# The solutions to the operator equation $T X S-S X^{*} T^{*}=A$ in Hilbert C*-modules 

Mehdi Mohammadzadeh Karizakia,*, Mahmoud Hassani ${ }^{\text {b }}$, Dragan S. Djordjevićc ${ }^{\text {c }}$<br>${ }^{a}$ University of Torbat Heydarieh, Torbat Heydariyeh, Iran<br>${ }^{b}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran<br>${ }^{c}$ Faculty of Sciences and Mathematics, University of Nis, Visegradska 33, P.O. Box 224, 18000 Nis, Serbia

(Communicated by M.B Ghaemi)


#### Abstract

In this paper, we find explicit solution to the operator equation $T X S^{*}-S X^{*} T^{*}=A$ in the general setting of the adjointable operators between Hilbert $\mathrm{C}^{*}$-modules, when $T, S$ have closed ranges and $S$ is a self adjoint operator.


Keywords: Operator equation; Moore-Penrose inverse; Hilbert C*-module. 2010 MSC: Primary 47A62; Secondary 15A24, 46L08.

## 1. Introduction

The equation $T X S^{*}-S X^{*} T^{*}=A$ was studied by Yuan [8] for finite matrices and Xu et al. [6] generalized the results to Hilbert $\mathrm{C}^{*}$-modules, under the condition that $\operatorname{ran}(\mathrm{S})$ is contained in $\operatorname{ran}(\mathrm{T})$. When $T$ equals an identity matrix or identity operator, this equation reduces to $X S^{*}-S X^{*}=A$, which was studied by Braden [1] for finite matrices, and Djordjevic [2] for the Hilbert space operators. In this paper, we find explicit solution to the operator equation $T X S^{*}-S X^{*} T^{*}=A$ in the general setting of the adjointable operators between Hilbert $\mathrm{C}^{*}$-modules, when $T, S$ have closed ranges and $S$ is a self adjoint operator.

Throughout this paper, $\mathcal{A}$ is a $\mathrm{C}^{*}$-algebra. Let $\mathcal{X}$ and $\mathcal{Y}$ be two Hilbert $\mathcal{A}$-modules, and $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ be the set of the adjointable operators from $\mathcal{X}$ to $\mathcal{Y}$. For any $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, the range and the null space of $T$ are denoted by $\operatorname{ran}(\mathrm{T})$ and $\operatorname{ker}(T)$ respectively. In case $\mathcal{X}=\mathcal{Y}, \mathcal{L}(\mathcal{X}, \mathcal{X})$ which we

[^0]abbreviate to $\mathcal{L}(\mathcal{X})$, is a $\mathrm{C}^{*}$-algebra. The identity operator on $\mathcal{X}$ is denoted by $1_{\mathcal{X}}$ or 1 if there is no ambiguity. Let $\mathcal{M}$ be closed submodule of a Hilbert $\mathcal{A}$-module $\mathcal{X}$, then $P_{\mathcal{M}}$ is orthogonal projection onto $\mathcal{M}$, in the sense that $P_{\mathcal{M}}$ is self adjoint idempotent operator.

Theorem 1.1. [4, Theorem 3.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- $\operatorname{ker}(T)$ is orthogonally complemented in $\mathcal{X}$, with complement $\operatorname{ran}\left(\mathrm{T}^{*}\right)$.
- $\operatorname{ran}(\mathrm{T})$ is orthogonally complemented in $\mathcal{Y}$, with complement $\operatorname{ker}\left(T^{*}\right)$.
- The map $T^{*} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Xu and Sheng [7] showed that a bounded adjointable operator between two Hilbert $\mathcal{A}$-modules admits a bounded Moore-Penrose inverse if and only if it has closed range. The Moore-Penrose inverse of $T$, denoted by $T^{\dagger}$, is the unique operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ satisfying the following conditions:

$$
T T^{\dagger} T=T, \quad T^{\dagger} T T^{\dagger}=T^{\dagger}, \quad\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \quad\left(T^{\dagger} T\right)^{*}=T^{\dagger} T .
$$

It is well-known that $T^{\dagger}$ exists if and only if $\operatorname{ran}(\mathrm{T})$ is closed, and in this case $\left(T^{\dagger}\right)^{*}=\left(T^{*}\right)^{\dagger}$. Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ have closed range, then $T T^{\dagger}$ is the orthogonal projection from $\mathcal{Y}$ onto $\operatorname{ran}(\mathrm{T})$ and $T^{\dagger} T$ is the orthogonal projection from $\mathcal{X}$ onto $\operatorname{ran}\left(\mathrm{T}^{*}\right)$. Projection, in the sense that they are self adjoint idempotent operators.

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert $\mathrm{C}^{*}$-modules. Indeed, if $\mathcal{M}$ and $\mathcal{N}$ are closed orthogonally complemented submodules of $\mathcal{X}$ and $\mathcal{Y}$, respectively, and $\mathcal{X}=\mathcal{M} \oplus \mathcal{M}^{\perp}, \quad \mathcal{Y}=\mathcal{N} \oplus \mathcal{N}^{\perp}$, then $T$ can be written as the following $2 \times 2$ matrix

$$
T=\left[\begin{array}{ll}
T_{1} & T_{2} \\
T_{3} & T_{4}
\end{array}\right]
$$

where, $T_{1} \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_{2} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}\right), T_{3} \in \mathcal{L}\left(\mathcal{M}, \mathcal{N}^{\perp}\right)$ and $T_{4} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to $\mathcal{M}$.

In fact $T_{1}=P_{\mathcal{N}} T P_{\mathcal{M}}, \quad T_{2}=P_{\mathcal{N}} T\left(1-P_{\mathcal{M}}\right), T_{3}=\left(1-P_{\mathcal{N}}\right) T P_{\mathcal{M}}$ and $T_{4}=\left(1-P_{\mathcal{N}}\right) T\left(1-P_{\mathcal{M}}\right)$.
The proof of the following Lemma can be found in [5, Corollary 1.2.] or [3, Lemma 1.1.].
Lemma 1.2. Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then $T$ has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $\mathcal{X}=\operatorname{ran}\left(\mathrm{T}^{*}\right) \oplus \operatorname{ker}(\mathrm{T})$ and $\mathcal{Y}=\operatorname{ran}(\mathrm{T}) \oplus \operatorname{ker}\left(\mathrm{T}^{*}\right)$ :

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

where $T_{1}$ is invertible. Moreover

$$
T^{\dagger}=\left[\begin{array}{cc}
T_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] .
$$

The proof of the following lemma is the same as in the matrix case.

Lemma 1.3. Suppose that $\mathcal{X}, \mathcal{Y}$ and $\mathcal{Z}$ are Hilbert $\mathcal{A}$-modules, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $S \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ have closed ranges, $A \in \mathcal{L}(\mathcal{Y})$.Then the equation

$$
\begin{equation*}
T X S=A \quad, \quad X \in \mathcal{L}(\mathcal{Z}, \mathcal{X}) \tag{1.1}
\end{equation*}
$$

has a solution if and only if

$$
T T^{\dagger} A S^{\dagger} S=A
$$

In which case, any solution $X$ to equation (1.1) is of the form

$$
X=T^{\dagger} A S^{\dagger}+V-T^{\dagger} T V S S^{\dagger}
$$

where $V \in \mathcal{L}(\mathcal{Z}, \mathcal{X})$ is arbitrary.

## 2. Main results

In this section, we find explicit solution to the operator equation

$$
\begin{equation*}
T X S^{*}-S X^{*} T^{*}=A \tag{2.1}
\end{equation*}
$$

in the general setting of the adjointable operators between Hilbert $\mathrm{C}^{*}$-modules, when $T, S$ have closed ranges and $S$ is self adjoint operator. Hence equation (2.1) get into

$$
\begin{equation*}
T X S-S X^{*} T^{*}=A \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Suppose that $\mathcal{Y}, \mathcal{Z}$ are Hilbert $\mathcal{A}$-modules and $T \in \mathcal{L}(\mathcal{Z}, \mathcal{Y})$ is an invertible operator, $A \in \mathcal{L}(\mathcal{Y})$. Then the following statements are equivalent:
(a) There exists a solution $X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ to the operator equation $T X-X^{*} T^{*}=A$.
(b) $A=-A^{*}$

If (a) or (b) is satisfied, then any solution to equation

$$
\begin{equation*}
T X-X^{*} T^{*}=A \quad, \quad X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z}) \tag{2.3}
\end{equation*}
$$

has the form

$$
\begin{equation*}
X=\frac{1}{2} T^{-1} A+T^{-1} Z \tag{2.4}
\end{equation*}
$$

where $Z \in \mathcal{L}(\mathcal{Y})$ satisfying $Z^{*}=Z$.
Proof . $(a) \Rightarrow(b)$ : Obvious.
(b) $\Rightarrow(a)$ : Note that, if $A=-A^{*}$ then $X=\frac{1}{2} T^{-1} A+T^{-1} Z$ is a solution to equation (2.3). The following sentences state this claim

$$
\begin{aligned}
& T\left(\frac{1}{2} T^{-1} A+T^{-1} Z\right)-\left(\frac{1}{2} A^{*}\left(T^{*}\right)^{-1}+Z^{*}\left(T^{*}\right)^{-1}\right) T^{*} \\
= & \frac{1}{2}\left(T T^{-1} A-A^{*}\left(T^{*}\right)^{-1} T^{*}\right)+T T^{-1} Z-Z^{*}\left(T^{*}\right)^{-1} T^{*} \\
= & A+Z-Z^{*}=A
\end{aligned}
$$

On the other hand, let $X$ be any solution to equation (2.3). Then $X=T^{-1} A+T^{-1} X^{*} T^{*}$. We have

$$
\begin{aligned}
X & =T^{-1} A+T^{-1} X^{*} T^{*} \\
& =\frac{1}{2} T^{-1} A+\frac{1}{2} T^{-1} A+T^{-1} X^{*} T^{*} \\
& =\frac{1}{2} T^{-1} A+T^{-1}\left(\frac{1}{2} A+X^{*} T^{*}\right) .
\end{aligned}
$$

Taking $Z=\frac{1}{2} A+X^{*} T^{*}$, we get $Z^{*}=Z$.
Theorem 2.2. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be Hilbert $\mathcal{A}$-modules, $A, S \in \mathcal{L}(\mathcal{X}), T \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ such that $S$ is self adjoint, both $S$ and $T$ have closed ranges, and $A S^{\dagger} S=A$ and $T^{\dagger} S^{\dagger} S=T^{\dagger}$. Then the following statements are equivalent:
(a) There exists a solution $X \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ to equation (2.2).
(b) $A=-A^{*}$ and $\left(1-T T^{\dagger}\right) A\left(1-T T^{\dagger}\right)=0$.

If (a) or (b) is satisfied, then any solution to equation (2.2) has the form

$$
\begin{equation*}
X=T^{\dagger} A S^{\dagger}-\frac{1}{2} T^{\dagger} A T T^{\dagger} S^{\dagger}+T^{\dagger} Z T T^{\dagger} S^{\dagger}+V-T^{\dagger} T V S S^{\dagger} \tag{2.5}
\end{equation*}
$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^{*}\left(Z-Z^{*}\right) T=0$ and $V \in \mathcal{L}(\mathcal{X})$ is arbitrary.
Proof . $(a) \Rightarrow(b)$ : Obviously, $A=-A^{*}$. Also,

$$
\begin{aligned}
&\left(1-T T^{\dagger}\right) A\left(1-T T^{\dagger}\right)=\left(1-T T^{\dagger}\right)\left(T X S^{*}-S X^{*} T^{*}\right)\left(1-T T^{\dagger}\right) \\
&=\left(T-T T^{\dagger} T\right) X S^{*}\left(1-T T^{\dagger}\right)-\left(1-T T^{\dagger}\right) S X^{*}\left(T^{*}-T^{*} T T^{\dagger}\right)=0 .
\end{aligned}
$$

$(b) \Rightarrow(a)$ : Note that the condition $\left(1-T T^{\dagger}\right) A\left(1-T T^{\dagger}\right)=0$ is equivalent to $A=A T T^{\dagger}+T T^{\dagger} A-$ $T T^{\dagger} A T T^{\dagger}$. On the other hand, since $T^{*}\left(Z-Z^{*}\right) T=0$, then $\left(Z-Z^{*}\right) T \in \operatorname{ker}\left(T^{*}\right)=\operatorname{ker}\left(T^{\dagger}\right)$. Therefore $T^{\dagger}\left(Z-Z^{*}\right) T=0$ or equivalently $T T^{\dagger} Z T T^{\dagger}-T T^{\dagger} Z^{*}\left(T^{\dagger}\right)^{*} T^{*}=0$. Hence we have

$$
\begin{aligned}
& T T^{\dagger} A S^{\dagger} S-\frac{1}{2} T T^{\dagger} A T T^{\dagger} S^{\dagger} S+T T^{\dagger} Z T T^{\dagger} S^{\dagger} S+T\left(V-T^{\dagger} T V S S^{\dagger}\right) S \\
- & S S^{\dagger} A^{*}\left(T^{\dagger}\right)^{*} T^{*}+\frac{1}{2} S S^{\dagger} T T^{\dagger} A^{*}\left(T^{\dagger}\right)^{*} T^{*}+S^{\dagger} T T^{\dagger} Z^{*}\left(T^{\dagger}\right)^{*} T^{*}+S^{\dagger}\left(V^{*}-S S^{\dagger} V^{*} T^{\dagger} T\right) T^{*} \\
= & A T T^{\dagger}+T T^{\dagger} A-T T^{\dagger} A T T^{\dagger}+T T^{\dagger} Z T T^{\dagger}-T T^{\dagger} Z^{*}\left(T^{\dagger}\right)^{*} T^{*}=A .
\end{aligned}
$$

That is, any operator $X$ of the form (2.5) is a solution to equation (2.2).
Since $T$ has closed range, we have $\mathcal{Z}=\operatorname{ran}\left(T^{*}\right) \oplus \operatorname{ker}(T)$ and $\mathcal{Y}=\operatorname{ran}(T) \oplus \operatorname{ker}\left(\mathrm{T}^{*}\right)$. Now, $T$ has the matrix form

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right],
$$

where $T_{1}$ is invertible. On the other hand, $A=-A^{*}$ and $\left(1-T T^{\dagger}\right) A\left(1-T T^{\dagger}\right)=0$ imply that $A$ has the form

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2}^{*} & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right],
$$

where $A_{1}=-A_{1}^{*}$. Since $T$ has closed range, so $\mathcal{X}=\operatorname{ran}(T) \oplus \operatorname{ker}\left(T^{*}\right)$ and $\mathcal{Y}=\operatorname{ran}\left(\mathrm{T}^{*}\right) \oplus \operatorname{ker}(\mathrm{T})$, and hence operator $X$ has the following matrix form

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] .
$$

Now by using matrix form for operators $T, X$ and $A$, we have

$$
\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
S_{1} & S_{2} \\
S_{2}^{*} & S_{4}
\end{array}\right]-\left[\begin{array}{cc}
S_{1} & S_{2}^{*} \\
S_{2} & S_{4}
\end{array}\right]\left[\begin{array}{ll}
X_{1}^{*} & X_{3}^{*} \\
X_{2}^{*} & X_{4}^{*}
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2}^{*} & 0
\end{array}\right],
$$

or equivalently

$$
\left[\begin{array}{cc}
T_{1} X_{1} S_{1}+T_{1} X_{2} S_{2}^{*}-S_{1} X_{1}^{*} T_{1}^{*}-S_{2} X_{2}^{*} T_{1}^{*} & T_{1} X_{1} S_{2}+T_{1} X_{2} S_{4} \\
-S_{2}^{*} X_{1}^{*} T_{1}^{*}-S_{4} X_{2}^{*} T_{1}^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2}^{*} & 0
\end{array}\right] .
$$

Therefore

$$
\begin{align*}
T_{1}\left(X_{1} S_{1}+X_{2} S_{2}^{*}\right)- & \left(S_{1} X_{1}^{*}+S_{2} X_{2}^{*}\right) T_{1}^{*}=A_{1}  \tag{2.6}\\
& T_{1} X_{1} S_{2}+T_{1} X_{2} S_{4}=A_{2} . \tag{2.7}
\end{align*}
$$

By Lemma 1.2, $T_{1}$ is invertible. Hence, Lemma 2.1 implies that

$$
\begin{equation*}
X_{1} S_{1}+X_{2} S_{2}^{*}=\frac{1}{2} T_{1}^{-1} A_{1}+T_{1}^{-1} Z_{1} \tag{2.8}
\end{equation*}
$$

where $Z_{1} \in \mathcal{L}(\operatorname{ran}(\mathrm{~T}))$ satisfy $Z_{1}^{*}=Z_{1}$. Now, multiplying $T_{1}^{-1}$ from the left to equation (2.7), we get

$$
\begin{equation*}
X_{1} S_{2}+X_{2} S_{4}=T_{1}^{-1} A_{2} \tag{2.9}
\end{equation*}
$$

Now, by applying equations (2.8) and (2.9), we have

$$
\left[\begin{array}{cc}
X_{1} & X_{2}  \tag{2.10}\\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{1} & S_{2} \\
S_{2}^{*} & S_{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} T_{1}^{-1} A_{1}+T_{1}^{-1} Z_{1} & T_{1}^{-1} A_{2} \\
0 & 0
\end{array}\right]
$$

On the other hand, since

$$
Z=\left[\begin{array}{ll}
Z_{1} & Z_{2} \\
Z_{3} & Z_{4}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

then

$$
\frac{1}{2} T^{\dagger} A T T^{\dagger}=\left[\begin{array}{cc}
\frac{1}{2} T_{1}^{-1} A_{1} & 0 \\
0 & 0
\end{array}\right], \quad T^{\dagger} Z T T^{\dagger}=\left[\begin{array}{cc}
T_{1}^{-1} Z_{1} & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
T^{\dagger} A\left(1-T T^{\dagger}\right)=\left[\begin{array}{cc}
0 & T^{-1} A_{2} \\
0 & 0
\end{array}\right]
$$

and

$$
T^{\dagger} T X=\left[\begin{array}{cc}
X_{1} & X_{2} \\
0 & 0
\end{array}\right]
$$

Consequently equation (2.10) gets into

$$
\begin{align*}
T^{\dagger} T X S & =\frac{1}{2} T^{\dagger} A T T^{\dagger}+T^{\dagger} Z T T^{\dagger}+T^{\dagger} A\left(1-T T^{\dagger}\right)  \tag{2.11}\\
& =T^{\dagger} A-\frac{1}{2} T^{\dagger} A T T^{\dagger}+T^{\dagger} Z T T^{\dagger}
\end{align*}
$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^{*}\left(Z-Z^{*}\right) T=0$. By multiplication $S^{\dagger} S$ on the right and $T^{\dagger} T$ on the left to equation (2.11) and by these facts that $A S^{\dagger} S=A, T^{\dagger} S^{\dagger} S=T^{\dagger}$ and Lemma 1.3 implies that

$$
X=T^{\dagger} A S^{\dagger}-\frac{1}{2} T^{\dagger} A T T^{\dagger} S^{\dagger}+T^{\dagger} Z T T^{\dagger} S^{\dagger}+V-T^{\dagger} T V S S^{\dagger}
$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^{*}\left(Z-Z^{*}\right) T=0$ and $V \in \mathcal{L}(\mathcal{X})$ is arbitrary.

## References

[1] H. Braden, The equations $A^{T} X \pm X^{T} A=B$, SIAM J. Matrix Anal. Appl. 20 (1998) 295-302.
[2] D.S. Djordjevic, Explicit solution of the operator equation $A^{*} X+X^{*} A=B$, J. Comput. Appl. Math. 200 (2007) 701-704.
[3] D.S. Djordjevic and N.C. Dincic,Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252-261.
[4] E.C. Lance, Hilbert $C^{*}$-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
[5] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert $C^{*}$-modules, Colloq. Math. 140 (2015) 171-182.
[6] Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra Appl. 429 (2008) 1997-2024.
[7] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C ${ }^{*}$-modules, Linear Algebra Appl. 428 (2008) 992-1000.
[8] Y. Yuan, Solvability for a class of matrix equation and its applications, J. Nanjing Univ. (Math. Biquart.) 18 (2001) 221-227.


[^0]:    *Corresponding author
    Email addresses: mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki), mhassanimath@gmail.com, hassani@mshdiau.ac.ir (Mahmoud Hassani), dragan@pmf.ni.ac.rs (Dragan S. Djordjević)

