A)) - (P, A) contains no nonempty soft closed set.

Proof. Suppose (S, A) is a non-empty soft closed subset of int(cl(P, A)). Now $int(cl(P, A)) - (P, A) \subseteq (P, A)$ implies $int(cl(P, A)) \cap (P, A)^c \subseteq (S, A)$, since $int(cl(P, A)) - (P, A) = int(cl(P, A)) \cap (P, A)^c$. Thus $int(cl(P, A)) \subseteq (S, A)$. Now $(P, A)^c \subseteq (S, A)$ implies $(S, A)^c \subseteq (P, A)$. Here $(S, A)^c$ is soft open and (P, A) is sb^* -closed, we have $(S, A)^c \subseteq int(cl(P, A))$. Thus $(S, A) \subseteq [int(cl(P, A))]^c$. Hence $int(cl(P, A)) \cap [int(cl(P, A))]^c \subseteq (S, A) = \phi$. i.e. $(S, A) = \phi$ implies int(cl(P, A)) - (P, A) contains no non empty soft closed set. Conversely, Let $(K, A) \subseteq (P, A)$ is sb-open. Suppose that int(cl(P, A)) is contained in (K, A), then $int(cl(P, A)) \cap (K, A)^c$ is a non-empty soft closed set of int(cl(P, A)) - (P, A) which is contradiction. Therefore $(K, A) \subseteq int(cl(P, A))$ and hence (P, A) is sb^* -closed. □

Corollary 2.7. Let (F, A) be a sgb-closed set then (P, A) is sb^* -closed if and only if int(cl(P, A)) - (P, A) is soft closed.

Proof. Let (P, A) be sgb-closed set. If (P, A) is sb^{*}-closed, then we have $int(cl(P, A)) - (F, A) = \phi$ which is soft closed set. Conversely, let int(cl(P, A)) - (P, A) be soft closed. Then by 2.6 int(cl(P, A)) - (P, A) doesn't contain a non-empty soft closed subset and since int(cl(P, A)) is soft closed subset of itself.

Then $int(cl(P, A)) - (P, A) = \phi$. Thus implies that (P, A) = int(cl(P, A)) and so (P, A) is sb^* -closed. \Box

Theorem 2.8. Let $(S, A) \subseteq (P, A) \subseteq Z$, (S, A) is sb*-closed set relative to (P, A) and (P, A) is both sb-open and sb*-closed subset of Z, then (S, A) is sb*-closed set relative to Z.

Proof. Let $(K, A) \subseteq (S, A)$ and (K, A) be a sb-open set in Z. But given that $(S, A) \subseteq (P, A) \subseteq Z$, therefore $(S, A) \subseteq (P, A)$ and $(K, A) \subseteq (S, A)$. This implies $(P, A) \cap (K, A) = (S, A)$. Since (S, A) is sb^{*}-closed set relative to $(P, A), (P, A) \cap (K, A) \subseteq int(cl(P, A))$. i.e. $(P, A) \cap (K, A) \subseteq (P, A) \cap int(cl(P, A))$ implies $(K, A) \subseteq (P, A) \cap int(cl(P, A))$.

 $Thus (K, A) \cup [int(cl(S, A))]^c \subseteq (P, A) \cap int(cl(S, A)) \cup [int(cl(S, A))]^c \text{ implies } (K, A) \cup [int(cl(S, A))]^c \subseteq (P, A) \cup [int(cl(S, A))]^c.$ Since (P, A) is sb^* -closed in Z, we have $(K, A) \cup [int(cl(S, A))]^c \subseteq int(cl(P, A)).$ Also $(S, A) \subseteq (P, A)$ implies $int(cl(P, A)) \subseteq int(cl(S, A)).$

Thus $(K, A) \cup [int(cl(S, A))]^c \subseteq int(cl(P, A)) \subseteq int(cl(S, A))$. Therefore $(K, A) \subseteq int(cl(S, A))$, since int(cl(S, A)) is not contained in $[int(cl(S, A))]^c$. Thus (S, A) is sb^* -closed relative to Z. \Box

Theorem 2.9. Let $(P, A) \subseteq Y \subseteq Z$ and supposed that (P, A) is sb^* -closed in Z then (P, A) is sb^* -closed in Y.

Proof. Given that $(P, A) \subseteq Y \subseteq Z$ and (P, A) is sb^* -closed in Z. To show that (P, A) is sb^* -closed relative to Y. Let $Y \cap (S, A) \subseteq (P, A)$ where (S, A) is sb - open inZ. Since (P, A) is sb^* -closed in $Z, (S, A) \subseteq (P, A)$ implies $(S, A) \subseteq int(cl(P, A))$ i.e. $Y \cap (S, A) \subseteq Y \cap int(cl(P, A))$ where $Y \cap int(cl(P, A))$ is interior of closure of (P, A) in Y. This (P, A) is sb^* -closed in Y. \Box

Theorem 2.10. If a soft subset (P, A) of a soft topological space (Z, τ, A) is soft preclosed then it is $sb^*-closed$.

Proof. Suppose (P, A) is soft preclosed, (S, A) be a sb-open set containing (P, A). All (P, A) is preclosed $(P, A) \subseteq int(cl(P, A))$. Thus (P, A) is sb^* -closed in Z. \Box

Remark 2.11. The following example shows that the converse of the theorem 2.10 need not true in general.

Example 2.12. Let $Z = \{h_1, h_2, h_3, h_4\}, A = \{e_1, e_2, e_3\}$ and let (Z, τ, A) be soft topological space. consider the soft topology τ on Z given in example 2.4. Then, let us take soft set $(S, A) = \{(e_1, \{h_2, h_4\}), (e_2, \{h_3\}), (e_3, \{h_1\})\},$ then $int(cl(S, A)) = \{(e_3, \{h_1\}), (e_2, \{h_3\}) \subseteq (K, A) \text{ whenever } (S, A) \subseteq (K, A) \text{ and } (K, A) \text{ is sb-open.}$ Therefore, (S, A) is sb*-closed set but not soft preclosed set.

Theorem 2.13. Every soft α -closed set is soft b^* -closed. **Proof**. Suppose (P, A) be a soft α -closed set in Z. Let (S, A) be a soft open set in Z such that $(P, A) \subseteq (S, A)$. Since (P, A) is soft α -closed set. Then $s\alpha cl(P, A) \subseteq (S, A)$. Now $\alpha cl(P, A) \subseteq cl(int(P, A)) \subseteq (S, A)$. Since every soft open is soft b-open. Therefore, (P, A) is soft b^* -closed set in Z. \Box

3. Soft b^* -open sets

Definition 3.1. A soft set (P, A) is called Soft b^{*}-open set (briefly sb^{*}-open) if it's complement $(P, A)^c$ is soft b^{*}-closed. The family of all sets of sb^{*}-open denoted by Sb^{*}O(Z).

Theorem 3.2. If a set (P, A) of a soft topological space Z is sg-open, then it is sb^* -open but not conversely.

Proof. Let (P, A) be a sg-open set in space Z. Then $(P, A)^c$ is sb^* -closed. Therefore (P, A) is sb^* -open in Z. \Box

Remark 3.3. The following example shows that the converse of the Theorem 3.2 need not true in general.

Example 3.4. Let $Z = \{h_1, h_2, h_3, h_4\}, A = \{e_1, e_2, e_3\}$ and let (Z, τ, A) be soft topological space over Z. consider the soft topology τ on Z given in example 2.4. Then, let us take soft set $(M, A) = \{(e_1, \{h_1, h_3\}), (e_2, \{h_1, h_2, h_4\}), (e_3, \{h_2, h_3, h_4\})\}$ is soft sb^* -open but not soft g-open.

Theorem 3.5. A set (S, A) of space Z is sb^* -open if and only if $(P, A) \subseteq cl(int(S, A))$ whenever (P, A) is soft closed and $(P, A) \subseteq (S, A)$).

Proof. We have (S, A) is sb^* -open. Then $(S, A)^c$ is sb^* -closed. Let (P, A) be a soft closed set in Z contained in (S, A), then $(P, A)^c$ is an open set in Z containing $(S, A)^c$. Since $(S, A)^c$ is sb^* -closed, $int(cl(S, A)^c) \subseteq (P, A)^c$ taking complement on both sides, then $(P, A) \subseteq cl(int(S, A))^c$. Conversely, we have $(P, A)^c$ is contained in cl(int(S, A)) whenever (P, A) is contained in (S, A) and (P, A) is soft closed in Z. Let (K, A) be a soft open set containing $(P, A)^c$, then $(K, A)^c \subseteq cl(int(S, A)^c)$ taking complement on both side we get $int(cl(S, A)^c) \subseteq (K, A)$. Hence $(S, A)^c$ is sb^* -closed. Therefore (S, A) is sb^* -open. □

Theorem 3.6. The following are true in general.

- (1) Every soft open is soft b^* -open.
- (2) Every soft α -open is soft b^* -open.
- (3) Every soft b^* -open set is soft b-open.

Proof . The proof is Obvious. \Box

Definition 3.7. Let (Z, τ, A) be a soft topological space. A subset $(F, A) \subseteq Z$ is called a sb^* -neighbourhood (briefly sb^* -nbd) of a point $x \in Z$ if there exists an sb^* -open set (P, A) such that $x \in (P, A) \subseteq (F, A)$.

Definition 3.8. Let (Z, τ, A) be a soft topological space. A subset $(F, A) \subseteq Z$ is called a sb^* -neighbourhood of $(S, A) \subseteq Z$ if there exists an sb^* -open set (P, A) such that $(S, A) \in (P, A) \subseteq (F, A)$.

Remark 3.9. The family of all sb^* -neighbourhood of a point $x \in Z$ is a sb^* -neighbourhood system of x and it denoted by $sb^*N(x)$.

Theorem 3.10. Let (Z, τ, A) be a soft topological space and for each $x \in Z$, then we have the following result:

- (1) For every $x \in Z$, $sb^*N(x) \neq \phi$.
- (2) $(N, A) \in sb^*N(x) \Longrightarrow x \in (N, A).$
- $(3) \ (N,A) \in sb^*N(x), (N,A) \subseteq (M,A) \Longrightarrow (M,A) \in sb^*N(x).$
- (4) $(N, A) \in sb^*N(x), (N, A) \Longrightarrow$ there $exists(M, A) \in sb^*N(x)$ such that $(M, A) \subseteq (N, A)$ and $(M, A) \in sb^*N(y)$ for every $y \in (M, A)$.

Proof.

- (1) Since Z is a sb^* -open set, it is an sb^* -neighbourhood for $everyx \in Z$. Hence $sb^*N(x) \neq \phi$ for every $x \in Z$.
- (2) If $(N, A) \in sb^*N(x)$, then (N, A) is an sb^* -neighbourhood of x. By definition of sb^* -neighbourhood, $x \in (N, A)$.
- (3) Let $(N, A) \in sb^*N(x)$ and $(N, A) \subseteq (M, A)$. Then there is an sb^* -open set (P, A) such that $x \in (P, A) \subseteq (N, A)$, since $(N, A) \subseteq (M, A)$, $x \in (P, A) \subseteq (M, A)$. Therefore, (M, A) is an sb^* -neighbourhood of x. Hence $(M, A) \in sb^*N(x)$.
- (4) If $(N, A) \in sb^*N(x)$, then $x \in (M, A) \subseteq (N, A)$, where (M, A) is an sb^* -open set, then it is an sb^* -neighbourhood of each its points. Therefore, $(M, A) \in sb^*N(y)$ for every $y \in (M, A)$.

Definition 3.11. Let (P, A) be a soft subset of Z. Then $sb^*int(P, A) = \bigcup \{(L, A) : (L, A) \text{ is a soft } b^* - \text{ open set and } (L, A) \subset (P, A) \}.$

Definition 3.12. Let (P, A) be a soft subset of Z. A point $x \in Z$ is said to be an sb^* int point of (P, A) if (P, A) is an sb^* -neighbourhood of x.

Proposition 3.13. Let (P, A) be a soft subset of Z, then $sb^*int(P, A) = \bigcup \{x : x \text{ is an interior point of } (P, A)\}.$ **Proof**. Let (P, A) be a soft subset of Z, then $x \in sb^*int(P, A) \iff x \in \bigcup \{(L, A) : (L, A) \text{ is a soft } b^* - \text{ open set and } (L, A) \subset (P, A)\}.$ \iff there exists an sb^* -open set (L, A) such that $x \in (L, A) \subseteq (P, A).$ $\iff (P, A) \text{ is an } sb^*nbd \text{ of the point } x$ $\iff x \text{ is an } sb^*int \text{ point of } (P, A).$ Hence $sb^*int(P, A) = \bigcup \{x : x \text{ is an interior point of } (P, A)\}.$

Theorem 3.14. In a soft topological space Z the following hold for sb^*int .

- (1) $sb^*int(Z) = Z$ and $sb^*int(\phi) = \phi$.
- (2) $sb^*int(P, A) \subseteq (P, A)$.
- (3) If (S, A) is any $sb^*int-open$ set contained in (P, A), then $(S, A) \subseteq sb^*int(P, A)$.
- (4) If $(P, A) \subseteq (S, A)$, then $sb^*int(P, A) \subseteq sb^*int(S, A)$.
- (5) $sb^*int(sb^*int(P, A)) = sb^*int(P, A).$
- (6) $sb^*int(Z (P, A)) \subseteq Z (sb^*int(P, A)).$
- (7) $sb^*int((P, A) (S, A)) \subseteq sb^*int(P, A) sb^*int(S, A).$

Proof . The proof is Obvious. \Box

Theorem 3.15. If a soft subset (P, A) of Z is sb^* -open, then $sb^*int(P, A) = (P, A)$. **Proof**. Let (P, A) be an sb^* -open set of Z. we know that $sb^*int(P, A) \subseteq (P, A)$. Since (P, A)is an sb^* -open set contained in (P, A). By Theorem 3.14 (3), $(P, A) \subseteq sb^*int(P, A)$ implying $sb^*int(P, A) = (P, A)$. \Box

Theorem 3.16. If (P, A) and (S, A) are soft subsets of Z, then $sb^*int(P, A) \cup sb^*int(S, A) \subseteq sb^*int((P, A) \cup (S, A)).$ **Proof**. We know that $(P, A) \subseteq (P, A) \cup (S, A)$ and $(S, A) \subseteq (P, A) \cup (S, A)$. So $sb^*int(P, A) \subseteq sb^*int(P, A) \cup (S, A))$ and $sb^*int(S, A) \subseteq sb^*int((P, A) \cup (S, A)).$ This implies that $sb^*int(P, A) \cup sb^*int(S, A) \subseteq sb^*int((P, A) \cup (S, A)).$

Definition 3.17. Let (P, A) be a soft subset of a soft space Z. Then the soft b^* -closure of (P, A) is defined as the intersection of all soft b^* -closed set containing (P, A), that is $sb^*cl(P, A) = \cap\{(H, E) : (H, E) \text{ is a soft } b^* - closed \text{ set and } (P, A) \subset (H, E)\}.$

Theorem 3.18. If (P, A) and (S, A) are soft subset of a space Z, then

- (1) $sb^*cl(Z) = Z$ and $sb^*cl(\phi) = \phi$.
- (2) $(P, A) \subseteq sb^*cl(P, A).$
- (3) If (S, A) is any sb^* -closed set containing (P, A), then $sb^*cl(P, A) \subseteq (S, A)$.
- (4) If $(P, A) \subseteq (S, A)$, then $sb^*cl(P, A) \subseteq sb^*cl(S, A)$.

(5) $sb^*cl(P, A) = sb^*cl(sb^*cl(P, A)).$

Proof. The proof is Obvious. \Box

Theorem 3.19. If a soft subset (P, A) of Z is $sb^*-closed$, then $sb^*cl(P, A) = (P, A)$. **Proof**. Let (P, A) be an $sb^*-closed$ set of Z. Since $(P, A) \subseteq Z$ and (P, A) is an $sb^*-closed$ set $sb^*cl(P, A) \subseteq (P, A)$, also $(P, A) \subseteq sb^*cl(P, A)$. Hence $sb^*cl(P, A) = (P, A)$. \Box

Theorem 3.20. If (P, A) and (S, A) are soft subsets of Z, then $sb^*cl((P, A) \cap (S, A)) \subseteq sb^*cl(P, A) \cap sb^*cl(S, A)$.

Proof. Let (P, A) and (S, A) is a soft subset of Z. Clearly $(P, A) \cap (S, A) \subseteq (P, A)$ and $(P, A) \cap (S, A) \subseteq (S, A)$, then $sb^*cl((P, A) \cap (S, A)) \subseteq sb^*cl(P, A)$ and $sb^*cl((P, A) \cap (S, A)) \subseteq sb^*cl(S, A)$. Hence $sb^*cl((P, A) \cap (S, A)) \subseteq sb^*cl(P, A) \cap sb^*cl(S, A)$. \Box

References

- M. Akdag and A. Ozkan, Soft α-open sets and soft α-continuous functions, Abstr. Anal. Appl. Art ID 891341, (2014) 1–7.
- [2] M. Akdag and A. Ozkan, Soft b-open and soft b-continuous functions, Math. Sci. 8 (2014) 124.
- [3] S. M. Al-Salem, Soft regular generalized b-closed sets in soft topological spaces, J. Linear and Top. Alg. 3(4) (2014) 195-204.
- [4] I. Arockiarani and A. Arokialancy, Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces, Int. J. Math. Arc. 4 (2013) 1–7.
- [5] B. Chen, Soft Semi-open sets and related properties in soft topological spaces, Appl. Math. Info. Sci., 1 (2013) 287–294.
- S. Z. Hameed and A. K. Hussein, On soft bc-open sets in soft topological spaces, Iraqi J. Sci., Special issue, (2020) 238–242, DOI: 10.24996/ijs.2020.SI.1.32.
- [7] K. Kannan, Soft generalized closed sets in soft topological spaces, J. Theo. Appl. Info. Tech. 37(1) (2012) 17–21.
- [8] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19–31.
- [9] S. Muthuvel and R. Parimelazhagan, b*-closed sets in topological spaces, Int. J. Math. Anal. 47 (2012) 2317–2323.
- [10] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Info. 2 (2012) 171–185.