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(Communicated by Choonkil Park)

Abstract

In this paper, we investigate the spectrum and fine spectrum of the upper triangular double-band
matrix ∆uv on cs sequence space. We also determine the approximate point spectrum, the defect
spectrum and the compression spectrum of this matrix on cs.
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1. Introduction

We denote the space of all real or complex valued sequences by w. We represente bounded
variation, convergent series and absolutely summable spaces by bv, cs and `1 respectively.

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator. By R (T ) , we
denote the range of T . i.e., R (T ) = {y ∈ Y : y = Tx, x ∈ X} .

By B (X) , we denote the set of all bounded linear operator on X into itself. If X is any Banach
space and T ∈ B (X) then the adjoint T ∗ of T is a bounded linear operator on the dual X∗ of X
defined by (T ∗f) (x) = f (Tx) , for all f ∈ X∗ and x ∈ X. We need some basic concepts which are
given in [11] as follows:

Let X 6= {θ} be a complex normed space, where θ is the zero element and T : D (T ) → X is a
linear operator with domain D (T ) ⊆ X. With T, we associate the operator Tλ = T − λI, where λ is
a complex number and I is the identity operator on D (T ) . If Tλ has an inverse which is linear, we
denote it by T−1λ , that is, T−1λ = (T − λI)−1 and we call it the resolvent operator of T . A regular
value λ of T is a complex number such that
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(R1) T−1λ exists,
(R2) T−1λ is bounded,
(R3) T−1λ is defined on a set which is dense in X.
By ρ (T,X) we denote the resolvent set of T. It is a set of all regular values λ of T . Its complement

σ (T,X) = C − ρ (T,X) in the complex plane C is called the spectrum of T . Furthermore, the
spectrum σ (T,X) is partitioned into three disjoint sets as follows:

The point spectrum σp(T ;X) is the set of all λ ∈ C such that T−1λ does not exist. The element
of σp (T,X) is called eigenvalue of T .

The continuous spectrum σc(T ;X) is the set of all λ ∈ C such that T−1λ exists and satisfies (R3)
but not (R2), that is, T−1λ is unbounded.

The residual spectrum σr(T ;X) is the set of all λ ∈ C such that T−1λ exists but does not satisfy
(R3), that is, the domain of T−1λ is not dense in X.

To avoid trivial misunderstandings, we can say that some of the sets defined above, may be
empty. This is an existence problem, which shall have to discuss. Indeed, it is well known that
σc (T,X) = σr (T,X) = ∅ and the spectrum σ (T,X) consists of only the set σp (T,X) in the finite
dimensional case.

From Goldberg [9], if X is a Banach space and T ∈ B (X), then there are three possibilities for
R (T ) and T−1:

(A) R (T ) = X,
(B) R (T ) 6= R (T ) = X,
(C) R (T ) 6= X
and
(1) T−1 exists and is continuous,
(2) T−1 exists but is discontinuous,
(3) T−1 does not exist.

Applying Goldberg [9] classification to Tλ, we have the following possibilities;
(A) Tλ is surjective,
(B) R (Tλ) 6= R (Tλ) = X,
(C) R (Tλ) 6= X.
and
(1) Tλ is injective and T−1λ is continuous.
(2) Tλ is injective and T−1λ is discontinuous.
(3) Tλ is not injective.

If these possibilities are combined in all possible ways, nine different states are created. These
are labelled by: A1, A2, A3, B1, B2, B3, C1, C2 and C3. If λ is a complex number such that Tλ ∈ A1 or
Tλ ∈ B1, then λ is in the resolvent set ρ (T,X) of T on X. The other classifications give rise to the
fine spectrum of T . We use λ ∈ B2σ (T,X) means the operator Tλ ∈ B2, i.e., R (Tλ) 6= R (Tλ) = X
and Tλ is injective but T−1λ is discontinuous, similarly others. Following Appell et. al. [4], we define
the three more subdivisions of the spectrum as follows:

Let T be a bounded linear operator in a Bancah space X, we call a sequence (xk) in X as a Weyl
sequence for T if ‖xk‖ = 1 and ‖Txk‖ → 0 as k →∞. In what follows, the sets are called

σap (T,X) = {λ ∈ C : there exists a Weyl sequence for T − λI} the approximate point spectrum
of T .

σδ (T,X) = {λ ∈ C : T − λI is not surjective}, the defect spectrum of T .



On the spectrum and fine spectrum of an upper triangular... 12 (2021) No. 2, 163-171 165

We can write spectrum as a form of subdivision of two subspectra given (not necessarily disjoint)
σ (T,X) = σap (T,X) ∪ σδ (T,X).

There is another spectrum σco (T,X) =
{
λ ∈ C : R (T − λI) 6= X

}
which is called the compres-

sion spectrum of T . Then we have another property such as σ (T,X) = σap (T,X) ∪ σco (T,X).
From the definitions which are given above the subdivisions spectrum are illustrated in the Table

1.

Proposition 1.1 [4] Spectra and subspectra of an operator T ∈ B (X) and its adjoint T ∗ ∈
B (X∗) have some relationships given as follows:

(a) σp (T ∗, X∗) = σco (T,X) .
(b) σap (T ∗, X∗) = σδ (T,X) .
(c) σδ (T ∗, X∗) = σap (T,X) .

Lemma 1.2 [9] T has a dense range if and only if T ∗ is one to one.

Lemma 1.3 [9] T has a bounded inverse if and only if T ∗ is onto.

We know that cs =

{
x = (xn) ∈ w : limn

∑
i

xi exists

}
is a Banach space with the norm ‖x‖cs =

supn

∣∣∣∣ n∑
i=0

xi

∣∣∣∣ . The main purpose of this paper determines the spectrum and fine spectrum of the upper

triangular matrix ∆uv on the sequence space cs. Also we examine the approximate point spectrum,
the defect spectrum and the compression spectrum on cs. If we take vk = r and uk = s we obtain
the matrix representation of the operator U (r, s) which were given in [12]. Hence our results are
a generalization of results which were given in [12]. The fine spectrum of the difference operator
∆ over the sequence spaces `p and bvp, (1 ≤ p <∞) is studied by Akhmedov and Başar in [1] and
[2]. Also Başar and Altay have determined the fine spectrum of the difference operator ∆ over the
sequence spaces c0, c and `p, (0 < p < 1) in [5] and [3]. The fine spectrum of the operator ∆uv over
the sequence space c0 has been examined by Fathi and Lashkaripour in [7]. They also studied the
fine spectrum of generalized upper triangular double band matrices ∆v and ∆uv over the sequence
`1 in [8]. Some other authors studied spectrum and fine spectrum of various matrix operators (see
[6], [10], [13]).

1 2 3
T−1λ exists and
it is bounded

T−1λ exists and
it is not bounded

T−1λ does
not exist

A R (T − λI) λ ∈ ρ (T,X) · · · λ ∈ σp (T,X)
λ ∈ σap (T,X)

B R (T − λI) = X λ ∈ ρ (T,X)
λ ∈ σc (T,X)
λ ∈ σap (T,X)
λ ∈ σδ (T,X)

λ ∈ σp (T,X)
λ ∈ σap (T,X)
λ ∈ σδ (T,X)

C R (T − λI) 6= X
λ ∈ σc (T,X)
λ ∈ σδ (T,X)
λ ∈ σco (T,X)

λ ∈ σr (T,X)
λ ∈ σap (T,X)
λ ∈ σδ (T,X)
λ ∈ σco (T,X)

λ ∈ σp (T,X)
λ ∈ σap (T,X)
λ ∈ σδ (T,X)
λ ∈ σco (T,X)

Table 1. Subdivisions of spectrum of a linear operator
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2. Main Results

The upper triangular double-band matrices ∆uv is defined

∆uvx = ∆uv (xn) = (vnxn + un+1xn+1)
∞
n=0 .

Then, it is easy to verify that the double-band matrices ∆uv can be represented by the matrix,

∆uv =


v0 u1 0 0 0 · · ·
0 v1 u2 0 0 · · ·
0 0 v2 u3 0 · · ·
0 0 0 v3 u4 · · ·
...

...
...

...
...

. . .

 .
(uk) is a sequence of positive real numbers such that uk 6= 0 for each k ∈ N with u = limk→∞ uk 6=

0 and (vk) is either constant or strictly decreasing sequence of positive real numbers with v =
limk→∞ vk 6= 0, and v0 < u+ v.

Theorem 2.1 The operator ∆uv : cs → cs is a bounded linear operator and ‖∆uv‖B(cs) ≤
sup
k

(|vk|+ |uk|).

Proof.

|∆uv (x)| =

∣∣∣∣∣
∞∑
k=0

vkxk + uk+1xk+1

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
k=0

vkxk

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=0

uk+1xk+1

∣∣∣∣∣
≤ sup

k
|vk| ‖x‖cs + sup

k
|uk| ‖x‖cs = sup

k
(|vk|+ |uk|) ‖x‖cs .

Thus ‖∆uv‖B(cs) ≤ sup
k

(|vk|+ |uk|) .

Theorem 2.2 Let L1 =

{
λ ∈ C : |λ− v| = u,

∑
k

k∏
i=1

(
λ−vi−1

ui

)
<∞

}
. Then the inclusion

{λ ∈ C : |λ− v| < u} ∪ L1 ⊆ σp (∆uv, cs) holds.

Proof. Firstly we suppose v = (vk) is a constant sequence, say, vk = v for all k. ∆uvx = λx, for
x 6= 0 = (0, 0, 0, ...) in cs, which gives

v0x0 + u1x1 = λx0

v1x1 + u2x2 = λx1

v2x2 + u3x3 = λx2
...

vkxk + uk+1xk+1 = λxk
...

If x0 = 0, then xk = 0 for all k. Hence x0 6= 0. Solving this equations, we get

xn =
n∏
i=1

(
λ− vi−1

ui

)
x0
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for all n ∈ N. Now suppose λ ∈ C with |λ− v| < u. Then

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣vn − λun+1

∣∣∣∣ =

∣∣∣∣v − λu
∣∣∣∣ < 1

therefore (xn) ∈ `1 ⊂ cs, and thus easily L1 ⊆ σp (∆uv, cs) is seen, consequently

{λ ∈ C : |λ− v| < u} ∪ L1 ⊆ σp (∆uv, cs) .

Now we give an example to show this inclusion is strict. Take rk =
(
k+1
k+3

)2
and sk =

(
k+1
k+2

)2
,

k ∈ N. These sequences provide the properties which are given in their definitions. Clearly, 0 /∈
{λ ∈ C : |λ− v| < u} . But 0 ∈ σp (∆uv, cs) since there exists x = (x0, x1, ...) such that x0 6= 0,
x1 6= 0 and xk+1 = − rk−1

sk−1
xk, k ≥ 1 and

∑
k

|xk| = |x0|+ |x1|+ 4 |x1|
∞∑
k=3

1

k2
<∞.

Theorem 2.3 σp ((∆uv)∗ , cs∗ ∼= bv) = ∅.

Proof. Suppose (vk) is a constant sequence, say, vk = v for all k. Then there exists f 6= θ =
(0, 0, 0, ...) in bv such that ∆uvf = λf. We have

v0f0 = λf0

v1f0 + v1f1 = λf1

v2f1 + v2f2 = λf2
...

vkfk−1 + vkfk = λfk
...

Let fm be the first non-zero entry of the sequence (fn) . So we get umfm−1+vfm = λfm which implies
λ = v and from the equation um+1fm + vfm+1 = λfm+1 we get fm = 0, which is a contradiction to
our assumption. Therefore,

σp ((∆uv)∗ , cs) = ∅.

Suppose (vk) is a strictly decreasing sequence. Consider (∆uv)∗ f = λf, for f 6= 0 = (0, 0, 0, ...) in
bv, which gives above system of equations. Hence, for all λ /∈ {v0, v1, v2, ...} , we have vk = 0 for all
k, which is a contradiciton. So λ /∈ σp ((∆vu)∗ , bv) . This shows that

σp ((∆uv)∗ , cs) ⊆ {v0, v1, v2, ...} .

Let λ = vm for some m. Then f0 = f1 = ... = fm−1 = 0. Now if fm = 0, then fk = 0 for all k, which
is contradiciton. Also if fm 6= 0, then

fk+1 =
uk+1

vm − vk+1

fk, for all k ≥ m

and

fk =
ukuk−1...u1

(λ− vk) (λ− vk−1) (λ− vk−2) ... (λ− v1)
f0 =

k∏
i=1

ui
λ− vi

f0, k ≥ 1.
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We have

lim
k→∞
|fk| =

∣∣∣∣ ukuk−1...u1
(λ− vk) (λ− vk−1) (λ− vk−2) ... (λ− v1)

∣∣∣∣ |f0| 6= 0

because of v0 < v + u.
lim
k→∞
|fk+1 − fk| 6= 0

then we have f = (fk) /∈ bv. Thus σp ((∆uv)∗ , cs∗) = ∅.

Theorem 2.4 ∆uv
λ : cs→ cs has a dense range for any λ ∈ C.

Proof. σp ((∆uv)∗ , cs∗) = ∅ hence (∆uv − λI)∗ is one to one for all λ ∈ C and from Lemma 1.2
we have the required result.

Theorem 2.5 σr (∆uv, cs) = ∅.

Proof. It is a result of Lemma 1.2 and Theorem 2.4.

Theorem 2.6 σ (∆uv, cs) = {λ ∈ C : |λ− v| ≤ u}.

Proof. Let y ∈ cs and consider (∆uv − λI)∗ x = y. Then we have the linear system of equations

(v0 − λ)x0 = y0

u1x0 + (v1 − λ)x1 = y1

u2x0 + (v2 − λ)x2 = y2
...

ukxk−1 + (vk − λ)xk = yk
...

By solving this equations, we get

xk =
(−1)k u0u1...uk−1y0

(v2 − λ) (v1 − λ) (v0 − λ) ... (vk − λ)
+ ...− uk−1yk−1

(vk − λ) (vk−1 − λ)
+

yk
vk − λ

.

Then ∑
k

|xk| <
∑
k

Rk |yk|

where

Rk =

∣∣∣∣ 1

vk − λ

∣∣∣∣+

∣∣∣∣ uk
(vk − λ) (vk+1 − λ)

∣∣∣∣+

∣∣∣∣ ukuk+1

(vk − λ) (vk+1 − λ) (vk+2 − λ)

∣∣∣∣+ ... .

While k →∞,
∣∣∣ uk
vk+1−λ

∣∣∣→ ∣∣ v
v−λ

∣∣ < 1. For k0 ∈ N and q0 ∈ R we have
∣∣∣ uk
vk+1−λ

∣∣∣ < q0 for k ≥ k0. Then,

Rk ≤
1

|vk − λ|
(
1 + q0 + q20 + ...

)
for k ≥ k0 +1. Also there exist k1 ∈ N and a real number q1 which provides

∣∣∣ 1
vk−λ

∣∣∣ < q1 for all k ≥ k1.

Then, Rk ≤ q1
1−q0 for all k > max {k0, k1} and supk∈NRk <∞. Consequently, since
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∑
k

|xk| ≤
∑
k

Rk |yk| ≤ sup
k
|Rk|

∑
k

|yk| <∞,

x ∈ `1 ⊂ bv. Hence, for u < |λ− v| , (∆uv − λI)∗ is onto and by Lemma 1.3 ∆uv − λI has a
bounded inverse. This means that

σc (∆uv, cs) ⊆ {λ ∈ C : |λ− v| ≤ u} .

By Theorem 2.2 and Theorem 2.5, we get

{λ ∈ C : |λ− v| < u} ⊆ σ (∆uv, cs) ⊆ {λ ∈ C : |λ− v| ≤ u} .

Since the spectrum of any bounded operator is closed, we get

σ (∆uv, cs) = {λ ∈ C : |λ− v| ≤ u} .

Theorem 2.7 σc (∆uv, cs) = {λ ∈ C : |λ− v| = u} \L1.

Proof. σ (∆uv, cs) is a disjoint union of the parts σp (∆uv, cs) , σr (∆uv, cs) and σc (∆uv, cs) and
so we obtain the required result.

Theorem 2.8 If |λ− v| < u, then λ ∈ A3σ (∆uv, cs) .

Proof. Let |λ− v| < u. Then by Theorem 2.2, λ ∈ σp (∆uv, cs) and hence λ ∈ (3) . We need to
prove that ∆uv − λI is surjective when |λ− v| < u. Let z = (z0, z1, z2, ...) ∈ cs and consider the
equation (∆uv − λI)x = z. Then we have the linear system of equations

(v0 − λ)x0 + u1x1 = z0

(v1 − λ)x1 + u2x2 = z1

(v2 − λ)x2 + u3x3 = z2
...

(vk − λ)xk + uk+1xk+1 = zk
...

Let x0 = 0. Therefore, we obtain

xk =
(λ− v1) (λ− v2) . . . (λ− vk−1) z0

u1u2...uk
+ ...+

(vk−1 − λ) zk−2
ukuk−1

+
zk−1
uk

.

Then,
∑
k

|xk| ≤ supk∈N Sk
∑
k

|zk| , where

Sk =

∣∣∣∣ 1

uk+1

∣∣∣∣+

∣∣∣∣ vk+1 − λ
uk+1uk+2

∣∣∣∣+

∣∣∣∣(vk+1 − λ) (vk+2 − λ)

uk+1uk+2uk+3

∣∣∣∣+ ...

for all k ∈ N. Since
∣∣∣vk+1−λ
uk+1

∣∣∣ → ∣∣v−λ
u

∣∣ < 1 as k → ∞, there exist k0 ∈ N and a real number p0 such

that |vk+1−λ
uk+1

| < p0 for all k ≥ k0. Then, for all k ≥ k0 + 1,

Sk ≤
1

|uk+1|
(
1 + p0 + p20 + ...

)
.
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Also there exist k1 ∈ N and a real number p1 such that | 1
uk+1
| < p1 for all k ≥ k1. Then, Sk ≤ p1

1−p0 ,

for all k > max{k0, k1}. Thus, supk∈N Sk < ∞. Therefore,
∑
k

|xk| ≤ supk∈N Sk
∑
k

|zk| < ∞. Hence

x ∈ cs.

Corollary 2.9 Let (vk) and (uk) be constant sequences, say, vk = v and uk = u for all k, and
|λ− v| = u. Then λ ∈ B2σ (∆uv, cs) .

Proof. When |λ− v| = u by Theorem 2.7 we see that λ ∈ A2∪B2. Also ∆uv−λI is not surjective
and hence λ ∈ B2σ (∆uv, cs) .

Corollary 2.10
(i) σco (∆uv, cs) = ∅
(ii) σδ (∆uv, cs) = {λ ∈ C : |λ− v| = |u|}
(iii) σap (∆uv, cs) = {λ ∈ C : |λ− v| ≤ |u|} .

Proof.
(i) From Proposition 1.1 (a) we have σp ((∆uv)∗ , cs∗) = σco (∆uv, cs) = ∅.
(ii) We have that σδ (∆uv, cs) = σ (∆uv, cs) \A3σ (∆uv, cs) from Table 1. Hence by Theorem 2.2

and Theorem 2.8 we obtain the required result.
(iii) From Table 1 σap (∆uv, cs) = σ (∆uv, cs) \A1σ (∆uv, cs) . Also
σr (∆uv, cs) = A1σ (∆uv, cs) ∪ A2σ (∆uv, cs) . By Theorem 2.5 A1σ (∆uv, cs) = ∅. Hence by The-

orem 2.2 σap (∆uv, cs) = {λ ∈ C : |λ− v| ≤ |u|} .

Corollary 2.11
(i) σap ((∆uv)∗ , cs∗ ∼= bv) = {λ ∈ C : |λ− v| = |u|}
(ii) σδ ((∆uv)∗ , cs∗ ∼= bv) = {λ ∈ C : |λ− v| ≤ u} .

Proof.
(i) We have σap ((∆uv)∗ , cs∗ ∼= bv) = σδ (∆uv, cs) = {λ ∈ C : |λ− v| = |u|} from Proposition 1.1

(b) .
(ii) σ

δ
((∆uv)∗ , cs∗ ∼= bv) = σap (∆uv, cs) is seen from Proposition 1.1 (c).
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