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Abstract

In this paper, we will discuss the existence of bounded positive solutions for a class of nonlinear
differential systems. The objective will be achieved by applying some results and techniques of
functional analysis such as Schauder’s fixed point theorem and potential theory tools.

Keywords: nonlinear differential system, potential theory, Green’s function, positive solution,
Schauder’s fixed point theorem
2010 MSC: 34A34, 34B27, 34L30

1. Introduction

We are interested in the study of bounded positive solutions to the following nonlinear differential
system 

1

ϕi
(ϕiu

′
i)
′ = piu

αi
i

m∏
j=1
j 6=i

u
kij
j , on (0,+∞)

ϕiu
′
i (0) = 0 and ui (+∞) = bi

, 1 ≤ i ≤ m (1.1)

where u = (u1, . . . , um), and for all 1 ≤ i, j ≤ m, we have kii = αi ≥ 1, kij ≥ 0, bi > 0,

ui (+∞) = lim
x→+∞

ui (x)

ϕiu
′
i (0) = lim

x→0
ϕi (x)u′i (x)

and the functions ϕi satisfies the following condition (H1) :
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(H1) ϕi is a continuous function on [0,+∞), differentiable and positive on (0,+∞), such that∫ +∞

1

dt

ϕi (t)
< +∞ and

∫ 1

0

1

ϕi (t)

(∫ t

0

ϕi (s) ds

)
dt < +∞ (1.2)

We denote B+ ((0,+∞)) the set of nonnegative measurable functions on (0,+∞). We define
C([0,+∞]) the space of all continuous functions u in [0,+∞) such that lim

x→+∞
u (x) exists and

C0([0,+∞)) the subspace of C([0,+∞]) consisting of functions which vanish continuously at +∞.
For any function ϕ satisfying (H1), we denote by G the Green’s function of the operator L with

Dirichlet conditions, i.e.  Lu =
1

ϕ
(ϕu′)′ on (0,+∞)

ϕu′ (0) = 0 , u (+∞) = 0

that is,

G(x, t) = ϕ(t)

∫ +∞

max{x,t}

dr

ϕ(r)
, for x, t ∈ (0,+∞)

and we define the potential of a function f ∈ B+((0,+∞)) by

V f(x) =

∫ +∞

0

G(x, t)f(t)dt

We point out that for each f ∈ B+((0,+∞)) such that V f(0) < +∞, we have
V f ∈ C0([0,+∞)) ∩ C1((0,+∞))

L(V f) = −f , a.e. on (0,+∞)

A(V f)′(0) = 0 , V f(+∞) = 0

Let us introduce the functions pi, 1 ≤ i ≤ m, that satisfies the following condition (H2) :

(H2) pi : (0,+∞)→ [0,+∞) is measurable function such that Vipi(0) < +∞.

where for all f ∈ B+((0,+∞)) and 1 ≤ i ≤ m :

Vi f(x) =

∫ +∞

0

Gi(x, t)f(t)dt

and

Gi(x, t) = ϕi(t)

∫ +∞

max{x,t}

dr

ϕi(r)
, for x, t ∈ (0,+∞)

Before stating the main result of this work, it should be mentioned that several mathematicians
have dealt with many problems of type (1.1) using various analytical and numerical techniques and
methods under different hypotheses as appropriate. We refer to [1]-[3], [6], [7], [9]-[17], [19], [21], [22]
and corresponding references therein for some recent results of the solutions to systems of this type.
This is because they appear in the modeling of many physical phenomena such as the propagation
of pulses in birefringent optical fibers and supports Kerr-like photorefractive, we also refer to [4] and
[18].
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Concerning the problem (1.1) in the case of a single equation of the form

1

ϕ
(ϕu′)

′ − qu = −f (·, u) on ]0, ω[

with Dirichlet conditions, Maâgli and Masmoudi in [16] showed a result of existence and uniqueness
of a strictly positive regular solution. In [15], Maâgli proved the existence and the uniqueness of a
positive solution of this equation but this time with the following conditions

u (0) = u (1) and ϕu′ (0) = ϕu′ (1)

In 2003, Maâgli and Zeddini [14] generalized the result of Taliaferro [20], they studied (1.1) with
Dirichlet conditions and a nonlinear term nonnegative continuous nonincreasing with respect to the
second variable.

Ben Othman et al. in [6] studied some existence results for the nonlinear equation

1

ϕ
(ϕu′)

′
= uψ (·, u) on ]0, ω[

with different boundary conditions, where ψ is a nonnegative function.
One of the main objectives of Ghanmi et al. in [8] is to establish the necessary and sufficient

conditions for the existence of global solutions of a system of the form (1.1) with some hypothesis.
In 2009, Gontara [9] studied the existence and nonexistence of solutions for a system with two

equations of the form (1.1).
This document is organized as follows : In the next section, we will give the main result of

this work. The purpose of section 3 is to give some technical results and to recall some potential
theoretical tools that are essential to prove our main result. The last section is devoted to prove the
main result by applying Schauder’s fixed point Theorem and tools of the theory of potentials.

2. The main result

Now, we give the main result of our work, it is the following existence result :

Theorem 2.1. Let ϕ1, . . . , ϕm be functions satisfying (H1) and let p1, . . . , pm be functions satisfying
(H2). Then for each b1, . . . , bm > 0, the system (1.1) has a positive solution u = (u1, . . . , um) in
C([0,+∞])∩C1((0,+∞)). Moreover, there exists c1, . . . , cm > 0 such that for each x ∈ [0,+∞), we
have

0 < bi exp(−ciVipi(0)) ≤ ui(x) ≤ bi , for all 1 ≤ i ≤ m

3. Preliminary results

Let ϕ be a function satisfying (H1). The objective of this section is to give some technical results

concerning the operator Lu =
1

ϕ
(ϕu′)′ and to recall some potential theory tools which are crucial to

prove our main result. For the proof and more details, we refer to [5], [9], [15] and [16].
In particular, we give an existence and a uniqueness result to the problem{

Lu = p (x)uα , x ∈ (0,+∞)

ϕu′ (0) = 0 , u (∞) = b > 0
(3.1)

where α ≥ 1 and p ∈ B+ ((0,+∞)) such that V p(0) < +∞.
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Proposition 3.1. Let q ∈ B+ ((0,+∞)) such that V q(0) < +∞. Then the family of functions

Fq =

{
x 7→ V f(x) =

∫ +∞

0

G(x, t)f(t)dt, |f | ≤ q

}
(3.2)

is uniformly bounded and equicontinuous in [0,+∞]. Consequently, Fq is relatively compact in
C0 ([0,∞)).

Proof . We can write

V f(x) =

∫ ∞
x

1

ϕ(t)
(

∫ t

0

ϕ(r)f(r)dr)dt

We deduce that for x, y ∈ [0,∞), we have

|V f(x)− V f(y)| ≤
∫ y

x

1

ϕ(t)

∫ t

0

ϕ(r)q(r)drdt

Since V q(0) < ∞, it follows by the dominated convergence Theorem the equicontinuity of Fq in
[0,∞). Moreover, since

|V f(x)| ≤
∫ ∞
x

1

ϕ(t)

∫ t

0

ϕ(r)q(r)drdt

We deduce that lim
x→∞

V f(x) = 0, uniformly in f which proves that Fq is uniformly bounded in

[0,∞]. Using Ascoli’s Theorem, we deduce that Fq is relatively compact in C0([0,∞)). �

Lemma 3.2. Let q ∈ B+(0,+∞) such that V q(0) < +∞. Then the problem
1

ϕ
(ϕu′)′ − qu = 0 , a.e. on (0,+∞)

ϕu′ (0) = 0 , u (0) = 1

(3.3)

has a unique solution ψ ∈ C([0,+∞)) ∩ C1((0,+∞)) satisfying for each t ∈ [0,+∞),

1 ≤ ψ(t) ≤ exp

[∫ t

0

1

ϕ(s)

(∫ s

0

ϕ(r)q(r)dr

)
ds

]
Proof . Let K be the operator defined on C([0,∞)) by

Kf(t) =

∫ t

0

1

ϕ(s)

∫ s

0

ϕ(r)q(r)f(r)drds , t ∈ [0,∞)

which leads to

0 ≤ Kn1(t) ≤ (K1(t))n

n!
, for t ∈ [0,∞) and n ∈ N

Then, the series
∑
n≥0

Kn1 converges uniformly to a function ψ ∈ C([0,∞)) satisfying

ψ(t) = 1 +

∫ t

0

1

ϕ(s)

∫ s

0

ϕ(r)q(r)ψ(r)drds , for t ∈ [0,∞)
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This implies that ψ ∈ C1((0,∞)) is a solution of the problem (3.3). Moreover, we have

1 ≤ ψ(t) ≤
∑
n≥0

[K1(t)]n

n!
= exp [K1(t)] , for t ∈ [0,∞)

Now, we assume that u and v are two solutions in C([0,∞)) ∩ C1((0,∞)) of problem (3.3) and
ω = |u− v|, then

0 ≤ ω(t) ≤ Kω(t) , for t ∈ [0,∞)

It follows that for t ∈ [0,∞) and n ∈ N

0 ≤ ω(t) ≤ Knω(t) ≤ ‖ω‖∞Kn1(t) ≤ ‖ω‖∞
[K1(t)]n

n!

By letting n→∞, we deduce that ω(t) = 0, for t ∈ [0,∞) and so u = v on [0,∞). �
We denote by Gq the Green’s function of the operator

u 7→ 1

ϕ
(ϕu′)′ − qu

on (0,∞) with Dirichlet conditions ϕu′(0) = 0, u(+∞) = 0. Then

Gq(x, t) = ϕ(t)ψ(x)ψ(t)

∫ +∞

max{x,t}

dr

ϕ(r)ψ2(r)
, for x, t ∈ (0,+∞)

So, we define the potential kernel Vq in B+ ((0,+∞)) by

Vqf(x) =

∫ +∞

0

Gq(x, t)f(t)dt

Note that Vq is the unique kernel which satisfies the resolvent equation

V = Vq + Vq(qV ) = Vq + V (qVq) (3.4)

So, if u ∈ B+ ((0,+∞)) such that V (qu)(0) < +∞, we have

(I − Vq(q·)) (I + V (q·))u = (I + V (q·)) (I − Vq(q·))u = u· (3.5)

Now, we recall an existence result given in [6] for the nonlinear problem Lu =
1

ϕ
(ϕu′)′ = uϕ (·, u) on ]0,+∞[

ϕu′ (0) = 0 and u (+∞) = a > 0

(3.6)

with the nonlinear term ϕ satisfies the following hypothesis :

(Y1) ϕ is nonnegative measurable function in [0,+∞)× (0,+∞).

(Y2) For each c > 0, there exists qc ∈ B+ ((0,+∞)) such that V qc(0) < +∞ and for each x ∈
(0,+∞), the function t 7→ t(qc(x)− ϕ(x, t)) is continuous and nondecreasing on [0, c].
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Proposition 3.3. For each a > 0, problem (3.6) has a positive bounded solution u ∈ C([0,+∞]) ∩
C1((0,+∞)) satisfying for each x ∈ [0,∞) ,

e−Vq(0)a ≤ u (x) ≤ a

where q = qa is the function given in (Y2).

Proof . See [6]. �

Lemma 3.4. Let a > 0 and ϕ be a function satisfying (Y1) and (Y2). Let u be a positive function
in C([0,+∞]) ∩ C1((0,+∞)). Then u is a solution of (3.6), if and only if, u satisfies

u+ V (uϕ(·, u)) = a on [0,+∞) (3.7)

Proof . Let u be a positive function in C([0,∞]) ∩ C1((0,∞)) satisfying (3.7), then u ≤ a. Let
q = qa be the function given by (Y2), then we have

uλ(·, u) ≤ qu ≤ aq

Since V q(0) <∞, it follows from Proposition 3.1 that the function v = V (uλ(·, u)) is in C0([0,∞))
and so v satisfies {

Lv = −λ (·, u) a.e. on (0,+∞)
λv′ (0) = 0 and v (+∞) = 0

(3.8)

This with (3.7) proves that u is a solution of (3.6).Now, let u be a positive function in C([0,∞])∩
C1((0,∞)) satisfying (3.6). Since λu′(0) = 0, then λu′(x) ≥ 0 for x ∈ (0,∞). It follows by u(∞) = a
that u ≤ a. So, by hypothesis (Y2), we have

uλ(·, u) ≤ aq

Again, we use Proposition 3.1 to find v = V (uλ(., u)) satisfies (3.8). Put w = u + V (uλ(·, u)).
Hence the function w is a solution of

Lw = 0 a.e. on (0,∞)

λw′(0) = 0, w(∞) = a

It follows that w = a and so u satisfies (3.7). �

Proposition 3.5. Let α > 1 and p ∈ B+((0,+∞)) such that V p(0) < +∞. Then for each a > 0,
the problem (3.1) has a unique solution u ∈ C([0,+∞]) ∩ C1((0,+∞)) satisfying

a exp(−αaα−1V p(0)) ≤ u(x) ≤ a (3.9)

Proof . Let λ(x, t) = p(x)tα−1, then it is clear that λ satisfies (Y1) and (Y2) where qa is explicitly
given by qa(x) = αaα−1p(x) for x ∈ (0,∞). So using Proposition 3.3, the problem (3.1) has a solution
u in the space C([0,∞]) ∩ C1((0,∞)) satisfying (3.9).

Let us prove uniqueness. We assume that u and v are two solutions in C([0,∞]) ∩C1((0,∞)) of
(3.1) and put w = u− v. Then using Lemma 3.4, the function w satisfies

w + V (hw) = 0 on (0,∞) (3.10)

where the function h ∈ B+((0,∞)) is defined by

h(x) =

{
p(x)u

α(x)−vα(x)
u(x)−v(x) if u(x) 6= v(x)

0 if u(x) = v(x)

Now, since V h(0) ≤ αaα−1V p(0) <∞, we apply the operator (I−Vh(h.)) on both sides of (3.10),
we obtain with (3.5) that w = 0 on (0,∞). So the uniqueness is proved. �
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4. Proof of the main result

We must first reformulate the problem in the form of a fixed point problem. For that, let
E = C([0,+∞]m) the Banach space endowed with the norm

‖u‖E = ‖(u1, . . . , um)‖E =
m∑
i=1

‖ui‖∞

Now, let a, b > 0, to apply a fixed point argument, we consider the set

Γ =
{
u = (u1, . . . , um) ∈ E | bie−Vip̃i(0) ≤ ui ≤ bi

}
where

p̃i = αib
αi−1
i pi

∏
1≤j≤m
j 6=i

b
kij
j

Then Γ is a convex closed subset of E.
We define the operator Ψ on Γ by Ψu = z where z = (z1, . . . , z2) is the unique solution of the

problem 
1

ϕi
(ϕiz

′
i)
′ = piz

αi
i

m∏
j=1
j 6=i

u
kij
j , on (0,+∞)

ϕiz
′
i (0) = 0 and zi (∞) = bi

, 1 ≤ i ≤ m

Note that if Ψu = u then u is a solution of (1.1). So we will use the Schauder’s Theorem.
In the case of a Banach space, the Schauder’s fixed point Theorem affirms that : if Γ is a nonempty

convex closed subset of a Banach space E, and Ψ is a continuous mapping of Γ into itself such that
Ψ (Γ) is relatively compact, then Ψ has a fixed point in Γ.

We verify the hypotheses of Schauder’s Theorem :
(i) We point out that Ψ is well defined and ΨΓ ⊂ Γ. Indeed, if for all 0 ≤ i ≤ m, we have got

uj ≤ bj , ∀j 6= i

then using Proposition 3.5, the problem
1

ϕi
(ϕiz

′
i)
′ (x) = piz

αi
i

m∏
j=1
j 6=i

u
kij
j , x ∈ (0,+∞)

ϕiz
′
i (0) = 0 and zi (+∞) = bi

, 1 ≤ i ≤ m

has a unique solution zi in C([0,∞]) for all j 6= i with 1 ≤ i ≤ m, satisfying

bie
−Vip̃i(0) ≤ zi ≤ bi

(ii) Now, we prove that ΨΓ is relatively compact in C([0,∞]m). To arrive to this result, let u ∈ Γ
and put (z1, . . . , zm) = Ψ (u1, . . . , um). Using Lemma 3.4, the functions zi satisfy

zi + Vi

pizαii m∏
j=1
j 6=i

u
kij
j

 = bi , on [0,+∞) (4.1)
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Then for (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ [0,+∞]m, we have

‖Ψ (u1, . . . , um) (x1, . . . , xm)−Ψ (u1, . . . , um) (x′1, . . . , x
′
m)‖

=
m∑
i=1

|zi (xi)− zi (x′i)|

=
m∑
i=1

∣∣∣∣∣∣∣∣Vi
pizαii m∏

j=1
j 6=i

u
kij
j

 (xi)− Vi

pizαii m∏
j=1
j 6=i

u
kij
j

 (x′i)

∣∣∣∣∣∣∣∣
Now, using that (u1, . . . , um) and (z1, . . . , zm) are in Γ, it follows that

Vi

pizαii m∏
j=1
j 6=i

u
kij
j

 ∈ F bi
αi
p̃i
, for all 1 ≤ i ≤ m

This implies, by Proposition 3.1, that ΨΓ is equicontinuous in [0,+∞]m. Now, since

{Ψ (u1, . . . , um) (x1, . . . , xm) | (u1, . . . , um) ∈ Γ}

is uniformly bounded in [0,+∞]m, we deduce by Ascoli’s Theorem that ΨΓ is relatively compact in
C ([0,+∞]m).

(iii) Let us prove the continuity of Ψ in Γ. Let (u1n, . . . , umn) be a sequence in Γ converging
to (u1, . . . , um) ∈ Γ with respect to ‖ · ‖. Put (z1n, . . . , zmn) = Ψ (u1n, . . . , umn) and (z1, . . . , zm) =
Ψ (u1, . . . , um). Then

|Ψ (u1n, . . . , umn) (x1, . . . , xm)−Ψ (u1, . . . , um) (x1, . . . , xm)| =
m∑
i=1

|zin (xi)− zi (xi)|

We denote by Zin = zin − zi. We start by evaluating Zin. By (4.1), we have for xi ∈ [0,+∞]

Zin (xi) = Vi

pizαii m∏
j=1
j 6=i

u
kij
j

 (xi)− Vi

pizαii m∏
j=1
j 6=i

u
kij
j

 (xi)

= Vi

pizαii
 m∏
j=1
j 6=i

u
kij
j −

m∏
j=1
j 6=i

u
kij
jn


 (xi)− Vi (hiZin) (xi)

where hi ∈ B+((0,∞)) for all 1 ≤ i ≤ m, and

hi (xi) =


pi (xi)

 m∏
j=1
j 6=i

u
kij
jn (xi)

 zαiin (xi)− zαii (xi)

zin (xi)− zi (xi)
, if zin (xi) 6= zi (xi)

0 , if zin (xi) = zi (xi)
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Since Vihi(0) <∞, applying the operator (I − Vih(h·)) on both side of

Zin + Vi (hiZin) = Vi

pizαii
 m∏
j=1
j 6=i

u
kij
j −

m∏
j=1
j 6=i

u
kij
jn




we obtain by (3.4) and (3.5) that

Zin = Vih

pizαii
 m∏
j=1
j 6=i

u
kij
j −

m∏
j=1
j 6=i

u
kij
jn




So,

|Zin| ≤ Vi

pizαii
 m∏
j=1
j 6=i

u
kij
j −

m∏
j=1
j 6=i

u
kij
jn




Now, since

piz
αi
i

 m∏
j=1
j 6=i

u
kij
j −

m∏
j=1
j 6=i

u
kij
jn

 ≤ 2piz
αi
i

 m∏
j=1
j 6=i

b
kij
j


and Vipi(0) <∞, we deduce by the dominated convergence Theorem, that

Vi

pizαii
 m∏
j=1
j 6=i

u
kij
j −

m∏
j=1
j 6=i

u
kij
jn


→ 0 , as n→ +∞

It follows that Zin converge to 0 as n→ +∞.
Analogously, we have Zin(xi) converge to 0 as n→ +∞. This proves that for each (x1, . . . , xm) ∈

[0,+∞)m,

Ψ (u1n, . . . , umn) (x1, . . . , xm)→ Ψ (u1, . . . , um) (x1, . . . , xm) , as n→ +∞

Now, since ΨΓ is relatively compact in C([0,+∞]m), we deduce that

‖Ψ (u1n, . . . , umn) (x1, . . . , xm)−Ψ (u1, . . . , um) (x1, . . . , xm)‖ → 0 , as n→ +∞

According to the above, all the hypotheses of the Schauder’s Theorem are verified, then there
exists u = (u1, . . . , um) ∈ Γ such that Ψ (u1, . . . , um) = (u1, . . . , um). So (u, v) is the desired solution.
This completes the proof.
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