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Abstract

In this paper, we study Projected non-stationary Simultaneous Iterative Reconstruction Techniques
(P-SIRT). Based on algorithmic operators, convergence result are adjusted with Opial’s Theorem.
The advantages of P-SIRT are demonstrated on examples taken from tomographic imaging.
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1. Introduction

Large-scale discretizations of ill-posed problems (as imaging problems in tomography) lead to large,
sparse and ill-posed (sensitive to noise) linear systems of equations (which may be inconsistent) of
the form

Ax = b. (1.1)

Many problems as image reconstruction [30, 12, 13, 26, 24, 23], computed tomography [21, 22, 34],
image recovery [33, 35], image restoration [36], image registration [29], seismic imaging [20], image
fusion [17], radar imaging [14] lead to a linear system as (1.1).

Finding x∗ ∈ Rn such that Ax∗ = b is a special case of convex feasibility problems (CFPs).
Actually many problems in mathematics and physical sciences can be modeled as a CFP, i.e., a
problem of finding a point x ∈ Q =

⋂m
i=1Qi where {Qi}mi=1 ⊆ Rn are closed convex sets. Using fixed

point iterative methods based on algorithmic operators has been suggested by many researchers
for solving CFPs, see, e.g., [2, 8]. One of the most important class of algorithmic operators is
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Figure 1: ART method

projection algorithms that play a main role in the area of constructive solution of CFPs. Projection
algorithms are iterative algorithms that use projections onto sets. We next give some instances of
such algorithms.

Let A ∈ Rm×n and b ∈ Rm. Let ai and bi denote the i-row of A and b, respectively. Therefore
projection of x ∈ Rn onto the i-hyperplane, i.e. Hi = {x ∈ Rn| 〈ai, x〉 = bi} , is

PHi
(x) = x+

bi − 〈ai, x〉
‖ai‖2

ai i = 1, 2, · · · ,m (1.2)

where i = 1, 2, · · · ,m. To simplifying the notation we denote PHi
(x) = Pi(x).

The projection operators can be used in various ways. We briefly explain a special case of
sequential and simultaneous methods which use two different ways of projection operators. Algebraic
Reconstruction Technique (ART) [21] is a sequential method which executes as follows. Let x0 ∈
Rn be an arbitrary starting point. The ART algorithm projects the current iteration xk onto a
hyperplane, e.g. Hi, and puts xk+1 = Pi(x

k). Let T = Pm · · ·P2P1 where Pi is defined in (1.2). One
cycle of the ART method is performed by acting T on the staring point. In this way, we obtain
a sequence of cycles which is a subsequence of iterations, see Figure 1. Simultaneous algorithms
project xk onto all hyperplanes {Hi}mi=1 simultaneously. The next iteration is performed as convex
combination of m new projected points, see Figure 2.

We now explain this algorithm with more details. Let T =
∑m

i=1 ωiPi, where
∑m

i=1 ωi = 1 and
ωi ≥ 0.

Using (1.2) we get

T (x) =
m∑
i=1

ωiPi (1.3)

=
m∑
i=1

ωix+ ωi
bi − 〈ai, x〉
‖ai‖2

ai

= x+ ATM (b− Ax) (1.4)

where

M = diag

(
ω1

‖a1‖2
, · · · , ωm

‖am‖2

)
.
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Figure 2: Simultaneous method

Therefore, using (1.3) and (1.4), the fixed point iterative method xk+1 = T (xk) is a special case
of SIRT. In general, the SIRT is defined as the following iteration algorithm

xk+1 = xk + λkSA
TM

(
b− Axk

)
k = 0, 1, 2, . . . (1.5)

where λk ∈ [ε, 2−ε
σ2
1

] are relaxation parameters and σ1 is the largest singular value of M
1
2AS

1
2 . Also,

M and S are assumed symmetric positive definite matrices. Several well-known fully simultaneous
methods can be written in the form of (1.5) for appropriate choices of M and S matrices. We below
give some instances

• Landweber’s method [28]: S = M = I,

• Cimmino’s method [15]: S = I and M = 1
m
diag

(
1
‖ai‖2

)
,

• CAV (Component Averaging method) method [? 12]: S = I and M = diag(1/
∑n

j=1Nja
2
ij)

where Nj is the number of non-zeroes in the jth column of A,

• DROP (Diagonally Relaxed Orthogonal Projection) method [? ]: S = diag(m/Nj) and M any
symmetric positive definite matrix.

Furthermore, the SART method [1] and the symmetric Kaczmarz’s method [6] can be rewritten as
(1.5).

When solving an inverse problem, the use of constraints (like nonnegativity) and prior information
are well known techniques to improve the quality of the obtained solution because incorporate prior
physical knowledge about the solution leads to smaller reconstruction errors, see [5, 4, 3, 7, 25, 32, 37].

In this paper we consider the projected version of equation (1.5) in a finite dimensional Euclidean
space Rn. Let C ⊆ Rn denote a closed convex set and PC be the metric projection onto C. Assume
that {λk}∞k=0 is a sequence of positive relaxation parameters. Now consider the following algorithm.

Algorithm 1.1. (P-SIRT)
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: given xk, compute

xk+1 = PC
(
xk + λkSA

TM
(
b− Axk

))
k = 0, 1, 2, · · · .
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In Next section, using algorithmic operators, we adjust Algorithm 1.1 with a corollary of gener-
alization of Opial’s Theorem, where relaxation parameters are changed in each iteration. The paper
is organized as follows. In section 2 we recall some definitions and properties of some algorithmic
operators and give the convergence analysis of Algorithm 1.1. At the end, the capability of the main
result is examined in section 3 using some numerical tests form the medical imaging field.

2. Preliminaries and Notations

Throughout this section, we consider T : H → H with nonempty fixed point set, i.e., FixT 6= ∅
where H is a Hilbert space and Id denotes the identity operator on H. The following definitions,
taken from [8], will be useful in our future analysis.

Definition 2.1. Let T : H → H and α ∈ [0, 2]. The operator Tα defined by

Tα := (1− α)Id+ αT (2.1)

is called an α-relaxation or, shortly, relaxation of the operator T . If α ∈ (0, 2), then Tα is called a
strictly (or strict) relaxation of T .

Definition 2.2. We say that an operator T : H → H is nonexpansive (NE), if

‖T (x)− T (y)‖ ≤ ‖x− y‖ (2.2)

for all x, y ∈ H. Also T is an α-contraction, where α ∈ (0, 1) or, shortly, a contraction if

‖T (x)− T (y)‖ ≤ α‖x− y‖ (2.3)

for all x, y ∈ H.

Another useful class of operators is the class of cutter operators, namely

Definition 2.3. An operator T : H → H with nonempty fixed point set is called cutter if

〈x− T (x), z − T (x)〉 ≤ 0 (2.4)

for all x ∈ H and z ∈ FixT .

Remark 2.4. Based on [8, Remark 2.1.31] the operator T is a cutter if and only if

〈T (x)− x, z − x〉 ≥ ‖T (x)− x‖2 (2.5)

for all x ∈ H and z ∈ FixT.

Definition 2.5. We say that an operator T : H → H is firmly nonexpansive (FNE), if

〈T (x)− T (y), x− y〉 ≥ ‖T (x)− T (y)‖2 (2.6)

for all x, y ∈ H.

Based on [8, Remark 2.1.31], an α−relaxed cutter operator is defined as follows.
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Definition 2.6. Let T : H → H has a fixed point. Then the operator T is an α-relaxed cutter, or,
shortly, relaxed cutter where α ∈ [0, 2], if

〈Tα(x)− x, z − x〉 = α 〈T (x)− x, z − x〉 ≥ ‖T (x)− x‖2 (2.7)

for all x ∈ H and z ∈ FixT . If α ∈ (0, 2), then Tα is called a strictly relaxed cutter operator of T .

Definition 2.7. Let α ≥ 0 and assume that T : H → H has a fixed point. We say that T is
α−strongly quasi-nonexpansive (α−SQNE), if

‖T (x)− z‖2 ≤ ‖x− z‖2 − α‖T (x)− x‖2 (2.8)

for all x ∈ H and z ∈ FixT. Also, the operator T satisfying (2.8) with α > 0 is called strongly
quasi-nonexpansive (SQNE) operator.

Following theorem presents the relationship between strictly relaxed cutter and SQNE operators.

Theorem 2.8. [8, Theorem 2.1.39 and Corollary 2.1.40] Assume that T : H → H has a fixed point
and let λ ∈ (0, 2]. Then T is a λ-relaxed cutter if and only if T is 2−λ

λ
-SQNE, i.e.,

‖Tλ(x)− z‖2 ≤ ‖x− z‖2 − 2− λ
λ
‖Tλ(x)− x‖2 (2.9)

for all x ∈ H and all z ∈ FixT .

Definition 2.9. An operator T : H → H is demi-closed at 0 if for any weakly converging sequence
xk ⇀ y ∈ H with T (xk)→ 0 we have T (y) = 0.

Remark 2.10. It is well known, see [31, Lemma 2], the operator T − Id is demi-closed at 0 where
T : H → H is a nonexpansive operator.

We now verify, using [9, Corollary 9.14.], that the sequence generated by Algorithm (1.1) con-
verges.

Corollary 2.11. [9, Corollary 9.14.] and [8, Corollary 3.7.3] Let T : H → H be a cutter operator
(e.g., a firmly nonexpansive operator having a fixed point) and x0 ∈ H is an arbitrary point. Assume
that the sequence {xk}∞k=0 is generated by

xk+1 = PC
(
xk + λk

(
T (xk)− xk

))
for k = 1, 2, · · · (2.10)

where λk ∈ (0, 2).

(i) If lim infk→∞ λk(2− λk) > 0, then {xk}∞k=0 converges weakly to a fixed point of T .

(ii) If H is finite-dimensional and
∑∞

k=0 λk(2− λk) =∞, then {xk}∞k=0 converges to a fixed point of
T .

Let B = S
1
2ATMAS

1
2 = (M

1
2AS

1
2 )T (M

1
2AS

1
2 ) then the spectral radius of B is denoted by

ρ(B) = σ2
1 where σ1 is the largest singular value of M

1
2AS

1
2 . We next present a useful lemma from

[18].
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Lemma 2.12. [18, Lemma 3.1] Let q = ‖I − λB‖. Assume that rank(A) = n and σ1 >
√

2σn.
Further assume that λ fullfills 0 < ε ≤ λ ≤ (2− ε)/σ2

1. Then

q =

{
1− λσ2

n, 0 < λ ≤ 2
σ2
1+σ

2
n

λσ2
1 − 1, 2

σ2
1+σ

2
n
≤ λ < 2

σ2
1
.

(2.11)

Remark 2.13. It should be noted that for inverse problems σn � σ1 and hence 2/(σ2
1 +σ2

n) ≈ 2/σ2
1.

Therefore, we will consider only the case q = 1 − λσ2
n. Furthermore, one can avoid the assumption

rank(A) = n and consider the rank-deficient case using [18, Lemma 3.9].

We next present the convergence analysis of Algorithm 1.1.

Theorem 2.14. The sequence generated by Algorithm 1.1, where λk ∈ [ε, 2−ε
σ2
1

], converges to a solu-

tion x∗ of min ‖Ax− b‖M .

Proof . Since λk ∈ [ε, 2−ε
σ2
1

] we can rewrite the Algorithm 1.1 as below

xk+1 = U(xk) = PC

(
xk +

λk

ρ(S
1
2ATMAS

1
2 )
SATM(b− Axk)

)
(2.12)

= PC
(
xk + λk

(
T (xk)− xk

))
(2.13)

= PCTλk(xk) (2.14)

where

T (x) = x+
1

ρ(S
1
2ATMAS

1
2 )
SATM(b− Ax). (2.15)

Furthermore, we have

‖T (x)− T (y)‖ =

∥∥∥∥∥(x− y)− 1

ρ(S
1
2ATMAS

1
2 )
SATMA(x− y)

∥∥∥∥∥
=

∥∥∥∥∥
(
I − 1

ρ(S
1
2ATMAS

1
2 )
SATMA

)
(x− y)

∥∥∥∥∥
=

∥∥∥∥∥S 1
2

(
I − 1

ρ(S
1
2ATMAS

1
2 )
S

1
2ATMAS

1
2

)
S

−1
2 (x− y)

∥∥∥∥∥
≤

∥∥∥∥∥S 1
2

(
I − 1

ρ(S
1
2ATMAS

1
2 )
S

1
2ATMAS

1
2

)
S

−1
2

∥∥∥∥∥ ‖(x− y)‖

=

∥∥∥∥∥
(
I − 1

ρ(S
1
2ATMAS

1
2 )
S

1
2ATMAS

1
2

)∥∥∥∥∥ ‖(x− y)‖.

Based on Lemma 2.12, Remark 2.13 and setting Ā = S
1
2A, we have

α = ‖I − 1

ρ(ĀTMĀ)
ĀTMĀ‖ = 1− σ2

n < 1.

Thus operator T is an α-contraction operator. Also based on [8, Theorem 2.2.34], T is a (1 + α)-
relaxed firmly nonexpansive operator. Using [8, Corollary 2.2.11] T is a firmly nonexpansive and
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consequently based on the first part of [8, Theorem 2.2.5] T is a cutter operator. Using Remark
2.10 we know that the operator T − I is demi-closed at 0. Therefore based on Corollary 2.11 the
sequence {xk} converges weakly to a fixed point of T . Since we are using finite dimensional space
Rn we obtain xk → x∗ such that T (x∗) = x∗. It gives ATM(b− Ax∗) = 0 which is equivalent to the
fact that x∗ is a minimizer of ‖Ax− b‖M . �

3. Numerical Result

In this section we report some numerical results in field of medical imaging. Our numerical results
show the effect of using projection operator after each iteration. Furthermore we suggest a rule for
picking relaxation parameters.

In following two tables we show error histories for Landweber, Cimmino, CAV and DROP al-
gorithms without constraint (C = Rn), with non-negativity constraints (C = Rn

+), and with box
constraints (C = [0, 1]n) within 40 iterations. For all of algorithms, we use the following strategy for
picking relaxation parameters that were proposed in [18, 19].

λk =


√

2σ−21 for k = 0, 1

2σ−21

1− ζk
(1− ζkk )2

, for k ≥ 0
(3.1)

where σ1 is largest singular value of M
1
2AS

1
2 and ζk are roots of a certain polynomial such that

0 < ζk < ζk+1 and limk→∞ ζk = 1.
The test is taken from the field of image reconstruction from projections using the SNARK93 soft-

ware package [27]. We work with the standard head phantom from [21]. The phantom is discretized
into 63× 63 pixels, and 16 projections (evenly distributed between 0 and 174 degrees) with 99 rays
per projection are used. The resulting matrix A has dimension 1584 × 3969, so that the system of
equations is highly underdetermined. In addition to A, the software also produces a noise-free right-
hand side bsnark and a phantom (translated into vector form) x∗. Using SNARK93’s right-hand side
bsnark, which is not generated as the product Ax∗, we avoid committing an inverse crime where the
exact same model is used in the forward and reconstruction models. Apart from using noise-free data
we also added additive independent Gaussian noise of mean 0 and relative noise-level (‖δb‖/‖bsnark‖)
5% where bnoisy = bsnark + δb.

Table 1: The smallest relative error with noiseless (top) and noisy data (down) using Algorithm 1.1

Algorithm C = Rn C = Rn
+ C = [0, 1]n

Landweber 0.2623 0.2571 0.2571
Cimmino 0.2338 0.2218 0.2218
CAV 0.2207 0.2014 0.2014
DROP 0.2379 0.2379 0.2379
Landweber 0.2713 0.2621 0.2621
Cimmino 0.2686 0.2316 0.2316
CAV 0.2665 0.2157 0.2157
DROP 0.2665 0.2157 0.2157

In second test we give a strategy for picking relaxation parameters. Assume that the linear system
(1.1) is consistent. This strategy is based on picking λk such that the error ‖xk − x∗‖ is minimized
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in each iteration where x∗ is any solution of (1.1). The cases S = Id and S 6= Id were studied in [16]
and [18], respectively. Let rk = b− Axk. It is easy to show that the following relaxation parameter

λk =

〈
rk,Mrk

〉
‖ATM(b− Ax)‖2S

minimizes ‖xk−x∗‖. Simple calculation show that λk ≥ 1/σ2
1. Therefore, to preserve our convergence

analysis we suggest following strategy for picking relaxation parameters

λk = min

{ 〈
rk,Mrk

〉
‖ATM(b− Ax)‖2S

,
2

σ2
1

}
for k = 1, 2, . . . . (3.2)

In Table 2, we demonstrate the effect of using this strategy.

Table 2: The smallest relative error with noiseless (top) and noisy data (down) using Algorithm 1.1 with relaxation
parameters (3.2).

Algorithm C = Rn C = Rn
+ C = [0, 1]n

Landweber 0.2005 0.1642 0.1642
Cimmino 0.1902 0.1424 0.1424
CAV 0.1903 0.1425 0.1425
DROP 0.1902 0.1424 0.1424
Landweber 0.2488 0.2022 0.2022
Cimmino 0.2757 0.1975 0.1975
CAV 0.2756 0.1974 0.1974
DROP 0.2757 0.1975 0.1975
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