Int. J. Nonlinear Anal. Appl. 7 (2016) No. 2, 127-132 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2016.502

The solutions to the operator equation $TXS - SX^*T^* = A$ in Hilbert C*-modules

Mehdi Mohammadzadeh Karizaki^{a,*}, Mahmoud Hassani^b, Dragan S. Djordjević^c

^aUniversity of Torbat Heydarieh, Torbat Heydariyeh, Iran

^bDepartment of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

^cFaculty of Sciences and Mathematics, University of Nis, Visegradska 33, P.O. Box 224, 18000 Nis, Serbia

(Communicated by M.B Ghaemi)

Abstract

In this paper, we find explicit solution to the operator equation $TXS^* - SX^*T^* = A$ in the general setting of the adjointable operators between Hilbert C*-modules, when T, S have closed ranges and S is a self adjoint operator.

Keywords: Operator equation; Moore-Penrose inverse; Hilbert C*-module. 2010 MSC: Primary 47A62; Secondary 15A24, 46L08.

1. Introduction

The equation $TXS^* - SX^*T^* = A$ was studied by Yuan [8] for finite matrices and Xu et al. [6] generalized the results to Hilbert C*-modules, under the condition that ran(S) is contained in ran(T). When T equals an identity matrix or identity operator, this equation reduces to $XS^* - SX^* = A$, which was studied by Braden [1] for finite matrices, and Djordjevic [2] for the Hilbert space operators. In this paper, we find explicit solution to the operator equation $TXS^* - SX^*T^* = A$ in the general setting of the adjointable operators between Hilbert C*-modules, when T, S have closed ranges and S is a self adjoint operator.

Throughout this paper, \mathcal{A} is a C*-algebra. Let \mathcal{X} and \mathcal{Y} be two Hilbert \mathcal{A} -modules, and $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ be the set of the adjointable operators from \mathcal{X} to \mathcal{Y} . For any $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, the range and the null space of T are denoted by ran(T) and ker(T) respectively. In case $\mathcal{X} = \mathcal{Y}, \mathcal{L}(\mathcal{X}, \mathcal{X})$ which we

^{*}Corresponding author

Email addresses: mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki),

mhassanimath@gmail.com, hassani@mshdiau.ac.ir (Mahmoud Hassani), dragan@pmf.ni.ac.rs (Dragan S. Djordjević)

abbreviate to $\mathcal{L}(\mathcal{X})$, is a C*-algebra. The identity operator on \mathcal{X} is denoted by $1_{\mathcal{X}}$ or 1 if there is no ambiguity. Let \mathcal{M} be closed submodule of a Hilbert \mathcal{A} -module \mathcal{X} , then $P_{\mathcal{M}}$ is orthogonal projection onto \mathcal{M} , in the sense that $P_{\mathcal{M}}$ is self adjoint idempotent operator.

Theorem 1.1. [4, Theorem 3.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- $\ker(T)$ is orthogonally complemented in \mathcal{X} , with complement $\operatorname{ran}(T^*)$.
- ran(T) is orthogonally complemented in \mathcal{Y} , with complement ker(T^*).
- The map $T^* \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Xu and Sheng [7] showed that a bounded adjointable operator between two Hilbert \mathcal{A} -modules admits a bounded Moore-Penrose inverse if and only if it has closed range. The Moore-Penrose inverse of T, denoted by T^{\dagger} , is the unique operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ satisfying the following conditions:

$$TT^{\dagger}T = T, \quad T^{\dagger}TT^{\dagger} = T^{\dagger}, \quad (TT^{\dagger})^* = TT^{\dagger}, \quad (T^{\dagger}T)^* = T^{\dagger}T.$$

It is well-known that T^{\dagger} exists if and only if ran(T) is closed, and in this case $(T^{\dagger})^* = (T^*)^{\dagger}$. Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ have closed range, then TT^{\dagger} is the orthogonal projection from \mathcal{Y} onto ran(T) and $T^{\dagger}T$ is the orthogonal projection from \mathcal{X} onto ran(T^{*}). Projection, in the sense that they are self adjoint idempotent operators.

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert C^{*}-modules. Indeed, if \mathcal{M} and \mathcal{N} are closed orthogonally complemented submodules of \mathcal{X} and \mathcal{Y} , respectively, and $\mathcal{X} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, $\mathcal{Y} = \mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$T = \left[\begin{array}{cc} T_1 & T_2 \\ T_3 & T_4 \end{array} \right],$$

where, $T_1 \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_2 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}), T_3 \in \mathcal{L}(\mathcal{M}, \mathcal{N}^{\perp})$ and $T_4 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M} .

In fact $T_1 = P_{\mathcal{N}}TP_{\mathcal{M}}$, $T_2 = P_{\mathcal{N}}T(1-P_{\mathcal{M}})$, $T_3 = (1-P_{\mathcal{N}})TP_{\mathcal{M}}$ and $T_4 = (1-P_{\mathcal{N}})T(1-P_{\mathcal{M}})$. The proof of the following Lemma can be found in [5, Corollary 1.2.] or [3, Lemma 1.1.].

Lemma 1.2. Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $\mathcal{X} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$:

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathrm{T}) \\ \ker(T^*) \end{bmatrix},$$

where T_1 is invertible. Moreover

$$T^{\dagger} = \begin{bmatrix} T_1^{-1} & 0\\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T)\\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T^*)\\ \ker(T) \end{bmatrix}.$$

The proof of the following lemma is the same as in the matrix case.

Lemma 1.3. Suppose that \mathcal{X}, \mathcal{Y} and \mathcal{Z} are Hilbert \mathcal{A} -modules, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $S \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ have closed ranges, $A \in \mathcal{L}(\mathcal{Y})$. Then the equation

$$TXS = A$$
 , $X \in \mathcal{L}(\mathcal{Z}, \mathcal{X})$ (1.1)

has a solution if and only if

 $TT^{\dagger}AS^{\dagger}S = A.$

In which case, any solution X to equation (1.1) is of the form

 $X = T^{\dagger}AS^{\dagger} + V - T^{\dagger}TVSS^{\dagger},$

where $V \in \mathcal{L}(\mathcal{Z}, \mathcal{X})$ is arbitrary.

2. Main results

In this section, we find explicit solution to the operator equation

$$TXS^* - SX^*T^* = A, (2.1)$$

in the general setting of the adjointable operators between Hilbert C^{*}-modules, when T, S have closed ranges and S is self adjoint operator. Hence equation (2.1) get into

$$TXS - SX^*T^* = A. (2.2)$$

Lemma 2.1. Suppose that \mathcal{Y}, \mathcal{Z} are Hilbert \mathcal{A} -modules and $T \in \mathcal{L}(\mathcal{Z}, \mathcal{Y})$ is an invertible operator, $A \in \mathcal{L}(\mathcal{Y})$. Then the following statements are equivalent:

(a) There exists a solution $X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ to the operator equation $TX - X^*T^* = A$. (b) $A = -A^*$

If (a) or (b) is satisfied, then any solution to equation

$$TX - X^*T^* = A$$
, $X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ (2.3)

has the form

$$X = \frac{1}{2}T^{-1}A + T^{-1}Z,$$
(2.4)

where $Z \in \mathcal{L}(\mathcal{Y})$ satisfying $Z^* = Z$.

Proof $(a) \Rightarrow (b)$: Obvious.

 $(b) \Rightarrow (a)$: Note that, if $A = -A^*$ then $X = \frac{1}{2}T^{-1}A + T^{-1}Z$ is a solution to equation (2.3). The following sentences state this claim

$$T(\frac{1}{2}T^{-1}A + T^{-1}Z) - (\frac{1}{2}A^{*}(T^{*})^{-1} + Z^{*}(T^{*})^{-1})T^{*}$$

= $\frac{1}{2}(TT^{-1}A - A^{*}(T^{*})^{-1}T^{*}) + TT^{-1}Z - Z^{*}(T^{*})^{-1}T^{*}$
= $A + Z - Z^{*} = A.$

On the other hand, let X be any solution to equation (2.3). Then $X = T^{-1}A + T^{-1}X^*T^*$. We have

$$X = T^{-1}A + T^{-1}X^*T^*$$

= $\frac{1}{2}T^{-1}A + \frac{1}{2}T^{-1}A + T^{-1}X^*T^*$
= $\frac{1}{2}T^{-1}A + T^{-1}(\frac{1}{2}A + X^*T^*).$

Taking $Z = \frac{1}{2}A + X^*T^*$, we get $Z^* = Z$. \Box

Theorem 2.2. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be Hilbert \mathcal{A} -modules, $A, S \in \mathcal{L}(\mathcal{X}), T \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ such that S is self adjoint, both S and T have closed ranges, and $AS^{\dagger}S = A$ and $T^{\dagger}S^{\dagger}S = T^{\dagger}$. Then the following statements are equivalent:

- (a) There exists a solution $X \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ to equation (2.2).
- (b) $A = -A^*$ and $(1 TT^{\dagger})A(1 TT^{\dagger}) = 0.$

If (a) or (b) is satisfied, then any solution to equation (2.2) has the form

$$X = T^{\dagger}AS^{\dagger} - \frac{1}{2}T^{\dagger}ATT^{\dagger}S^{\dagger} + T^{\dagger}ZTT^{\dagger}S^{\dagger} + V - T^{\dagger}TVSS^{\dagger}, \qquad (2.5)$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^*(Z - Z^*)T = 0$ and $V \in \mathcal{L}(\mathcal{X})$ is arbitrary.

Proof . $(a) \Rightarrow (b)$: Obviously, $A = -A^*$. Also,

$$(1 - TT^{\dagger})A(1 - TT^{\dagger}) = (1 - TT^{\dagger})(TXS^* - SX^*T^*)(1 - TT^{\dagger})$$

= $(T - TT^{\dagger}T)XS^*(1 - TT^{\dagger}) - (1 - TT^{\dagger})SX^*(T^* - T^*TT^{\dagger}) = 0.$

 $(b) \Rightarrow (a)$: Note that the condition $(1 - TT^{\dagger})A(1 - TT^{\dagger}) = 0$ is equivalent to $A = ATT^{\dagger} + TT^{\dagger}A - TT^{\dagger}ATT^{\dagger}$. On the other hand, since $T^*(Z - Z^*)T = 0$, then $(Z - Z^*)T \in \ker(T^*) = \ker(T^{\dagger})$. Therefore $T^{\dagger}(Z - Z^*)T = 0$ or equivalently $TT^{\dagger}ZTT^{\dagger} - TT^{\dagger}Z^*(T^{\dagger})^*T^* = 0$. Hence we have

$$TT^{\dagger}AS^{\dagger}S - \frac{1}{2}TT^{\dagger}ATT^{\dagger}S^{\dagger}S + TT^{\dagger}ZTT^{\dagger}S^{\dagger}S + T(V - T^{\dagger}TVSS^{\dagger})S$$

- $SS^{\dagger}A^{*}(T^{\dagger})^{*}T^{*} + \frac{1}{2}SS^{\dagger}TT^{\dagger}A^{*}(T^{\dagger})^{*}T^{*} + S^{\dagger}TT^{\dagger}Z^{*}(T^{\dagger})^{*}T^{*} + S^{\dagger}(V^{*} - SS^{\dagger}V^{*}T^{\dagger}T)T^{*}$
= $ATT^{\dagger} + TT^{\dagger}A - TT^{\dagger}ATT^{\dagger} + TT^{\dagger}ZTT^{\dagger} - TT^{\dagger}Z^{*}(T^{\dagger})^{*}T^{*} = A.$

That is, any operator X of the form (2.5) is a solution to equation (2.2).

Since T has closed range, we have $\mathcal{Z} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$. Now, T has the matrix form

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathrm{T}) \\ \ker(T^*) \end{bmatrix},$$

where T_1 is invertible. On the other hand, $A = -A^*$ and $(1 - TT^{\dagger})A(1 - TT^{\dagger}) = 0$ imply that A has the form

$$A = \begin{bmatrix} A_1 & A_2 \\ -A_2^* & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \operatorname{ker}(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \operatorname{ker}(T^*) \end{bmatrix},$$

where $A_1 = -A_1^*$. Since T has closed range, so $\mathcal{X} = \operatorname{ran}(T) \oplus \ker(T^*)$ and $\mathcal{Y} = \operatorname{ran}(T^*) \oplus \ker(T)$, and hence operator X has the following matrix form

$$X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix}.$$

Now by using matrix form for operators T, X and A, we have

$$\begin{bmatrix} T_1 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2\\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} S_1 & S_2\\ S_2^* & S_4 \end{bmatrix} - \begin{bmatrix} S_1 & S_2^*\\ S_2 & S_4 \end{bmatrix} \begin{bmatrix} X_1^* & X_3^*\\ X_2^* & X_4^* \end{bmatrix} \begin{bmatrix} T_1^* & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A_1 & A_2\\ -A_2^* & 0 \end{bmatrix},$$

or equivalently

$$\begin{bmatrix} T_1 X_1 S_1 + T_1 X_2 S_2^* - S_1 X_1^* T_1^* - S_2 X_2^* T_1^* & T_1 X_1 S_2 + T_1 X_2 S_4 \\ -S_2^* X_1^* T_1^* - S_4 X_2^* T_1^* & 0 \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \\ -A_2^* & 0 \end{bmatrix}.$$

Therefore

$$T_1(X_1S_1 + X_2S_2^*) - (S_1X_1^* + S_2X_2^*)T_1^* = A_1, (2.6)$$

$$T_1 X_1 S_2 + T_1 X_2 S_4 = A_2. (2.7)$$

By Lemma 1.2, T_1 is invertible. Hence, Lemma 2.1 implies that

$$X_1 S_1 + X_2 S_2^* = \frac{1}{2} T_1^{-1} A_1 + T_1^{-1} Z_1, \qquad (2.8)$$

where $Z_1 \in \mathcal{L}(\operatorname{ran}(\mathbf{T}))$ satisfy $Z_1^* = Z_1$. Now, multiplying T_1^{-1} from the left to equation (2.7), we get

$$X_1 S_2 + X_2 S_4 = T_1^{-1} A_2. (2.9)$$

Now, by applying equations (2.8) and (2.9), we have

$$\begin{bmatrix} X_1 & X_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1 & S_2 \\ S_2^* & S_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}T_1^{-1}A_1 + T_1^{-1}Z_1 & T_1^{-1}A_2 \\ 0 & 0 \end{bmatrix}.$$
 (2.10)

On the other hand, since

$$Z = \begin{bmatrix} Z_1 & Z_2 \\ Z_3 & Z_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix},$$

then

$$\frac{1}{2}T^{\dagger}ATT^{\dagger} = \begin{bmatrix} \frac{1}{2}T_1^{-1}A_1 & 0\\ 0 & 0 \end{bmatrix}, \quad T^{\dagger}ZTT^{\dagger} = \begin{bmatrix} T_1^{-1}Z_1 & 0\\ 0 & 0 \end{bmatrix}$$

and

r

$$T^{\dagger}A(1 - TT^{\dagger}) = \begin{bmatrix} 0 & T^{-1}A_2 \\ 0 & 0 \end{bmatrix}$$

and

$$T^{\dagger}TX = \left[\begin{array}{cc} X_1 & X_2 \\ 0 & 0 \end{array} \right]$$

Consequently equation (2.10) gets into

$$T^{\dagger}TXS = \frac{1}{2}T^{\dagger}ATT^{\dagger} + T^{\dagger}ZTT^{\dagger} + T^{\dagger}A(1 - TT^{\dagger})$$

$$= T^{\dagger}A - \frac{1}{2}T^{\dagger}ATT^{\dagger} + T^{\dagger}ZTT^{\dagger}$$
(2.11)

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^*(Z - Z^*)T = 0$. By multiplication $S^{\dagger}S$ on the right and $T^{\dagger}T$ on the left to equation (2.11) and by these facts that $AS^{\dagger}S = A$, $T^{\dagger}S^{\dagger}S = T^{\dagger}$ and Lemma 1.3 implies that

$$X = T^{\dagger}AS^{\dagger} - \frac{1}{2}T^{\dagger}ATT^{\dagger}S^{\dagger} + T^{\dagger}ZTT^{\dagger}S^{\dagger} + V - T^{\dagger}TVSS^{\dagger},$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^*(Z - Z^*)T = 0$ and $V \in \mathcal{L}(\mathcal{X})$ is arbitrary. \Box

References

- [1] H. Braden, The equations $A^T X \pm X^T A = B$, SIAM J. Matrix Anal. Appl. 20 (1998) 295–302.
- [2] D.S. Djordjevic, Explicit solution of the operator equation $A^*X + X^*A = B$, J. Comput. Appl. Math. 200 (2007) 701–704.
- [3] D.S. Djordjevic and N.C. Dincic, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252–261.
- [4] E.C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [5] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C^{*}-modules, Colloq. Math. 140 (2015) 171–182.
- [6] Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra Appl. 429 (2008) 1997–2024.
- [7] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^{*}-modules, Linear Algebra Appl. 428 (2008) 992–1000.
- [8] Y. Yuan, Solvability for a class of matrix equation and its applications, J. Nanjing Univ. (Math. Biquart.) 18 (2001) 221–227.