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Abstract

In this paper, we find explicit solution to the operator equation TXS∗ − SX∗T ∗ = A in the general
setting of the adjointable operators between Hilbert C∗-modules, when T, S have closed ranges and
S is a self adjoint operator.
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1. Introduction

The equation TXS∗ − SX∗T ∗ = A was studied by Yuan [8] for finite matrices and Xu et al. [6]
generalized the results to Hilbert C∗-modules, under the condition that ran(S) is contained in ran(T).
When T equals an identity matrix or identity operator, this equation reduces to XS∗ − SX∗ = A,
which was studied by Braden [1] for finite matrices, and Djordjevic [2] for the Hilbert space operators.
In this paper, we find explicit solution to the operator equation TXS∗ − SX∗T ∗ = A in the general
setting of the adjointable operators between Hilbert C∗-modules, when T, S have closed ranges and
S is a self adjoint operator.

Throughout this paper, A is a C∗-algebra. Let X and Y be two Hilbert A-modules, and L(X ,Y)
be the set of the adjointable operators from X to Y . For any T ∈ L(X ,Y), the range and the
null space of T are denoted by ran(T) and ker(T ) respectively. In case X = Y , L(X ,X ) which we
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abbreviate to L(X ), is a C∗-algebra. The identity operator on X is denoted by 1X or 1 if there is no
ambiguity. LetM be closed submodule of a Hilbert A-module X , then PM is orthogonal projection
onto M, in the sense that PM is self adjoint idempotent operator.

Theorem 1.1. [4, Theorem 3.2] Suppose that T ∈ L(X ,Y) has closed range. Then

• ker(T ) is orthogonally complemented in X , with complement ran(T∗).

• ran(T) is orthogonally complemented in Y , with complement ker(T ∗).

• The map T ∗ ∈ L(Y ,X ) has closed range.

Xu and Sheng [7] showed that a bounded adjointable operator between two HilbertA-modules admits
a bounded Moore-Penrose inverse if and only if it has closed range. The Moore-Penrose inverse of
T , denoted by T †, is the unique operator T ∈ L(X ,Y) satisfying the following conditions:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.

It is well-known that T † exists if and only if ran(T) is closed, and in this case (T †)∗ = (T ∗)†. Let
T ∈ L(X ,Y) have closed range, then TT † is the orthogonal projection from Y onto ran(T) and T †T
is the orthogonal projection from X onto ran(T∗). Projection, in the sense that they are self adjoint
idempotent operators.

A matrix form of a bounded adjointable operator T ∈ L(X ,Y) can be induced by some natural
decompositions of Hilbert C∗-modules. Indeed, if M and N are closed orthogonally complemented
submodules of X and Y , respectively, and X =M⊕M⊥, Y = N ⊕N⊥, then T can be written as
the following 2× 2 matrix

T =

[
T1 T2

T3 T4

]
,

where, T1 ∈ L(M,N ), T2 ∈ L(M⊥,N ), T3 ∈ L(M,N⊥) and T4 ∈ L(M⊥,N⊥). Note that PM
denotes the projection corresponding to M.

In fact T1 = PNTPM, T2 = PNT (1− PM), T3 = (1− PN )TPM and T4 = (1− PN )T (1− PM).
The proof of the following Lemma can be found in [5, Corollary 1.2.] or [3, Lemma 1.1.].

Lemma 1.2. Suppose that T ∈ L(X ,Y) has closed range. Then T has the following matrix decom-
position with respect to the orthogonal decompositions of closed submodules X = ran(T∗)⊕ ker(T)
and Y = ran(T)⊕ ker(T∗):

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker(T )

]
→

[
ran(T)
ker(T ∗)

]
,

where T1 is invertible. Moreover

T † =

[
T−11 0

0 0

]
:

[
ran(T)
ker(T ∗)

]
→

[
ran(T∗)
ker(T )

]
.

The proof of the following lemma is the same as in the matrix case.
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Lemma 1.3. Suppose that X ,Y and Z are Hilbert A-modules, T ∈ L(X ,Y) and S ∈ L(Y ,Z) have
closed ranges, A ∈ L(Y).Then the equation

TXS = A , X ∈ L(Z,X ) (1.1)

has a solution if and only if

TT †AS†S = A.

In which case, any solution X to equation (1.1) is of the form

X = T †AS† + V − T †TV SS†,

where V ∈ L(Z,X ) is arbitrary.

2. Main results

In this section, we find explicit solution to the operator equation

TXS∗ − SX∗T ∗ = A, (2.1)

in the general setting of the adjointable operators between Hilbert C∗-modules, when T, S have closed
ranges and S is self adjoint operator. Hence equation (2.1) get into

TXS − SX∗T ∗ = A. (2.2)

Lemma 2.1. Suppose that Y ,Z are Hilbert A-modules and T ∈ L(Z,Y) is an invertible operator,
A ∈ L(Y). Then the following statements are equivalent:
(a) There exists a solution X ∈ L(Y ,Z) to the operator equation TX −X∗T ∗ = A.
(b) A = −A∗
If (a) or (b) is satisfied, then any solution to equation

TX −X∗T ∗ = A , X ∈ L(Y ,Z) (2.3)

has the form

X =
1

2
T−1A + T−1Z, (2.4)

where Z ∈ L(Y) satisfying Z∗ = Z.

Proof .(a)⇒ (b): Obvious.
(b) ⇒ (a): Note that, if A = −A∗ then X = 1

2
T−1A + T−1Z is a solution to equation (2.3). The

following sentences state this claim

T (
1

2
T−1A + T−1Z)− (

1

2
A∗(T ∗)−1 + Z∗(T ∗)−1)T ∗

=
1

2
(TT−1A− A∗(T ∗)−1T ∗) + TT−1Z − Z∗(T ∗)−1T ∗

= A + Z − Z∗ = A.
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On the other hand, let X be any solution to equation (2.3). Then X = T−1A + T−1X∗T ∗. We have

X = T−1A + T−1X∗T ∗

=
1

2
T−1A +

1

2
T−1A + T−1X∗T ∗

=
1

2
T−1A + T−1(

1

2
A + X∗T ∗).

Taking Z = 1
2
A + X∗T ∗, we get Z∗ = Z. �

Theorem 2.2. Let X ,Y ,Z be Hilbert A-modules, A, S ∈ L(X ), T ∈ L(Y ,X ) such that S is self
adjoint, both S and T have closed ranges, and AS†S = A and T †S†S = T †. Then the following
statements are equivalent:
(a) There exists a solution X ∈ L(X ,Y) to equation (2.2).
(b) A = −A∗ and (1− TT †)A(1− TT †) = 0.

If (a) or (b) is satisfied, then any solution to equation (2.2) has the form

X = T †AS† − 1

2
T †ATT †S† + T †ZTT †S† + V − T †TV SS†, (2.5)

where Z ∈ L(X ) satisfies T ∗(Z − Z∗)T = 0 and V ∈ L(X ) is arbitrary.

Proof . (a)⇒ (b): Obviously, A = −A∗. Also,

(1− TT †)A(1− TT †) = (1− TT †)(TXS∗ − SX∗T ∗)(1− TT †)

= (T − TT †T )XS∗(1− TT †)− (1− TT †)SX∗(T ∗ − T ∗TT †) = 0.

(b)⇒ (a): Note that the condition (1− TT †)A(1− TT †) = 0 is equivalent to A = ATT † + TT †A−
TT †ATT †. On the other hand, since T ∗(Z − Z∗)T = 0, then (Z − Z∗)T ∈ ker(T ∗) = ker(T †).
Therefore T †(Z − Z∗)T = 0 or equivalently TT †ZTT † − TT †Z∗(T †)∗T ∗ = 0. Hence we have

TT †AS†S − 1

2
TT †ATT †S†S + TT †ZTT †S†S + T (V − T †TV SS†)S

− SS†A∗(T †)∗T ∗ +
1

2
SS†TT †A∗(T †)∗T ∗ + S†TT †Z∗(T †)∗T ∗ + S†(V ∗ − SS†V ∗T †T )T ∗

= ATT † + TT †A− TT †ATT † + TT †ZTT † − TT †Z∗(T †)∗T ∗ = A.

That is, any operator X of the form (2.5) is a solution to equation (2.2).
Since T has closed range, we have Z = ran(T∗)⊕ ker(T) and Y = ran(T)⊕ ker(T∗). Now, T has

the matrix form

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker(T )

]
→

[
ran(T)
ker(T ∗)

]
,

where T1 is invertible. On the other hand, A = −A∗ and (1−TT †)A(1−TT †) = 0 imply that A has
the form

A =

[
A1 A2

−A∗2 0

]
:

[
ran(T)
ker(T ∗)

]
→

[
ran(T)
ker(T ∗)

]
,

where A1 = −A∗1. Since T has closed range, so X = ran(T) ⊕ ker(T∗) and Y = ran(T∗) ⊕ ker(T),
and hence operator X has the following matrix form

X =

[
X1 X2

X3 X4

]
:

[
ran(T)
ker(T ∗)

]
→

[
ran(T∗)
ker(T )

]
.
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Now by using matrix form for operators T , X and A, we have[
T1 0
0 0

] [
X1 X2

X3 X4

] [
S1 S2

S∗2 S4

]
−

[
S1 S∗2
S2 S4

] [
X∗1 X∗3
X∗2 X∗4

] [
T ∗1 0
0 0

]
=

[
A1 A2

−A∗2 0

]
,

or equivalently[
T1X1S1 + T1X2S

∗
2 − S1X

∗
1T
∗
1 − S2X

∗
2T
∗
1 T1X1S2 + T1X2S4

−S∗2X∗1T ∗1 − S4X
∗
2T
∗
1 0

]
=

[
A1 A2

−A∗2 0

]
.

Therefore

T1(X1S1 + X2S
∗
2)− (S1X

∗
1 + S2X

∗
2 )T ∗1 = A1, (2.6)

T1X1S2 + T1X2S4 = A2. (2.7)

By Lemma 1.2, T1 is invertible. Hence, Lemma 2.1 implies that

X1S1 + X2S
∗
2 =

1

2
T−11 A1 + T−11 Z1, (2.8)

where Z1 ∈ L(ran(T)) satisfy Z∗1 = Z1. Now, multiplying T−11 from the left to equation (2.7), we get

X1S2 + X2S4 = T−11 A2. (2.9)

Now, by applying equations (2.8) and (2.9), we have[
X1 X2

0 0

] [
S1 S2

S∗2 S4

]
=

[
1
2
T−11 A1 + T−11 Z1 T−11 A2

0 0

]
. (2.10)

On the other hand, since

Z =

[
Z1 Z2

Z3 Z4

]
:

[
ran(T)
ker(T ∗)

]
→

[
ran(T)
ker(T ∗)

]
,

then

1

2
T †ATT † =

[
1
2
T−11 A1 0

0 0

]
, T †ZTT † =

[
T−11 Z1 0

0 0

]
and

T †A(1− TT †) =

[
0 T−1A2

0 0

]
and

T †TX =

[
X1 X2

0 0

]
.

Consequently equation (2.10) gets into

T †TXS =
1

2
T †ATT † + T †ZTT † + T †A(1− TT †) (2.11)

= T †A− 1

2
T †ATT † + T †ZTT †

where Z ∈ L(X ) satisfies T ∗(Z −Z∗)T = 0. By multiplication S†S on the right and T †T on the left
to equation (2.11) and by these facts that AS†S = A, T †S†S = T † and Lemma 1.3 implies that

X = T †AS† − 1

2
T †ATT †S† + T †ZTT †S† + V − T †TV SS†,

where Z ∈ L(X ) satisfies T ∗(Z − Z∗)T = 0 and V ∈ L(X ) is arbitrary. �
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