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Abstract

In this paper, the concept of ηξ-monotonous operator is explored using KKM mapping. The existence
results and uniqueness defined on its bounded and unbounded domains are discussed. Our findings
improve and develop some well-known solutions in literature.
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1. Introduction

Equilibrium problems have shown to be significant mathematical models in a variety of real world
problems. This forms play vital roles in applied math and economics, ranging from price balance
nut and market it to general economic or traffic network equipoise affair, just to name a few cases of
a plethora of equation matter whose presence derives from a long history of active and rich research
field in frugality, industry or other branches of applied sciences. It is worth mentioning that the poise
issue is defined as follows:

(EP) Find n ∈ K such that Ψ (n,m) ≥ 0, for all m ∈ K .

Here K is a nonempty subset of a topological vector space and Ψ : K × K → R is a real valued
equilibrium of bifunction, that is, Ψ(n, n) = 0 for all n ∈ K. This formula was first used by N.Isoda
[1] in 1955 to characterize Nash equilibrium. In 1972, Ky Fan [2] reexamined the question (EP) and
established some existence results to solve under the strong assumption that the K is a compressed
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convex subset of a true Hausdorff topological vector space. Since then, many authors have weakened
the compression of K by using an appropriate form of coercion condition. (EP) has further been
studied along the years 1975 − 1979. For instance, Moscow [3] and J.Mosco [4] presented a general
formula for equilibrium problems called Implicit Variational Problems which include fixed point
matters, variable and semi-variable inequalities and Nash equilibrium as special cases of poise issue.
This general formulation of (EP) has been described by the sum of two binary functions, simply, to
begin what was later called a mixed equilibrium problem.
Inspired by the concept of monotony operator in the sense of Minty, both Moscow and J.Mosco
managed to introduce the notion of monotone binary operations and thus obtained some existence
results for solving this type of equilibrium case under an assumption weaker than those in Fan’s
results [2].
It is interesting, the term equilibrium problem appeared first time in the paper by Blum and Oettli
[3] in which they offered some evidence on the unifying aspect of (EP) and provided some basic
concepts and findings. These problems were subsequently studied extensively by various authors in
the context of Hilbert and Banach spaces under different conditions.

Later on, further papers have been conducted to study special cases of generalized monotone
[2,5,6,7 and 8]. All of these papers have been based on bifunction equilibrium problems. In 1990
Karamardian and Schaible [9] introduced various types of generalized monochromatic designations.
therefore, several researchers [2, 10] extended Karamardian and Schaible [9]’s idea of binary functions
to study (EP).
Fang and Huang in 2003 considered special forms of the equilibrium problem by [11] by using new
skill of fixed-point theorem and the notion of relaxed ηα semimonotone mapping. In 2018 , Malek
Abbasi and Mahboubeh Rezaei [12] studied some of the returns of generalized vector equilibrium
problems and vector general differential inequalities using the famous KKM mapping.

Equally important is the field of monotone operator. Monotone operator related to equilibrium
problem were emerged as a powerful tool to investigate and study a wide class of unrelated problems
arising in industrial, regional, physical, pure, and applied sciences in a unified and general framework.
Monotone operator have been extended and generalized in several directions using novel and new
techniques( see [13],[14],[15])

In 2020, Chadll and G. Pany [16] considered a new class of (MEP), under a weak type of
α - monotone in the setting of Banach spaces. This class of matters broadens and generalizes
some of the basic findings related to mixed variational like inequalities, mixed variational and other
classic problems as special cases of (EP) and thereby the existence and uniqueness of solutions are
established.

This paper is divide into four sections including the introduction. In section two, some apposite
definitions that are important to our work is recalled. In section three, new class of monotonicity,
called ηξ - monotone is gave. Moreover, the existence results and uniqueness defined on its bounded
and unbounded domains are investigated. In the last section of this work, we come up with the most
significant conclusions of this paper.

2. Preliminaries

We will introduce new concept of monotonicity is called ηξ -monotone operator.

Definition 2.1. Let E be a nonempty subset of real reflexive Banach space X.F, η : E × E → R
real-valued bifunctions, ξ : X→ X affine functions, then F is said to be ηξ -monotone if

F(ξ(a), ξ(b)) + F(ξ(b), ξ(a)) + η(ξ(a), ξ(b)) ≤ 0; ∀ξ(a), ξ(b) ∈ E. (2.1)
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Remark 2.2. Let X be a Banach space and E a nonempty convex and subset of X.η, γ : E × E →
R ∪ [+∞] two real bifunctions , thens:

lim
λ→0

η(ξ(c), ξ(cλ))

λ
= 0

η(ξ(c), ξ(d)) ≤ lim
λ→+0

λ− 1

λ
[γ(ξ(c), ξ(c)) + η(ξ(c), ξ(c))]. (2.2)

Definition 2.3. [17] A bifunction F : E × E → R then F is said to be monotone if and only if

F (e, d) + F (d, e) 6 0; ∀e, d ∈ E. (2.3)

Definition 2.4. [17] Let E be a nonempty convex and subset of areal reflexive Banach space X.F :
E × E → R is real-valued bifunction, then F is said to be equilibrium function if f.

F (k, k) = 0 ∀k ∈ E. (2.4)

Now, We consider the following generalized equilibrium problem (for short EPγ ) is to find ξ(h) ∈ E
such that

F (ξ(h), ξ(d)) + γ(ξ(h), ξ(d)) ≥ 0; ∀ξ(d) ∈ E. (2.5)

In order to high light the generality of a problem (6), We recall some Special Cases,

I . If γ ≡ 0, ξ ≡ I then Problem (2.5) is reduced to the Classical equilibrium problem; [3] (for
short, EP), which is to find h ∈ E such that F (h, d) ≥ 0 ∀d ∈ E.

II . If γ(ξ(h), ξ(d)) = γ(ξ(d)) − γ(ξ(h)), ξ ≡ I then problem ( 2.5 ) is reduced to the mixed
equilibrium problem [18] (for short MEP).

III. If ξ ≡ I the identity operator, the extended general equilibrium problem; [17]: find h ∈ E such
that

F (ξ(h), ξ(d)) + γ(ξ(h), ξ(d))
= F (h, d) + γ(h, d) ≥ 0 ∀d ∈ E.

Definition 2.5. [19] A bifunction F : E × E → R, then F is called vector 0 -diagonally Convex
if, for any finite subset {a1, a2, . . . an} of E and αi ≥ 0 (i = 1, 2, . . . , n) with u =

∑n
i=1 αiai and∑n

i=1 αi = 1 one has

n∑
i=1

αiF (a, ai) ≥ 0. (2.6)

Definition 2.6. [20] Let E be a nonempty subset of a Hausdorff topological vector space A. Amap-
ping α : E → 2A is said to be aKKM mapping if, for any finite subset {v1, v2, . . . vn} of E, We have
co {v1, v2, . . . vn} ⊂ Un

i=1 ∧ (vi) where co {v1, v2, . . . vn} denotes the convex hull of {v1, . . . , vn}

Definition 2.7. [21] A real-valued function, defined on a convex subset E of X, is said to be
hemicontuous, if

lim
r→0†
∧(ru+ (1− r)v) = ∧(v); ∀u, v ∈ E. (2.7)

Lemma 2.8. [22] Let E be a nonempty subset of a Hausdorff topological vector space A and let
β : E → 2A be a KKM mapping. If β(v) is closed in A for every v ∈ E and compact for some
v0 ∈ E, then

⋂
v∈E β(v) 6= φ.
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3. THE MAIN RESULTS

In this paper some results existence for equilibrium (EPγ) are recalled and through the results
of this section we confirmed the existence of a solution to the problem (EPγ ) without supposing
boundedness of the set E then we were can to reach the unique of solution.

Theorem 3.1. Let E be a nonempty subset of a real reflexive Banach space X. Assume that

i) F : E × E → R is ηξ-monotone bifunction, hemicontinuous in 1.argument, and convex in
2.argument, where F (ξ(c), ξ(c)) = 0 for all ξ(c) ∈ E.

ii) η, γ : E × E → R, ξ : X→ X, η, γ be convex in 2.argument, ξ affine function.

Then generalized equilibrium problem (Epγ) is equivalent to the following Problem: Find ξ(c) ∈ E
such that

F (ξ(d), ξ(c)) + η(ξ(c), ξ(d)) ≤ γ(ξ(c), ξ(d));∀ξ(d) ∈ E. (3.1)

Proof . Suppose that (Epγ) has a solution. So there exists ξ(c) ∈ E such that

F (ξ(c), ξ(d)) + γ(ξ(c), ξ(d)) ≥ 0 ∀ξ(d) ∈ E. (3.2)

Since F is ηξ -monotone bifunction, we have

F (ξ(d), ξ(c)) + F (ξ(c), ξ(d)) + η(ξ(c), ξ(d)) ≤ 0 ∀ξ(c), ξ(d) ∈ E. (3.3)

Then

F (ξ(d), ξ(c)) + η(ξ(c), ξ(d)) ≤ −F (ξ(c), ξ(d)) ≤ γ(ξ(c), ξ(d)). (3.4)

Therefore, ξ(c) ∈ E is a solution of problem (3.1).
Conversely, Assume that ξ(c) ∈ E is a solution of problem (3.1) and fixed ξ(c) ∈ E. For λ ∈ [0, 1],
we let ξ(cλ) = λξ(d) + (1− λ)ξ(c). Then ξ(cλ) ∈ E, Since E is convex any ξ is affine, we have

F (ξ(cλ), ξ(c)) + η(ξ(c), ξ(cλ)) ≤ γ(ξ(c), ξ(cλ)). (3.5)

Then

F (ξ(cλ), ξ(c))− γ(ξ(c), ξ(cλ)) ≤ −η(ξ(c), ξ(cλ)). (3.6)

By the convexity of F in the 2 .argument any ξ is affine, we have

0 = F (ξ(cλ), ξ(cλ)) ≤ λF (ξ(cλ), ξ(d)) + (1− λ)F (ξ(cλ), ξ(c)) (3.7)

0 = F (ξ(cλ), ξ(cλ)) ≤ λF (ξ(cλ), ξ(d)) + F (ξ(cλ), ξ(c))− λF (ξ(cλ), ξ(c))

So,

λ[F (ξ(cλ), ξ(c))− F (ξ(cλ), ξ(c))] ≤ F (ξ(cλ), ξ(c)). (3.8)

By convexity of γ and η, we get

η(ξ(c), ξ(cλ)) ≤ λη(ξ(c), ξ(d)) + (1− λ)η(ξ(c), ξ(c))

γ(ξ(c), ξ(cλ)) ≤ λγ(ξ(c), ξ(d)) + (1− λ)γ(ξ(c), ξ(c))
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η(ξ(c), ξ(cλ)) ≤ λη(ξ(c), ξ(d)) + η(ξ(c), ξ(c))− λη(ξ(c), ξ(c))

γ(ξ(c), ξ(cλ)) ≤ λγ(ξ(c), ξ(d)) + γ(ξ(c), ξ(c))− λγ(ξ(c), ξ(c)).

Then

λ[η(ξ(c), ξ(c))− η(ξ(c), ξ(d))] ≤ η(ξ(c), ξ(c))− η(ξ(u), ξ(cλ))

λ[γ(ξ(c), ξ(c))− γ(ξ(c), ξ(d))] ≤ γ(ξ(c), ξ(c))− γ(ξ(c), ξ(cλ)). (3.9)

From (3.5),(3.6) and (3.9)

λ[F (ξ(cλ), ξ(c))− F (ξ(cλ), ξ(d)) + η(ξ(c), ξ(cλ))− η(ξ(c), ξ(d)) + γ(ξ(c), ξ(c))− γ(ξ(c), ξ(d))]

≤ F (ξ(cλ), ξ(c))− η(ξ(c), ξ(cλ))− γ(ξ(c), ξ(cλ)) + η(ξ(c), ξ(c))

≤ −2η(ξ(c), ξ(cλ)) + η(ξ(c), ξ(c)) + γ(ξ(c), ξ(c)). (3.10)

From hemecontinuous in 1.argument

λ[−F (ξ(c), ξ(d))−γ(ξ(c), ξ(d))] ≤ −2η(ξ(c), ξ(λc)) + λη(ξ(c), ξ(d))

+ (1− λ)[γ(ξ(c), ξ(c)) + η(ξ(c), ξ(λc))] (3.11)

F (ξ(cλ), ξ(d))−γ(ξ(c), ξ(d)) ≤ 2η(ξ(c), ξ(cλ))

λ
− η(ξ(c), ξ(d))

+
1− λ
λ

[γ(ξ(c), ξ(c)) + η(ξ(c), ξ(c))]. (3.12)

From Remark 2.2. one can get

F (ξ(c), ξ(d)) + γ(ξ(c), ξ(d)) ≥ 0 ∀ξ(d) ∈ E. (3.13)

Therefore, (Epγ) has a solution. �

Theorem 3.2. Let E be a nonempty closed bounded convex subset of a real reflexive Banach space
X.ξ : X → X affine furcation. Assume that

1. F : E×E → R is ηξ - monotone bifunction, 0-diagonal convex, hemicontinuous in 1.argument
and lsc, convex in 2.argument;

2. γ : E × E → R is convex in 2.argument, usc in 1.argument, and 0-diagonal convex;

3. η : E × E → R is Isc in 1.argument and convex in 2 argument;

Then (EPγ) admit a solution.

Proof . Defined two set valued mappings Λ, α : E → 2E as following:

∧(ξ(t)) = {ξ(t) ∈ E : F (ξ(t), ξ(r)) + γ(ξ(t), ξ(r)) ≥ 0 ∀ξ(r) ∈ E} (3.14)

α(ξ(r)) = {ξ(t) ∈ E : F (ξ(r), ξ(t)) + η(ξ(t), ξ(r)) ≤ γ(ξ(t), ξ(r)) ∀ξ(r) ∈ E}. (3.15)

Then, the problem (EPγ) has a solution iff⋂
ξ(r)∈E ∧(ξ(r)) 6= φ. Claim 1 ∧ is a KKM mapping.
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If ∧ is not a KKM mapping. Then, there exists a finite subset

{ξ (t1) , ξ (t2) , . . . , ξ (tm)} of E and βi ≥ 0 (i = 1, 2, . . . ,m) with
∑m

i=1 βi = 1, in which

ξ (to) =
∑m

i=1 βiξ (ti) /∈ ∪mi=1 ∧ (ξ (ri)).

Then

F (t (t0) , ξ (ti)) + γ (ξ (t0) , ξ (ti)) < 0 ∀i = 1, 2, . . . ,m
m∑
i=1

βi [F (ξ (t0) , ξ (ti)) + γ (ξ (t0) , ξ (tl))] < 0 ∀i = 1, 2, . . . ,m (3.16)

We reach to contrary of 0 -diagonal convex property for F and γ.

Therefore, ∧ is a KKM mapping.

Claim 2, ∧(ξ(r) ⊆ α(ξ(r))) ∀ξ(r) ∈ E.

Let ξ(t) ∈ ∧(ξ(r)); then

F (ξ(t), ξ(r)) + γ(ξ(t), ξ(r)) ≥ 0 ∀ξ(t) ∈ E. (3.17)

From definition of ηξ-monotone bifunction, one can obtain

F (ξ(t), ξ(r)) + η(ξ(t), ξ(r))− γ(ξ(t), ξ(r))

≤ −F (g(t),g(r))− η(g(t), ξ(r)) + η(ξ(t), ξ(r))− γ(ξ(t), ξ(r)) ≤ 0. (3.18)

denodies that ξ(t) ∈ α(ξ(r)).

Thus ∧(ξ(r)) ⊂ α(ξ(r))∀ξ(r) ∈ E.

Therefore, α(ξ(r)) is a KKM mapping.

Since η(., ξ(r), F (ξ(r), .)) are lsc and γ(., ξ(r)) is usc.

Then

F (ξ(r), ξ(t)) + η(ξ(t), ξ(r)) ≤ lim
m

inf f (F (ξ(r), ξ (tm)) + η (ξ (tm) , ξ(r)))

≤ lim sup
m

(ξ (tm) , ξ(r))

≤ γ(ξ(t), ξ(r)) (3.19)

Thus, α(ξ(r)) is weakly closed ∀ξ(r) ∈ E.

Since E is a nonempty, bounded, closed and convex and X is real reflexive, it follows that E is
weakly compact.Therefore, α(ξ(r)) is weakly compact ∀ξ(r) ∈ E.

From Lemma 2.8 and Theorem 3.1⋂
ξ(r)∈E

∧(ξ(r)) =
⋂

ξ(r)∈E

a(ξ(r)) 6= φ. (3.20)
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Therefore, the problem (EP γ ) has a solution. �

Corollary 3.3. Assume that ξ(0) ∈ E is a nonempty convex subset of Banach space X and assump-
tions (1− 3) in Theorem 3.2 hold. Moreover,

1. γ(ξ(a), 0) = 0.

2. λ1 = {ξ(a) ∈ E : η(ξ(a), 0) ≤ 0} and λ2 = {ξ(a) ∈ E : F (0, ξ(a)) ≤ 0} are relative compact
sets.

Then (EPγ ) admit a solution.

Proof . Note that prove α(ξ(b)) is compact for some ξ(0) ∈ E suffices

α(ξ(b)) = {ξ(a) ∈: F (ξ(b), ξ(a)) + η(ξ(a), ξ(b)) ≤ γ(ξ(a), ξ(b)),∀ξ(b) ∈ E}

α(ξ(b)) ⊂
[
ξ(a) ∈ E : F (ξ(b), ξ(a)) ≤ γ(ξ(a), ξ(b))

2

]⋃[
ξ(a) ∈ E : η(ξ(a), ξ(b)) ≤ γ(ξ(a), ξ(b))

2

]
.

(3.21)

Since ξ(0) ∈ E

α(ξ(0)) ⊂
[
ξ(a) ∈ E : F (0, ξ(a)) ≤ γ(ξ(a), 0)

2

]⋃[
ξ(a) ∈ E : η(ξ(a), 0) ≤ γ(ξ(a), 0)

2

]
. (3.22)

From conditions (1−2), α(ξ(0)) is a subset of relative compact set λ1 or λ2. This implies that α(ξ(b))
is compact for some ξ(b) ∈ E. �

Theorem 3.4. Let the following assumptions hold.

1- The mappings F, γ are continuous, 0 -diagonal convex F, γ : E × E → R and ξ : X → X is
affine.

2- There exists a nonempty compact subset N of E and ξ(h) ∈ N such that ∀ξ(d) ∈ E/N

F (ξ(h), ξ(d)) + γ(ξ(h), ξ(d)) ≥ 0.

Then the problem (EPγ ) admit a solution.

Proof . Define the set value mapping Λ : E → 2E, in which

∧(ξ(d)) = {ξ(h) ∈ E : F (ξ(h), ξ(d)) + γ(ξ(h), ξ(d)) ≥ 0 ∀ξ(d) ∈ E}

then the (EPγ) has a solution if ⋂
ξ(d)∈E

∧(ξ(d)) 6= φ.

Now, we first prove ∧(ξ(d)) is a KKM mapping since ξ(d) ∈ ∧(ξ(d))⇒ ∧(ξ(d)) 6= φ by the contrary,
let ∧(ξ(d)) is not a KKM mapping.
Then, there exists a finite subset {ξ (h1) , ξ (h2) , . . . , ξ (hm)} of E, λi ≥ 0 i = 1, 2, . . . ,m·

∑m
i=1 λi = 1

such that

ξ (h0) =
m∑
i=1

λiξ (hi) /∈ ∪mi=1 ∧ (ξ (hi)) .

It means that ξ (h0) /∈ ∧ (ξ (hi))∀i = 1, 2, . . . ,m Then
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F (ξ (h0) , ξ (hi)) + γ (ξ (h0) , ξ (hi)) < 0 ∀i = 1, 2, . . . ,m
m∑
i=1

λi [F (ξ (h0) , ξ (hi)) + γ (ξ (h0) , ξ (hi))] < 0 ∀i = 1, 2, . . . ,m (3.23)

And this contradicts the 0-diagonal convex property of F and γ.
Then ∧ is a KKM mapping

Let {hm} be a sequence in E such that ξ(hm)→ ξ(h) and hm ∈ ∧(ξ(d)).
So,

F (ξ(hm), ξ(d)) + γ (ξ(hm), ξ(d)) ≥ 0.

Since F and γ are continuous

F (ξ(hm), ξ(d))→ F (ξ(h), ξ(d))

γ (ξ(hm), ξ(d))→ γ(ξ(h), ξ(d))

F (ξ(hm), ξ(d)) + γ (ξ(hm), ξ(d))→ F (ξ(h), ξ(d)) + γ(ξ(h), ξ(d)) ≥ 0.

Then
F (ξ(h), ξ(d)) + γ(ξ(h), ξ(d)) ≥ 0.

So, ξ(h) ∈ Λ(ξ(d))
⇒ ∧(ξ(d)) is closed for every ξ(h) ∈ E and compact for some h ∈ E, by lemma 2.8.⋂

ξ(v)∈E

∧(ξ(d)) 6= φ.

This completes the proof.
�

Theorem 3.5. Suppose that the same hypotheses in Theorem 3.2 hold. By adding

i) γ is a monotone bifunction.

ii) There exists k > 0, such that

F (ξ(n), ξ(m)) ≤ −k‖ξ(m)− ξ(n)‖2 ∀ξ(n), ξ(m) ∈ E

Proof . that the existence of solution follow from Theorem 3.1 we need only to prove the uniqueness
of the solution. By assuming the contrary that there exists two arbitrary solution, say ξ (n1) and
g (n2) for the (EPγ).

F (ξ (n1) , ξ(m)) + γ (ξ (n1) , ξ(m)) ≥ 0∀ξ(n) ∈ E
F (ξ (n2) , ξ(m)) + γ (ξ (n2) , ξ(m)) ≥ 0∀ξ(m) ∈ E.

Since ξ (n1) , ξ (n2) ∈ E, then

F (ξ (n1) , ξ (n2)) + γ (ξ (n1) , ξ (n2)) ≥ 0

F (ξ (n2) , ξ (n1)) + γ (ξ (n2) , ξ (n1)) ≥ 0
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F (ξ (n1) , ξ (n2)) + γ (ξ (n1) , ξ (n2)) + F (ξ (n2) , ξ (n1)) + γ (ξ (n2) , ξ (n1)) ≥ 0

F (ξ (n1) , ξ (n2)) + F (ξ (n2) , ξ (n1)) ≥ −γ (ξ (n1) , ξ (n2))− γ (ξ (n2) , ξ (n1)) . (3.24)

By using γ monotone bifunction then

γ (ξ (n1) , ξ (n2)) + γ (ξ (n2) , ξ (n1)) ≤ 0

− γ (ξ (n1) , ξ (n2))− γ (ξ (n2) , ξ (n1)) ≥ 0. (3.25)

From (3.24) and (3.25), we have

F (ξ (n1) , ξ (n2)) + F (ξ (n2) , ξ (n1)) ≥ 0 (3.26)

F (ξ (n1) , ξ (n2)) ≤ −k ‖ξ (n2)− ξ (n1)‖2

F (ξ (n2) , g (n1)) ≤ −k ‖ξ (n2)− ξ (n1)‖2

F (ξ (n1) , ξ (n2)) + F (ξ (n2) , ξ (n1)) ≤ −2k ‖ξ (n2)− ξ (n1)‖2 ≤ 0. (3.27)

From (3.26) and (3.27) we have

0 ≤ F (ξ (n1) , ξ (n2)) + F (ξ (n2) , ξ (n1)) ≤ −2k ‖ξ (n2)− ξ (n1)‖2 ≤ 0.

a contradiction, then
‖ξ (n2)− ξ (n1)‖2 = 0⇒ ξ (n2) = ξ (n1) .

Therefore (EPγ) has a unique solution. �

4. CONCLUSION

In the above discussion, we have been considered with a new class of equilibrium problems
involving a bifunction. We have made use of a new technique of monotonicity called ηξ-monotone
subsets in the setting of Banach space. The results coming out of this whole discussion have provided
us with an inclusion that turns out to be useful for generalizing some existence results recently
obtained in the literature.
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