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Abstract

In this paper we prove the existence and approximation theorems for the initial value problems of
first order nonlinear impulsive functional differential equations under certain mixed partial Lipschitz
and partial compactness type conditions. Our results are based on the Dhage monotone iteration
principle embodied in a hybrid fixed point theorem of Dhage involving the sum of two monotone
order preserving operators in a partially ordered Banach space. The novelty of the present approach
lies the fact that we obtain an algorithm for the solution. Our abstract main result is also illustrated
by indicating a numerical example.

Keywords: Impulsive functional differential equation; Dhage iteration method; hybrid fixed point
principle; existence and approximate solution.
2010 MSC: Primary 34A12; Secondary 47H10.

1. Introduction

The nice blend of two characteristics, namely, the dependence upon back history and jumps or
the sudden changes of the complex dynamic systems at some intervals leads to the consideration
of mathematical models of nonlinear impulsive functional differential equations. Therefore, any
universal phenomenon depending upon its past history and the jumps at finite number of points
can be represented better with the help of nonlinear impulsive functional differential equations. The
importance of both the aspects of delay and jumps in the study of behavior of such dynamic systems
as well as exhaustive account of various topics related to this problem may be found in the research
monographs of Hale [21], Samoilenko and Perestyuk [25] Bainov and Simenov [1], Lakshmikantam et
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al [24] and the references therein. The various topics such as existence, uniqueness and stability theory
for nonlinear impulsive functional differential equations have received much attention during the last
two decade, but the theory of approximation of the solutions via construction of the algorithms
for such nonlinear equations is relatively rare in the literature. The existence and approximation
theorems for nonlinear functional differential equations are studied in Dhage [7, 8, 9] whereas such
results have been obtained for impulsive differential equations in Dhage [14, 15] via Dhage iteration
method. Hence, it is desirable to extend this new iteration method to nonlinear impulsive functional
differential equations. The existence theorems so far discussed in the literature for such nonlinear
impulsive functional differential equations involve either the use of usual Lipschitz or compactness
type condition on the nonlinearities which are considered to be very strong conditions in the subject
of nonlinear analysis. Here in the present set up of new Dhage iteration method, we do not need usual
Lipschitz and compactness type conditions but require only partial Lipschitz and partial compactness
type conditions of the nonlinearity and the existence as well as approximation of the solutions is
obtained on whole interval under certain monotonic conditions. We claim that the results of this
paper are new to the literature on impulsive functional differential equations.

Let R be the real line and let I0 = [−r, 0] be a closed interval in R for some real number r > 0.
We denote the class C(I0,R) of continuous real-valued functions on I0 by C called the history space
which is obviously a Banach space under the supremum norm ‖ · ‖C defined by

‖ · ‖C = sup
t∈I0
|x(t)|.

Again, let I = [0, T ] be a closed and bounded interval in R. Suppose that t0, . . . tp+1 are the
points in I such that 0 = t0 < t1 < · · · , < tp < tp+1 = T and let I ′ = I \ {t1, . . . , tp}. Denote
Ij = (tj, tj+1) ⊂ I for j = 1, 2, . . . , p. Similarly, denote J = [−r, T ] = I0 ∪ I and J ′ = I0 ∪ I ′. For a
given t ∈ I ′, we define a function xt ∈ C by xt(θ) = x(t+θ). By X = C(I,R) and L1(I,R) we denote
respectively the spaces of continuous and Lebesgue integrable real-valued functions defined on J .

Now, given the functions h ∈ L1(I,R+) and ϕ ∈ C, we consider the initial value problem (in short
IVP) of nonlinear the first order impulsive functional differential equation (in short IFDE)

x′(t) + h(t)x(t) = f(t, xt), t ∈ I \ {t1, . . . , tp},
x(t+j )− x(t−j ) = Ij(x(tj)),

x0 = ϕ,

 (1.1)

where, the limits x(t+j ) and x(t−j ) are respectively the right and left limit of x at t = tj such that
x(tj) = x(t−j ), Ij ∈ C(R,R), Ij(x(tj)) are the impulsive effects at the points t = tj, j = 1, . . . , p and
f : I × C → R is such that the function t → f(t, x) is continuous on I ′ = I − {t1, ..., tp} for each
x ∈ R, and there exist the limits

lim
t→tj−

f(t, u) = f(tj, u) and lim
t→tj+

f(t, u), u ∈ C,

for each j = 1, . . . , p.

By a impulsive solution of the IFDE (1.1) we mean a function x ∈ PC1(J,R) that satisfies the
functional differential equation and the conditions in (1.1), where PC1(J,R) is the space of piecewise
continuously differentiable real-valued functions defined on J .

The IFDE (1.1) has already been discussed in the literature under continuity and compactness
type conditions of the function f for various aspects of the solutions. The existence and unqueness
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theorems for the IFDE (1.1) may be proved using the classical and hybrid fixed point theorems of
Schauder, Banach and Dhage given in Dhage [2, 11] and references therein. Here in the present study,
we discuss the IFDE (1.1) for existence and approximate impulsive solution under partial Lipschit
and partial compactness type conditions via Dhage iteration method based on a hbrid fixed point
theorems of Dhage [4, 5].

2. Auxiliary Results

Throughout this paper, unless otherwise mentioned, let (E,�, ‖·‖) denote a partially ordered normed
linear space. Two elements x and y in E are said to be comparable if either the relation x � y or
y � x holds. A non-empty subset C of E is called a chain or totally ordered if all the elements of
C are comparable. It is known that E is regular if {xn} is a nondecreasing (resp. nonincreasing)
sequence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. The
conditions guaranteeing the regularity of E may be found in Heikkilä and Lakshmikantham [23] and
the references therein.

We need the following definitions (see Dhage [3, 4, 5] and the references therein) in what follows.
A mapping T : E → E is called isotone or monotone nondecreasing if it preserves the order

relation �, that is, if x � y implies T x � T y for all x, y ∈ E. Similarly, T is called monotone
nonincreasing if x � y implies T x � T y for all x, y ∈ E. Finally, T is called monotonic or simply
monotone if it is either monotone nondecreasing or monotone nonincreasing on E. A mapping
T : E → E is called partially continuous at a point a ∈ E if for given ε > 0 there exists a δ > 0
such that ‖T x − T a‖ < ε whenever x is comparable to a and ‖x − a‖ < δ. T is called partially
continuous on E if it is partially continuous at every point of it. It is clear that if T is partially
continuous on E, then it is continuous on every chain C contained in E and vice-versa. A non-empty
subset S of the partially ordered metric space E is called partially bounded if every chain C in
S is bounded. A mapping T on a partially ordered metric space E into itself is called partially
bounded if T (E) is a partially bounded subset of E. T is called uniformly partially bounded
if all chains C in T (E) are bounded by a unique constant. A non-empty subset S of the partially
ordered metric space E is called partially compact if every chain C in S is a compact subset of E.
A mapping T : E → E is called partially compact if every chain C in T (E) is a relatively compact
subset of E. T is called uniformly partially compact if T is a uniformly partially bounded and
partially compact operator on E. T is called partially totally bounded if for any bounded
subset S of E, T (S) is a partially totally bounded subset of E. If T is partially continuous and
partially totally bounded, then it is called partially completely continuous on E.

Remark 2.1. Suppose that T is a monotone operator on E into itself. Then T is a partially bounded
or partially compact on E if T (C) is a bounded or compact subset of E for each chain C in E.

Definition 2.2 (Dhage [6, 7]). The order relation � and the metric d on a non-empty set E
are said to be D-compatible if {xn} is a monotone sequence, that is, monotone nondecreasing or
monotone nonincreasing sequence in E and if a subsequence {xnk

} of {xn} converges to x∗ implies
that the original sequence {xn} converges to x∗. Similarly, given a partially ordered normed linear
space (E,�, ‖ · ‖), the order relation � and the norm ‖ · ‖ are said to be D-compatible if � and the
metric d defined through the norm ‖ · ‖ are D-compatible. A subset S of E is called Janhavi set
if the order relation � and the metric d or the norm ‖ · ‖ are D-compatible in it. In particular, if
S = E, then E is called a Janhavi metric space or Janhavi Banach space.
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Clearly, the set R of real numbers with usual order relation ≤ and the norm defined by the
absolute value function | · | has this property. Similarly, the finite dimensional Euclidean space Rn

with usual componentwise order relation and the standard norm possesses the compatibility property
and so is a Janhavi Banach space.

Definition 2.3. An upper semi-continuous and monotone nondecreasing function ψ : R+ → R+ is
called a D-function provided ψ(0) = 0. A monotone operator T : E → E is called nonlinear partial
D-contraction if there exists a D-function ψ such that

‖T x− T y‖ ≤ ψ
(
‖x− y‖

)
(2.1)

for all comparable elements x, y ∈ E, where 0 < ψ(r) < r for r > 0. In particular, if ψ(r) = k r,
k > 0, T is called a partial Lipschitz operator with a Lipschitz constant k and moreover, if 0 < k < 1,
T is called a linear partial contraction on E with the contraction constant k.

The Dhage monotone iteration principle or Dhage monotone iteration method em-
bodied in the following applicable hybrid fixed point theorems of Dhage [4] in a partially ordered
normed linear space is used as a key tool for our work contained in this paper. The details of the
Dhage monotone iteration principle or method along with some nice applications are given in Dhage
[6, 7, 8], Dhage and Dhage [16, 17], Dhage et al. [18, 19], Dhage and Otrocol [20] and the references
therein.

Theorem 2.4 (Dhage [4, 5]). Let (E,�, ‖·‖) be a partially ordered Banach space and let T : E →
E be a monotone nondecreasing and nonlinear partial D-contraction. Suppose that there exists an
element x0 ∈ E such that x0 � T x0 or x0 � T x0. If T is continuous or E is regular, then T
has a unique comparable fixed point x∗ and the sequence {T nx0} of successive iterations converges
monotonically to x∗. Moreover, the fixed point x∗ is unique if every pair of elements in E has a lower
bound or an upper bound.

Theorem 2.5 (Dhage [4, 5]). Let
(
E,�, ‖·‖

)
be a regular partially ordered complete normed linear

space and let every compact chain C in E be s Janhavi set. Suppose that A,B : E → E are two
monotone nondecreasing operators such that

(a) A is partially bounded and nonlinear partial D-contraction,

(b) B is partially continuous and partially compact, and

(c) there exists an element x0 ∈ E such that x0 � Ax0 + Bx0 or x0 � Ax0 + Bx0.

Then the hybrid operator equation Ax + Bx = x has a solution x∗ in E and the sequence {xn} of
successive iterations defined by xn+1 = Axn + Bxn, n=0,1,. . . , converges monotonically to x∗.

Remark 2.6. The condition that every compact chain of E is Janhavi holds if every partially com-
pact subset of E possesses the compatibility property with respect to the order relation � and the
norm ‖ · ‖ in it.

Remark 2.7. We remark that hypothesis (a) of Theorem 2.5 implies that the operator A is partially
continuous and consequently both the operators A and B in the theorem are partially continuous on
E. The regularity of E in above Theorems 2.4 and 2.5 may be replaced with a stronger continuity
condition respectively of the operators T and A and B on E which are the results proved in Dhage
[3, 4].
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3. Existence and Approximation Theorems

Let Xj = C(Ij,R) denote the class of continuous real-valued functions on the interval Ij = (tj, tj+1).
Denote by PC(J,R) the space of piecewise continuous real-valued functions on J = I0∪ I defined by

PC(J,R) =
{
x ∈ C ∩Xj | x(t−j ) and x(t+j ) exists for j = 1, . . . , p;

and x(t−j ) = x(tj)
}
. (3.1)

Define a supremum norm ‖ · ‖ in PC(J,R) by

‖x‖PC = sup
t∈J
|x(t)| (3.2)

and define the order cone K in PC(J,R) by

K = {x ∈ PC(J,R) | x(t) ≥ 0 for all t ∈ J}, (3.3)

which is obviously a normal cone in PC(J,R). Now, define the order relation � in PC(J,R) by

x � y ⇐⇒ y − x ∈ K (3.4)

which is equivalent to
x � y ⇐⇒ x(t) ≤ y(t) for all t ∈ J.

Clearly,
(
PC(J,R), K

)
becomes a regular ordered Banach space with respect to the above norm

and order relation in PC(J,R) and every compact chain C in PC(J,R) is a Janhavi set in view of
the following lemmas proved in Dhage [7, 8].

Lemma 3.1 (Dhage [12, 13]). Every ordered Banach space (E,K) is regular.

Lemma 3.2 (Dhage [12, 13]). Every partial compact subset S of an ordered Banach space (E,K)
is a Janhavi set in E.

We introduce an order relation �C in the history space C induced by the order relation � defined
in PC(J,R).Thus, for any x, y ∈ C, x �C y implies x(θ) � y(θ) for all θ ∈ [−r, 0]. Moreover, if
x, y ∈ PC(J,R) and x � y, then xt �C yt for all t ∈ [0, T ] (cf. Dhage [10, 11] and references therein).

We need the following definition in what follows.

Definition 3.3. A function u ∈ PC1(J,R) is said to be a lower impulsive solution of the IFDE
(1.1) if it satisfies

u′(t) + h(t)u(t) ≤ f(t, ut), t ∈ I \ {t1, . . . , tp},
u(t+j )− u(t−j ) ≤ Ij(u(tj)),

u0 ≤ ϕ,


for j = 1, 2, ..., p. Similarly, a function v ∈ PC1(J,R) is called an upper impulsive solution of the
IFDE (1.1) if the above inequality is satisfied with reverse sign.

We consider the following set of assumptions in what follows:
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(H1) The impulsive functions Ij ∈ C(R,R) are bounded onX with boundsMIj for each j = 1, . . . , p.,

(H2) There exists a constants LIj > 0 such that

0 ≤ Ijx− Ijy ≤ LIj
(
x− y

)
for all x, y ∈ R, x ≥ y, where j = 1, . . . , p.

(H3) The function f is bounded on I × C with bound Mf .

(H4) f(t, x) is nondecreasing in x for each t ∈ J .

(H5) There exists a constant Lf > 0 such that

0 ≤ f(t, x)− f(t, y) ≤ Lf
(
x− y

)
for all t ∈ J and x, y ∈ C, x ≥C y.

(LS) The IFDE (1.1) has a lower impulsive solution u ∈ PC1(J,R).

(US) The IFDE (1.1) has an upper impulsive solution v ∈ PC1(J,R).

Below we prove some useful results in what follows.

Lemma 3.4. Given σ ∈ L1(I,R), a function x ∈ PC(J,R) is a impulsive solution to the IFDE

x′(t) + h(t)x(t) = σ(t), t ∈ I \ {t1, . . . , tp},
x(t+j )− x(t−j ) = Ij(x(tj)),

x0 = ϕ,

 (3.5)

if and only if it is an impulsive solution of the impulsive integral equation

x(t) =


ϕ(0) e−H(t) +

∑
0<tj<t

k(t, tj)Ij(x(tj)) +

∫ t

0

k(t, s)σ(s) ds, t ∈ I,

ϕ(t), t ∈ I0,
(3.6)

where the kernel function k is given by

k(t, s) = e−H(t)+H(s) and H(t) =

∫ t

0

h(s) ds. (3.7)

Proof . The proof of second case in the expression (3.6) is obvious, so we prove only the first
case. First note that the integral in H(t) is a continuous and nonnegative real-valued function on J .
Therefore, we have H(t) > 0 on I provided h is not an identically zero function. Otherwise H(t) ≡ 0
on I. Moreover, we have H(t−) = H(t) = H(t+) for all t ∈ I.

First suppose that x is an impulsive solution of the IFDE (3.5) on J . Then, we have(
eH(t)x(t)

)′
= eH(t)σ(t), t ∈ J \ {t1, . . . , tp},

x(t+j )− x(t−j ) = Ij(x(tj)),

x0 = ϕ,

 (3.8)
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for j = 1, 2, . . . , p.

From the theory of integral calculus, it follows that

eH(t−1 )x(t−1 )− eH(0)x(0) =

∫ t1

0

(
eH(s)x(s)

)′
ds

eH(t−2 )x(t−2 )− eH(t+1 )x(t+1 ) =

∫ t2

t1

(
eH(s)x(s)

)′
ds

...

eH(t)x(t)− eH(t+p )x(t+p ) =

∫ t

tp

(
eH(s)x(s)

)′
ds.

Summing up the above equations,

eH(t)x(t)−
∑

0<tj<t

eH(tj)Ij(x(tj)) = ϕ(0) +

∫ t

0

eH(s)h(s) ds,

or

x(t) = ϕ(0)e−H(t) +
∑

0<tj<t

k(t, tj)Ij(x(tj)) +

∫ t

0

k(t, s)σ(s) ds.

for t ∈ I.
Conversely, suppose that x is an impulsive solution of the impulsive integral equation (3.6).

Obviously x satisfies the initial and jump conditions given in (3.5). By definition of the kernel
function k, we obtain

eH(t)x(t) = ϕ(0) +
∑

0<tj<t

eH(tj)Ij(x(tj)) +

∫ t

0

eH(s)σ(s) ds (3.9)

for all t ∈ I. Since σ ∈ L1(I,R), one has

∫ t

0

eH(s)σ(s) ds ∈ AC(I,R). So, by a direct differentiation

of (3.9) yields, (
eH(t)x(t)

)′
= eH(t)σ(t),

or
x′(t) + h(t)x(t) = σ(t),

for t ∈ I satisfying x(0) = ϕ(0) and (3.3). The proof of the lemma is complete. �

Remark 3.5. We note that the kernal function k(t, s) is continuous and nonnegative real-valued
function on I × I. Moreover, sup

t>s
k(t, s) ≤ 1.

Lemma 3.6. Given σ ∈ L1(I,R), if there is a function u ∈ PC1(J,R) satisfying the impulsive
functional differential inequality

u′(t) + h(t)u(t) ≤ σ(t), t ∈ I \ {t1, . . . , tp},
u(t+j )− u(t−j ) ≤ Ij(u(tj)),

u0 �C ϕ,

 (3.10)
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then it satisfies the impulsive integral inequality

u(t) ≤


ϕ(0)e−H(t) +

∑
0<tj<t

k(t, tj)Ij(u(tj)) +

∫ t

0

k(t, s)σ(s) ds, if t ∈ I,

ϕ(t), if t ∈ I0,
(3.11)

where the kernel function k is defined by the expression (3.7) on I × I.

Proof . The proof of second case in the expression (3.11) is obvious, so we prove only the first case.
Proceeding as in the proof of Lemma 3.4, we obtain(

eH(t)u(t)
)′ ≤ eH(t)σ(t), t ∈ J \ {t1, . . . , tp},

u(t+j )− u(t−j ) ≤ Ij(u(tj)),

u0 ≤C ϕ, ,


for j = 1, 2, . . . , p.

From the theory of integral calculus, it follows that

eH(t−1 )u(t−1 )− eH(0)u(0) =

∫ t1

0

(
eH(s)u(s)

)′
ds

eH(t−2 )u(t−2 )− eH(t+1 )u(t+1 ) =

∫ t2

t1

(
eH(s)u(s)

)′
ds

...

eH(t)u(t)− eH(t+p )u(t+p ) =

∫ t

tp

(
eH(s)u(s)

)′
ds.

Summing up the above equations,

eH(t)u(t)−
∑

0<tj<t

eH(tj)Ij(u(tj)) ≤ ϕ(0) +

∫ t

0

eH(s)h(s) ds,

or

u(t) ≤ ϕ(0) e−H(t) +
∑

0<tj<t

k(t, tj)Ij(u(tj)) +

∫ t

0

k(t, s)σ(s) ds

for t ∈ I and the proof of the lemma is complete. �
Similarly, we have the following useful result concerning the impulsive functional differential

inequality with reverse sign.

Lemma 3.7. Given σ ∈ L1(J,R), if there is a function v ∈ PC1(J,R) satisfying the impulsive
functional differential inequality

v′(t) + h(t)v(t) ≥ σ(t), t ∈ I \ {t1, . . . , tp},
v(t+j )− v(t−j ) ≥ Ij(v(tj)),

v0 ≥C ϕ,

 (3.12)

then it satisfies the impulsive integral inequality

v(t) ≥


ϕ(0)e−H(t) +

∑
0<tj<t

k(t, tj)Ij(v(tj)) +

∫ t

0

k(t, s)σ(s) ds, t ∈ I,

ϕ(t), t ∈ I0,
(3.13)

where the kernel function k is defined by the expression (3.7) on I × I.
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Theorem 3.8. Suppose that hypotheses (H1)-(H4) and (LS) hold. Then the IFDE (1.1) has a im-
pulsive solution x∗ defined on J and the sequence {xn}∞n=0 of successive approximations defined by

x0(t) = u(t), t ∈ J,

xn+1(t) =


ϕ(0)e−H(t) +

∑
0<tj<t

k(t, tj)Ij(xn(tj)) +

∫ t

0

k(t, s)f(s, xn(s)) ds, t ∈ I,

ϕ(t), t ∈ I0,

(3.14)

converges monotone nondecreasingly to x∗.

Proof . Set E = PC(J,R). Then, by Lemma 3.2, every compact chain C in E possesses the
compatibility property with respect to the norm ‖ · ‖PC and the order relation � so that every
compact chain C in E is a Janhavi set.

Now, by Lemma 3.4, the IFDE (1.1) is equivalent to the nonlinear impulsive functional integral
equation (in short IFIE)

x(t) =


ϕ(0)e−H(t) +

∑
0<tj<t

k(t, tj)Ij(x(tj)) +

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ I,

ϕ(t), t ∈ I0.
(3.15)

Define two operators A and B on E by

Ax(t) =


∑

0<tj<t

k(t, tj)Ij(x(tj)), t ∈ I,

0, t ∈ I0,
(3.16)

and

Bx(t) =

ϕ(0) e−H(t) +

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ I,

ϕ(t), t ∈ I0.
(3.17)

From the continuity of the integral, it follows that A and B define the operators A,B : E → E
and the impulsive integral equation (3.15) is transformed into the operator equation as

Ax(t) + Bx(t) = x(t), t ∈ J. (3.18)

Now, the problem of finding the impulsive solution of the IFDE (1.1) is just reduced to finding
impulsive solution of the operator equation (3.18) on J . We show that the operators A and B satisfy
all the conditions of Theorem 2.5 in a series of following steps.

Step I: A and B are nondecreasing on E.

Let x, y ∈ E be such that x � y. Then, by hypothesis (H2), we get

Ax(t) =


∑

0<tj<t

k(t, tj)Ij(x(tj)), t ∈ I,

0, t ∈ I0,

≥


∑

0<tj<t

k(t, tj)Ij(y(tj)), t ∈ I,

0, t ∈ I0,
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= Ay(t),

for all t ∈ J . By definition of the order relation in E, we obtain Ax � Ay and a fortiori, A is a
nondecreasing operator on E. Similarly, using the hypothesis (H4),

Bx(t) =

ϕ(0) e−H(t) +

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ I,

ϕ(t), t ∈ I0,

≥

ϕ(0) e−H(t) +

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ I,

ϕ(t), t ∈ I0,
= By(t),

for all t ∈ I. Therefore, the operator B is also nondecreasing on E into itself.

Step II: A is partially bounded and partially contraction on E.

Let x ∈ E be arbitrary. Then by (H1) we have

|Ax(t)| ≤

∣∣∣∣∣∣
∑

0<tj<t

k(t, tj)Ij(x(tj))

∣∣∣∣∣∣ ≤
∑

0<tj<t

∣∣k(t, tj)
∣∣ ∣∣Ij(y(tj))

∣∣ ≤ p∑
j=1

MIj

for all t ∈ J . Taking the supremum over t, we obtain ‖Ax‖ ≤
∑p

j=1MIj for all x ∈ E, so A is a
bounded operator on E. This further implies that A is partially bounded on E.

Next, let x, y ∈ E be such that x � y. Then by (H2), we have

|Ax(t)−Ay(t)| ≤

∣∣∣∣∣∣
∑

0<tj<t

k(t, tj)Ij(x(tj))−
∑

0<tj<t

k(t, tj)Ij(y(tj))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

0<tj<t

k(t, tj)
[
Ij(x(tj))− Ij(x(tj))

]∣∣∣∣∣∣
≤
∑

0<tj<t

k(t, tj)LIj
[
x(tj)− x(tj)

]
≤ L ‖x− y‖PC ,

for all t ∈ J , where L =
∑p

j=1 LIj < 1. Taking the supremum over t, we obtain

‖Ax−Ay‖PC ≤ L ‖x− y‖PC
for all x, y ∈ E with xx � y. Hence A is a partially contraction on E which also implies that A is
partially continuous on E.

Step III: B is a partially continuous on E.

Let {xn}n∈N be a sequence of the points of a chain C in the partially ordered Banach space E
such that xn → x as n→∞. Then, we have

lim
n→∞
Bxn(t) =

 lim
n→∞

[
ϕ(0) e−H(t) +

∫ t

0

k(t, s)f(s, xn(s)) ds
]
, t ∈ I,

ϕ(t), t ∈ I0,
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=

ϕ(0) e−H(t) +

∫ t

0

k(t, s)
[

lim
n→∞

f(s, xn(s))
]
ds, t ∈ I,

ϕ(t), t ∈ I0,

=

ϕ(0) e−H(t) +

∫ t

0

k(t, s)f(s, x(s)) ds, t ∈ I,

ϕ(t), t ∈ I0,

8 = Bx(t),

for all t ∈ J . This shows that Bxn converges to Bx pointwise on J . To show that the conergence is
uniform, we show that {Bxn}n∈N is a quasi-equicontinuous sequence of functions in E. We consider
the following three cases:

Case I: Let τ1, τ2 ∈ (tj, tj+1] ∩ I, j = 1, . . . , p. Then, we have that∣∣∣Bxn(τ2)− Bxn(τ1)
∣∣∣ =

∣∣∣∣x0e−H(τ1) +

∫ τ1

0

k(τ1, s)f(s, xn(s)) ds

−x0e−H(τ2) −
∫ τ2

0

k(τ2, s)f(s, xn(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ τ1

0

k(τ1, s)f(s, xn(s)) ds−
∫ τ2

0

k(τ2, s)f(s, xn(s)) ds

∣∣∣∣
+
∣∣x0e−H(τ1) − x0e−H(τ2)

∣∣
≤
∣∣∣∣∫ τ1

0

k(τ1, s)f(s, xn(s)) ds−
∫ τ1

0

k(τ2, s)f(s, xn(s)) ds

∣∣∣∣
+

∣∣∣∣∫ τ1

0

k(τ2, s)f(s, xn(s)) ds−
∫ τ2

0

k(τ2, s)f(s, xn(s)) ds

∣∣∣∣
+
∣∣x0e−H(τ1) − x0e−H(τ2)

∣∣
≤ |x0|

∣∣e−H(τ1) − e−H(τ2)
∣∣

+

∫ T

0

∣∣k(τ1, s)− k(τ2, s)
∣∣ ∣∣f(s, xn(s))

∣∣ ds
+

∣∣∣∣∫ τ1

τ2

|k(τ2, s)| |f(s, xn(s))| ds
∣∣∣∣

≤ |x0|
∣∣e−H(τ1) − e−H(τ2)

∣∣+Mf

∫ T

0

∣∣k(τ1, s)− k(τ2, s)
∣∣ ds

+Mf |τ1 − τ2|
→ 0 as τ2 → τ1,

uniformly for all n ∈ N.
Case II: Let τ1, τ2 ∈ I0. Then, by uniform continuity of the function ϕ, we obtain∣∣Bxn(τ1)−

∣∣Bxn(τ1) = |ϕ(τ1)− ϕ(τ2)| → 0 as τ→τ2,

uniformly for all n ∈ N.
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Case III: Let τ1 ∈ I0 and τ2 ∈ I ′. Then, by above two cases, we have,∣∣∣Bxn(τ2)− Bxn(τ1)
∣∣∣ ≤ |Bxn(τ1)− bxn(0)|

≤
∣∣Bxn(τ2)− Bxn(0)

∣∣+ Bxn(0)− Bxn(τ1)
∣∣∣

→ 0 as τ1 → τ2,

uniformly for all n ∈ N.
Thus, from above three case it follows that if τ1, τ2 ∈ I0 ∪ (tj, tj+1] for all j = 1, . . . , p, then we

have ∣∣Bxn(τ1)−
∣∣Bxn(τ1)

∣∣→ 0 as τ1 → τ2,

uniformyly for all n ∈ N. This shows that the sequence {Bxn} of functions is quasi- equicontinuous
and consequently the convergence Bxn → Bx is uniform in view of the arguments given in Bainov
[1]. Hence B is partially continuous operator on E into itself.

Step IV: B is partially compact operator on E.

Let C be an arbitrary chain in of the partially ordered Banach space E. We show that B(C)
is a uniformly bounded and quasi-equicontinuous set in E. First we show that B(C) is uniformly
bounded. Let y ∈ B(C) be any element. Then there is an element x ∈ C such that y = Bx. By
hypothesis (H3),

|y(t)| = |Bx(t)|

=


∣∣∣ϕ(0)e−H(t) +

∫ t

0

k(t, s)f(s, x(s)) ds
∣∣∣, t ∈ I,

|ϕ(t)|, t ∈ I0,

≤


∣∣ϕ(0)e−H(t)

∣∣+

∫ T

0

|k(t, s)| |f(s, x(s))| ds, t ∈ I,

|ϕ(t)|, t ∈ I0,

≤


∣∣ϕ(0)e−H(t)

∣∣+Mf

∫ T

0

k(t, s) ds, t ∈ I,

|ϕ(t)|, t ∈ I0,

≤

|ϕ(0)|+MfT, t ∈ I,

|ϕ(t)|, t ∈ I0,

≤ ‖ϕ‖+MfT

= MB,

for all t ∈ J . Taking the supremum over t we obtain ‖y‖PC ≤ ‖Bx‖PC ≤ MB, for all y ∈ B(C).
Hence B(C) is uniformly bounded subset of functions E. Next, proceeding with the arguments as in
Step III‘, it can be shown that B(C) is an quasi-equicontinuous subset of functions in E. So B(C) is
a uniformly bounded and quasi-equicontinuous set of functions in E and hence it is compact in view
of Arzelá-Ascoli theorem (see Bainov and Simeonov [1]). Consequently B : E → E is a partially
compact operator of E into itself.

Step V: The lower impulsive solution u satisfies the operator inequality u � Au+ Bu.
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By hypothesis (LS), the IFDE (1.1) has a lower impulsive solution u defined on J . Then, we
have

u′(t) + h(t)u(t) ≤ f(t, u(t)), t ∈ I \ {t1, . . . , tp},
u(t+j )− u(t−j ) ≤ Ij(u(tj)),

u0 �C ϕ.

 (3.19)

Now, by a direct application of the impulsive functional differential inequality established in
Lemma 3.6 yields that

u(t) ≤


ϕ(0) e−H(t) +

∑
0<tj<t

k(t, tj)Ij(u(tj)) +

∫ t

0

k(t, s)f(s, u(s)) ds, t ∈ I,

ϕ(t), t ∈ I0.
(3.20)

Furthermore, from definitions of the operators A and B it follows that u(t) ≤ Au(t) + Bu(t) for
all t ∈ J . Hence u � Au + Bu. Thus the operators A and B satisfy all the conditions of Theorem
2.5 and so the operator equation Ax + Bx = x has a impulsive solution x∗ in E. Consequently
the integral equation and a fortiori, the IFDE (1.1) has a impulsive solution x∗ defined on J . As
a result, the sequence {xn}∞n=0 of successive approximations defined by (3.14) converges monotone
nondecreasingly to x∗. This completes the proof. �

Next, we prove the uniqueness theorem for the IFDE on the interval J .

Theorem 3.9. Suppose that hypotheses (H1)-(H2) and (H5)-(LS) hold. Then the IFDE (1.1) has a
unique impulsive solution solution x∗ defined on J and the sequence {xn}∞n=0 of successive approxi-
mations defined by (3.14) converges monotone nondecreasingly to x∗.

Proof . Set E = PC(J,R). Then, every pair of elements in PC(J,R) has a lower bound as well
as an upper bound so it is a lattice with respect to the binary operations “meet(∧)” and “join(∨)”
defined by ∧{x, y} = min{x , y} and ∨{x, y} = max{x , y}.

Now, by Lemma 3.4, the IFDE (1.1) is equivalent to the nonlinear impulsive integral equation
(3.15). Define two operators A and B on E by (3.16) and (3.17). Now, consider the mapping
T : E → E defined by

T x(t) = Ax(t) + Bx(t), t ∈ J. (3.21)

Then the impulsive integral equation (3.6) is reduced to the operator equation as

T x(t) = x(t), t ∈ J. (3.22)

Now, proceeding with the arguments as in the proof of Theorem 3.8 it can shown that the operator
A is a partial Lipschitzian with Lipschitz constant LA =

∑p
j=1 LIj . Similarly, we show that B is also

a Lipschitzian on E into itself. Let x, y ∈ E be such that x � y. Then, by hypothesis (H5), one has

∣∣Bx(t)− By(t)
∣∣ =

∣∣∣∣∫ t

0

k(t, s)f(s, x(s)) ds−
∫ t

0

k(t, s)f(s, y(s)) ds

∣∣∣∣
≤
∫ t

0

|k(t, s)|
∣∣f(s, x(s))− f(s, y(s))

∣∣ ds
≤ Lf

∫ t

0

∣∣x(t)− y(t)
∣∣ ds

≤ Lf T ‖x− y‖PC



232 Dhage, Dhage

for all t ∈ J and x, y ∈ E. Taking the supremum over t in the above inequality, we obtain

‖Bx− By‖PC ≤ LB ‖x− y‖PC

for all x, y ∈ E, x � y, where LB = Lf T . This shows that B is again a partial Lipschitzian operator
on E into itself with a Lipschitz constant LB. Next, by definition of the operator T , one has

‖T x− T y‖PC ≤ ‖Ax−Ay‖PC + ‖Bx− By‖PC ≤ (LA + LB) ‖x− y‖PC

for all x, y ∈ E, x � y, where LA + LB =
∑p

j=1 LIj + LfT < 1. Hence T is a partial contraction
operator on E into itself. Since the hypothesis (H6) holds, it is proved as in the step V of the proof of
Theorem 3.8 that the operator equation (3.22) has a lower solution u in E. Then, by an application
of Theorem 2.4, we obtain that the operator equation (3.22) and consequently the IFDE (1.1) has
a unique impulsive solution x∗ defined on J and the sequence {xn}∞n=0 of successive approximations
defined by (3.15) converges monotone nondecreasingly to x∗. This competes the proof. �

Remark 3.10. The conclusion of Theorems 3.8 and 3.9 also remains true if we replace the hypothesis
(LS) with (US). The proof of Theorems 3.8 and 3.9 under this new hypothesis is similar and can be
obtained by closely observing the same arguments with appropriate modifications. In this case the
sequence {xn}∞n=0 defined by (3.3) with x0(t) = v(t), t ∈ [−r, T ], converges monotone nonincrasingly
to the solution x∗ of he IFDE (1.1) on J . In this case we invoke the use of Lemma 3.7 in the proofs
of these existence results on the whole interval J .

4. The Example and Concluding Remarks

Example 4.1. Given the closed intervals I0 =
[
−π

2
, 0
]

and I = [0, 1] of the real line R and given

the points t1 = 1
5
, t2 = 2

5
, t3 = 3

5
, t4 = 4

5
in [0, 1] and the function ϕ :

[
−π

2
, 0
]
→ R defined

by ϕ(t) = sin t, consider the initial value problem (in short IVP) of first order impulsive functional
functional differential equation (in short IFDE)

x′(t) + x(t) = tanh x(t), t ∈ [0, 1] \ {t1, t2, t3, t4},
x(t+j )− x(t−j ) = Ij(x(tj)),

x0 = ϕ,

 (4.1)

for tj ∈ {15 ,
2
5
, 3
5
, 4
5
}; where x(t−j ) and x(t−j ) are respectively, the right and left limit of x at t = tj such

that x(tj) = x(t−j ) and Ij(x(tj)) are the impulsive effects at the points t = tj, j = 1, . . . , 4 given by

Ij(x) =


1

2j
· x

1 + x
+ 2, if x > 0,

2, if x ≤ 0,

for all t ∈ [0, 1]. Here f(t, x) = tanhx, so it is continuous and bounded on [0, 1] × R with bound
Mf = 2. Again, the map x 7→ f(t, x) is nondecreasing for each t ∈ [0, 1]. Next, the impulsive
function Ij are continuous and bounded on R with bound MIj = 3 for each j = 1, . . . , 4. It is easy to
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verify that the impulsive operators Ij satisfy the hypothesis (H2) with Lipschitz constants LIj =
1

2j

for j = 1, . . . , 4. Moreover,
∑4

j=1 LIj =
∑4

j=1

1

2j
< 1. Finally, the functions

u(t) =

7e−t − 1, t ∈∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]

and

v(t) =

15t+ 12, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]

are respectively the lower and upper impulsive solutions of the IFDE (1.1) defined on [0, 1]. Thus, all
the conditions of Theorem 3.8 are satisfied and so the IFDE (4.1) has a impulsive solution ξ∗ and
the sequence {xn}∞n=0 of successive approximations defined by

x0(t) =

7e−t − 1, t ∈∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

xn+1(t) =


∑

0<tj<t

k(t, tj)Ij(xn(tj)) +

∫ t

0

k(t, s) tanhxn(s)) ds, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

converges monotone nondecreasingly to x∗. Similarly, the sequence {yn}∞n=0 of successive approxima-
tions defined by

y0(t) =

t+ 12, t ∈∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

yn+1(t) =


∑

0<tj<t

k(t, tj)Ij(yn(tj)) +

∫ t

0

k(t, s) tanh yn(s)) ds, t ∈ [0, 1],

sin t, t ∈
[
−π

2
, 0
]
,

also converges monotone nonincreasingly to the impulsive solution y∗ of the IFDE (4.1) in view of
Remark 3.10.

Remark 4.2. We note that if the IFDE (1.1) has a lower impulsive solution u as well as an up-
per impulsive solution v such that u � v, then under the given conditions of Theorem 3.8 it has
corresponding impulsive solutions x∗ and y∗ and these impulsive solutions satisfy the inequality

u = x0 � x1 � · · · � xn � x∗ � y∗ � yn � · · · � y1 � y0 = v.

Hence x∗ and y∗ are respectively the minimal and maximal impulsive solutions of the IFDE (1.1) in
the vector segment [u, v] of the Banach space E = PC(J,R), where the vector segment [u, v] is a set
of elements in PC(J,R) defined by

[u, v] = {x ∈ PC(J,R) | u � x � v}.
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This is because of the order cone K defined by (3.3) is a closed set in PC(J,R). A few details
concerning the order relation by the order cones and the Janhavi sets in an ordered Banach space are
given in Dhage [10, 11].

Remark 4.3. In this paper we considered a very simple nonlinear first order impulsive functional
differential equation for discussing the existence and approximation theorem via Dhage iteration prin-
ciple or method, however the same method may be extended to other complex nonlinear impulsive
functional differential equations of different orders and type with appropriate modifications for ob-
taining the algorithms and proving the existence and approximation of solution.
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