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Abstract

The main purpose of this paper is consider Newton-Taylor polynomial solutions method in numerical
solution of nonlinear system of differential equations. We apply Newton’s method to linearize it. We
found Taylor polynomial solution of the linear form. Sufficient conditions for convergence of the
numerical method are given and their applicability is illustrated with some examples. In numerical
examples we give two benchmark sample problems and compare the proposed method by the famous
Runge-Kutta fourth-order method. These sample problems practically show some advantages of the
Newton-Taylor polynomial solutions method.
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1. Introduction

In the present paper, we consider the Newton-Taylor polynomial solutions method for a system
of nonlinear differential equations of the form{

U
′
(t) = f(t, U(t)), 0 ≤ t,

U(0) = U0.
(1.1)
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where U(t) = (u1(t), ..., ud(t))
T is the unknown vector of functions and U0 =

(
u
(0)
1 , ..., u

(0)
d

)T
is the

known initial vector, for some d ∈ N,

U
′
(t) := (u

′

1(t), ..., u
′

d(t))
T , (1.2)

f(t, U(t)) := (f1(t, U(t)), ..., fd(t, U(t))T , (1.3)

Here f is known function of their arguments and in this paper, lhs := rhs, means that lhs is defined
by the rhs. Also this equations have been solved by different numerical techniques. Some of these
methods are direct methods such as Runge-Kutta method [7], and some of them are applicable
when they reduces to a system of Volterra integral equations such as Newton-Product method [2],
extrapolation method [3], and another Volterra integral representations methods [13, 6, 11, 9], for
some Various f .
According to the chapter two of [8] there exists a maximal b > 0 such that the equation (1.1) has a
unique solution on [0, b]. Rewrite Eq. (1.1) on [0, b] as follow{

U
′
(t)− f(t, U(t)) = 0, 0 ≤ t ≤ b,

U(0) = U0.
(1.4)

We shall apply the method on (1.4). In Section 2, we apply the Newton’s method to linearize
(1.4). A convergence analysis of Newton’s method for the problem is provided in the Subsections of
Section 2. Same convergence analysis are given in [4] for a Stefan Problem with Volterra integral
representation. Taylor polynomial solution of the linear form is obtained in Section 3. In section 4
we give an algorithm to show the applicability of the method. Finally in Section 5, numerical results
of some test problems solved by the proposed method are reported.

2. Newton’s Method

Let X and Y be two Banach spaces, F : X → Y be a Frechet differentiable operator. We are
going to introduce Newton’s method in solving the equation

F (U) = 0. (2.1)

The Newton’s method reads as follow: choose an initial guess U (0) ∈ X; for n = 0, 1, ..., compute
∆(n+1) from

F
′
(U (n))∆(n+1) = −F (U (n)), (2.2)

then U (n+1) = U (n) + ∆(n+1), and repeat this procedure for better approximation. The following
theorem gives evaluation of linear operator F

′
.

Theorem 2.1. Suppose X and Y be two Banach spaces and F : Xd −→ Y d is Frechet differentiable
operator at U (0) = (u

(0)
1 , u

(0)
2 , ..., u

(0)
d )T . Then the partial Frechet derivatives of F which shows with

DiF (U (0)) =
∂F (U)

∂ui

∣∣∣
U=U(0)

= Fui
(U (0)), (2.3)

exist and

F
′
(U (0))∆U =

d∑
i=1

Fui
(U (0))∆ui, ∆U = (∆u1,∆u2, ...,∆ud)

T . (2.4)

Conversely, if Fui
(U (0)), i = 1, ..., d exist in a neighborhood of (u

(0)
1 , u

(0)
2 , ..., u

(0)
d )T and are continuous

at (u
(0)
1 , u

(0)
2 , ..., u

(0)
d )T , then F is Frechet differentiable at (u

(0)
1 , u

(0)
2 , ..., u

(0)
d )T , and (2.4) holds.

Proof .See [1] theorem 4.3.14.�
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2.1. Application of Newton’s Method for the problem (1.4)

Consider the operator{
F : (C1[0, b])d −→ (C[0, b])d,
F (U)(t) := U

′
(t)− f(t, U(t)), U ∈ (C1[0, b])d, t ∈ [0, b].

(2.5)

Then (2.1) is the operator form of (1.4), and the associated Newton’s method is (2.2). From theorem
2.1

F
′
(U (n))∆U (n+1) =

d∑
i=1

Fui
(U (n))∆u

(n+1)
i , (2.6)

Fui
(U)∆u = lim

h→0
h−1[F (U + h∆uei)− F (U)]

= (∆u)
′
ei − lim

h→0
h−1[f(t, (U + h∆uei)(t))− f(t, U(t))]

= (∆u)
′
ei −

∂f

∂ui
(t, U(t))∆u(t), (2.7)

where ei is a vector with ith component 1, and the other components are zero. And

∂f

∂ui
(t, U(t)) =

(
∂f1
∂ui

(t, U(t)), ...,
∂fd
∂ui

(t, U(t))

)T

. (2.8)

From equations (2.6) and (2.7), the equation (2.2) reduces to

d∑
i=1

{(
∆u

(n+1)
i (t)

)′
ei −

∂f

∂ui
(t, U (n)(t))∆u

(n+1)
i (t)

}
= −F (U (n))(t), (2.9)

which is equivalent with(
∆U (n+1)(t)

)′
− f ′(t, U (n)(t))∆U (n+1)(t) = −F (U (n))(t).

Substitution of
(
∆U (n+1)(t)

)′
=
(
U (n+1)(t)

)′
−
(
U (n)(t)

)′
forces(

U (n+1)(t)
)′
− f ′(t, U (n)(t))U (n+1)(t) = f(t, U (n)(t))− f ′(t, U (n)(t))U (n)(t), (2.10)

where f
′
(t, U (n)(t)) =

[
∂fi
∂uj

(t, U(t))|U(t)=U(n)(t)

]
d×d

is the Jacobian matrix. This is a linear system of

ordinary differential equations, which is reduced from Newton’s method. For other related discussion
of Newton’s method see [5, 10].

2.2. Convergence of Newton’s Method

We show that for the operator F : X −→ Y with the Banach spaces X := (C1[0, b])
d
, Y :=

(C[0, b])d, all conditions of the following theorem hold for some varies vector functions f . A proof of
this theorem can be found in [15].

Theorem 2.2. (Kantorovich) Suppose that

1. F : D(F ) ⊆ X → Y is differentiable on an open convex set D(F ), and the derivative is
Lipschitz continuous, i.e. there exist a positive constant Lip > 0 such that

‖F ′(U)− F ′(V )‖ ≤ Lip‖U − V ‖ ∀U, V ∈ D(F ), (2.11)
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2. For some U (0) ∈ D(F ), [F
′
(U (0))]−1 exists and is a continuous operator from Y to X, and such

that h := αβLip ≤ 1/2 for some α ≥ ‖[F ′(U (0))]−1‖ and β ≥ ‖[F ′(U (0))]−1F (U (0))‖. Denote

t∗ =
1− (1− 2h)1/2

αLip
, t∗∗ =

1 + (1− 2h)1/2

αLip
(2.12)

3. U (1) is chosen so that B(U (1), r) ⊆ D(F ), where r = t∗ − β.
Then the equation (2.1) has a solution U∗ ∈ B(U (1), r) and the solution is unique in B(U (0), t∗∗)∩
D(F ); the sequence {U (n)} converges to U∗, and we have the error estimate

‖U (n) − U∗‖ ≤
(
1− (1− 2h)1/2

)2n
2nαLip

, n = 0, 1, 2, .... (2.13)

The left hand side of (2.10) defines F
′
(U (n))U (n+1), and hence for all U,W ∈ X with U =

(u1, ..., ud)
T , W = (w1, ..., wd)

T we have

F
′
(U)W = W

′ − A(U)W, (2.14)

where

A(U(t)) =

[
∂fi
∂uj

(t, U(t))

]
d×d

, (2.15)

where A(U(t)) is the Frechet or Jacobian matrix. Here D(F ) = X, is a Banach space and condition
(3) is automatically satisfies. For conditions (1) and (2) we have the following subsections

2.3. The derivative operator is Lipschitz Continuous

In this subsection we prove that for some b > 0 there exists Lip > 0 such that for V, Ṽ ∈ X we
have

‖F ′(V )− F ′(Ṽ )‖ ≤ Lip‖V − Ṽ ‖. (2.16)

Or
‖A(V )− A(Ṽ )‖ ≤ Lip‖V − Ṽ ‖. (2.17)

For this aim we give the following theoram

Theorem 2.3. (Generalized Taylor’s Theorem) Let A : X −→ Y be an operator between two Banach
spaces, such that A is n times continuously differentiable in a neighborhood b(V, r), r > 0, of V . Then

for all Ṽ in the interior of b(V, r)∥∥∥∥∥A(V )− A(Ṽ )−
n−1∑
i=1

1

i!
A(i)(V )(V − Ṽ )i

∥∥∥∥∥ ≤ sup
W∈l(V,Ṽ )

‖A(n)(W )‖‖V − Ṽ ‖
n

n!
.

where l(V, Ṽ ) is the line segment between V and Ṽ .

Proof . See [12], Theorem 5.8. �
The inequality (2.17) is obtain from the above theorem by choosing n = 1 and Lip = supW∈l(V,Ṽ ) ‖A

′
(W )‖.
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2.4. The hypothesis (2) of theorem 2.2 satisfies for some b > 0

We have the following theorem about this subsection

Theorem 2.4. Let X and Y be normed spaces with at least one of them being complete. Assume
L ∈ L(X, Y ) ( the set of all continuous linear operators from X to Y ) has a bounded inverse
L−1 : Y → X. Assume M ∈ L(X, Y ) satisfies ‖M − L‖ ≤ 1

‖L−1‖ . Then M : X → Y is a bijection,

M−1 ∈ L(Y,X) and ‖M−1‖ ≤ ‖L−1‖
1−‖L−1‖‖M−L‖ .

Proof . See [1], Theorem 2.3.5. �
Put U (0) = U0, since U(0) = U0 then F (U (0))(0) = 0. F is continuous and for a given ε > 0 there

exist b > 0 such that ‖F (U (0))‖ < ε on t ∈ [0, b]. In theorem 2.4 put X = (C1[0, b])d, Y = (C[0, b])d,
L(U) = U

′
and M(U) = F

′
(U (0))U , then ‖L‖ = ‖f‖ and ‖M − L‖ = ‖f ′(U (0))‖, which are known

for a known f . If ‖f ′(U (0))‖ ≤ 1
‖L−1‖ ≤ ‖f‖, then all hypotheses of theorem 2.4 satisfy and hence

M−1 =
[
F
′
(U (0))

]−1 ∈ L(Y,X). Thus ‖M−1F
′
(U (0))‖ ≤ ‖M−1‖ ≤ α(ε) → 0 as ε → 0, and hence

we can choose ε > 0 and associated b > 0 such that h = α(ε)β(ε)Lip ≤ 1
2
. For these problems the

hypothesis of (2) of theorem 2.2 is true.

3. The Taylor polynomial solutions Technique Applied to One Step of Newton’s Method

The linear differential equations (2.10) will be solved by the method is described in [14]. We are
going to explain this technique for One Step of Newton’s Method. For this purpose put P1(t) = Id
(the d × d identity matrix), P0(t) = −f ′(t, U (n)(t)), y(t) = U (n+1)(t) and r(t) = f(t, U (n)(t)) −
f
′
(t, U (n)(t))U (n)(t), then (2.10) reduces to

P0(t)y(t) + P1(t)y
′
(t) = r(t). (3.1)

which is in the form (8) of [14]. Suppose we are going to solve (3.1) on a short interval [a, b]. For
this aim we represent the solution by a truncated Taylor series

yi(t) =
N∑
j=0

y
(j)
i (c)

j!
(t− c)j, i = 1, ..., d, a ≤ c ≤ b. (3.2)

Where N ≥ 1 is any positive integer and y
(j)
i (c) are the Taylor coefficients to be determined. Deriva-

tion of (3.2) yields

y
′

i(t) =
N∑
j=1

y
(j)
i (c)

(j − 1)!
(t− c)j−1, i = 1, ..., d. (3.3)

Functions defined by equations (3.2)-(3.3) can be written in the matrix form

y
(m)
i (t) = T (t)MmAi, i = 1, ..., d,m = 0, 1, (3.4)

where
T (t) =

(
1, (t− c), (t− c)2, ..., (t− c)N

)
,

Ai =
(
yi(c), y

′

i(c), y
′′

i (c), ..., yNi (c)
)T

,
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M0 =


1
0!

0 0 . . . 0
0 1

1!
0 . . . 0

0 0 1
2!

. . . 0
...

...
... . . .

...
0 0 0 . . . 1

N !

 ,M1 =



0 1
0!

0 0 . . . 0
0 0 1

1!
0 . . . 0

0 0 0 1
2!

. . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
(N−1)!

0 0 0 0 . . . 0


.

From (3.4) we can write

y(i)(t) =


y
(i)
1 (t)

y
(i)
2 (t)

...

y
(i)
d (t)

 =


T (t)MiA1

T (t)MiA2
...

T (t)MiAd



=


T (t) 0 0 0

0 T (t) 0 0
...

... . . .
...

0 0 0 T (t)



Mi 0 0 0
0 Mi 0 0
...

... . . .
...

0 0 0 Mi



A1

A2
...
Ad


= T ∗(t)M∗

i A (3.5)

where

T ∗(t) =


T (t) 0 0 0

0 T (t) 0 0
...

... . . .
...

0 0 0 T (t)


d×d Blocks

∈ Rd×(N+1)d,

M∗
i =


Mi 0 0 0
0 Mi 0 0
...

... . . .
...

0 0 0 Mi


d×d Blocks

∈ R(N+1)d×(N+1)d,

A =


A1

A2
...
Ad


d×1 Blocks

∈ R(N+1)d×1.

Now we evaluate the Taylor coefficients by introducing of the Taylor collocation points

tj = a+
b− a
N

j, j = 0, 1, ..., N. (3.6)

Substitution of the collocation points (3.6) in to the matrix equation (3.1) forces

P0Y
(0) + P1Y

(1) = R, (3.7)

where

R =


r(t0)
r(t1)

...
r(tN)


(N+1)×1 Blocks

∈ R(N+1)d×1,
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Pi =


Pi(t0) 0 0 0

0 Pi(t1) 0 0
...

... . . .
...

0 0 0 Pi(tN)


(N+1)×(N+1) Blocks

∈ R(N+1)d×(N+1)d, i = 0, 1,

Y (i) =


y(i)(t0)
y(i)(t1)

...
y(i)(tN)

 =


T ∗(t0)M

∗
i A

T ∗(t1)M
∗
i A

...
T ∗(tN)M∗

i A

 = TM∗
i A, i = 0, 1, (3.8)

where
T =

[
T ∗(t0) T ∗(t1) . . . T ∗(tN)

]
1×(N+1) Blocks

∈ R(N+1)d×(N+1)d.

Substitution of (3.8) in (3.7) forces

P0TM
∗
0A+ P1TM

∗
1A = R. (3.9)

Define W = [wij](N+1)d×(N+1)d := P0TM
∗
0 + P1TM

∗
1 , then we must solve the following linear system

of algebric equations
WA = R. (3.10)

This system gives a general solution for y(t). For a particular solution that satisfies the initial
condition

y(a) = λ, (3.11)

where λ = (λ1, ..., λd)
T is a known initial vector, we do as the following procedure.

From (3.5) we have
T ∗(a)M∗

0A = λ. (3.12)

If we define V := T ∗(a)M∗
0A, then the fundamental matrix form of initial conditions is

V A = λ. (3.13)

Replace the rows of the matrix V and λ, by the last rows of the matrix W and R, respectively and
obtain

W̃A = R̃, (3.14)

where

W̃ =



w11 w12 . . . w1,(N+1)d

w21 w22 . . . w2,(N+1)d
...

... . . .
...

wNd,1 wNd,2 . . . wNd,(N+1)d

v11 v12 . . . v1,(N+1)d

v21 v22 . . . v2,(N+1)d
...

... . . .
...

vd,1 vd,2 . . . wd,(N+1)d


, R̃ =



r(t0)
r(t1)

...
r(tN−1)
λ1
λ2
...
λd


.

By solving the linear algebraic equation (3.14) we obtain the particular solution of the initial value
problem  P0(t)y(t) + P1(t)y

′
(t) = r(t),

y(a) = λ.
(3.15)
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4. Algorithm of Newton-Taylor polynomial solutions

In this section we give an algorithm for the initial value problem (3.15) on [0, bNi] = ∪Ni−1
i=0 [bi, b(i+

1)], where Ni ∈ N and b > 0 are the number and length of partial intervals, respectively.
Note that in this algorithm we extend the method of described in [14] from two points of view. First
we apply the method for nonlinear problems and second we extend the method for union of short
intervals, which are the advantages of the algorithm.

Step1 Input integers d,N,Ni and Nn (number of Newton’s iteration), real b > 0, initial vector

λ =
(
u
(0)
1 , ..., u

(0)
d

)T
and vector valued function f(t, U(t));

Evaluate M0,M1,M
∗
0 ,M

∗
1 and P1 as mentioned in section 3;

Set a = 0, length = b−a, U (0)(t) =

 u
(0)
1 t ≤ b

0 otherwise

, ...,

 u
(0)
d t ≤ b

0 otherwise

T

and Ũ(t) = U (0)(t);

Step2
step 2.1 Set i1 = 1; (interval loop)
step2.2 If i1 > Ni, go to Step3;
Set c = a+b

2
;

tj = a+ b−a
N
j j = 0, 1, ..., N ;

Evaluate matrices T (t), T ∗(t), T in the current interval as introduced in Section 3;
step2.3 Set i2 = 1; (Newton’s loop)
step2.4 If i2 > Nn, go to step2.5;
Evaluate matrix P0 in the current interval as introduced in Section 3;
Set W=P0TM

∗
0 + P1TM

∗
1 ;

V = T ∗(a)M∗
0 ;

Remove d rows of W and replace it by V , then put the new matrix in W̃ ;
Set r(t) = f(t, U (0)(t))− f ′(t, U (0)(t))U (0)(t);

R̃ =


r(t0)
r(t1)

...
r(tN−1)

λ

;

Solve the linear system W̃A = R̃ and obtain A;

Set Ũ(t) =




ũ1(t) t ≤ a

(T ∗(a)M∗
0A)1 a < t ≤ b

0 otherwise

, ...,


ũd(t) t ≤ a

(T ∗(a)M∗
0A)d a < t ≤ b

0 otherwise


T

;

U (0)(t) = Ũ(t);
i2 = i2 + 1 and go to step 2.4;
step2.5 Set λ = Ũ(b);
a=b;
b=length+b;
i1 = i1 + 1 and go to step 2.2;
Step3 Plot Ũ(t) on [0, bNi] as the approximated solution by the proposed method, and end the
algorithm.
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5. Numerical Examples and Discussion

Example 5.1. Consider the initial value problem (1.1) with

f(t, U(t)) =

[
u2(t)− u21(t)

2u2(t)u1(t)− 2u31(t)

]
, U0 =

[
0
1

]
.

This system has the exact solution U(t) =

[
t

t2 + 1

]
. We solve this system by two methods. In

Table 1 we give the Newton-Taylor polynomial solutions method with b = 0.2, which is the length
of the partial intervals, N = 3, Nn = 5, Ni = 25 and obtain the solution on [0, 5]. In Table 2,
we give the Runge-Kutta fourth-order method with step length h = 0.1 on [0, 5]. In Table 1 and 2,
columns 2,3 shows absolute errors of ũ1 and ũ2 at ti = 0.5i, i = 0, 1, ..., 10, and columns 4,5 show
relative errors of ũ1 and ũ2 at ti = 0.5i, i = 0, 1, ..., 10, by the proposed and Runge-Kutta fourth-order
methods, respectively. u1, u2 are exact solutions and ũ1, ũ2 are the approximated solutions. In all
Tables of this paper, neg means negligible. As Table 1 shows the accuracy of the proposed method
has a superconvergence result, whereas the famous Runge-Kutta fourth-order method has an ordinary
convergence accuracy.

Table 1: Absolute and relative errors of ũ1 and ũ2 for Example 5.1. by the Newton-Taylor polynomial solutions
method

i |u1(ti)− ũ1(ti)| |u2(ti)− ũ2(ti)|
∣∣∣u1(ti)−ũ1(ti)

u1(ti)

∣∣∣ ∣∣∣u2(ti)−ũ2(ti)
u2(ti)

∣∣∣
0 neg neg
1 1.1× 10−16 neg 2.2× 10−16 neg
2 6.7× 10−16 neg 6.7× 10−16 neg
3 2.2× 10−16 8.9× 10−16 1.5× 10−16 2.7× 10−16

4 neg neg neg neg
5 neg 3.6× 10−15 neg 4.9× 10−16

6 4.0× 10−15 3.0× 10−14 1.3× 10−15 3.0× 10−16

7 7.6× 10−15 8.2× 10−14 2.2× 10−15 6.2× 10−15

8 2.1× 10−14 2.1× 10−13 5.3× 10−15 1.3× 10−14

9 4.3× 10−14 4.2× 10−13 9.5× 10−15 2.0× 10−14

10 4.1× 10−14 5.4× 10−13 8.2× 10−15 2.1× 10−14

Example 5.2. Consider the initial value problem (1.1) with

f(t, U(t)) =

 u21(t)− u2(t)− 2u1(t) + 2
2u21(t)− 2u1(t)− 2u2(t)

3u1(t)u2(t)− 3u3(t)

 , U0 =

 1
0
0

 .

This system has the exact solution U(t) =

 1 + t
t2

t3

. Again we solve this system by two methods.

In Tables 3 and 4 we give the Newton-Taylor polynomial solutions method with b = 0.2, which is
the length of the partial intervals, N = 3, Nn = 5, Ni = 25 and obtain the solution on [0, 5]. In
Tables 5 and 6, we give the Runge-Kutta fourth-order method with step length h = 0.05 on [0, 5]. In
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Table 2: Absolute and relative errors of ũ1 and ũ2 for Example 5.1. by the Runge-Kutta fourth-order method

i |u1(ti)− ũ1(ti)| |u2(ti)− ũ2(ti)|
∣∣∣u1(ti)−ũ1(ti)

u1(ti)

∣∣∣ ∣∣∣u2(ti)−ũ2(ti)
u2(ti)

∣∣∣
0 neg neg
1 4.2× 10−6 4.3× 10−6 8.4× 10−6 3.4× 10−6

2 8.5× 10−6 1.7× 10−5 8.5× 10−6 8.4× 10−6

3 1.3× 10−5 3.9× 10−5 8.5× 10−6 1.2× 10−5

4 1.7× 10−5 6.9× 10−5 8.6× 10−6 1.4× 10−5

5 2.2× 10−5 1.1× 10−4 8.6× 10−6 1.5× 10−5

6 2.6× 10−5 1.6× 10−4 8.7× 10−6 1.6× 10−5

7 3.1× 10−5 2.1× 10−4 8.7× 10−6 1.6× 10−5

8 3.5× 10−5 2.8× 10−4 8.8× 10−6 1.7× 10−5

9 4.0× 10−5 3.6× 10−4 8.8× 10−6 1.7× 10−5

10 4.4× 10−5 4.5× 10−4 8.9× 10−6 1.7× 10−5

Tables 3 and 5, columns 2,3,4 show absolute errors of ũj, j = 1, 2, 3 at ti = 0.5i, i = 0, 1, ..., 10, and
in Tables 4 and 6 columns 2,3,4 show relative errors of ũj, j = 1, 2, 3 at ti = 0.5i, i = 0, 1, ..., 10,
by the proposed and Runge-Kutta fourth-order methods, respectively. u1, u2, u3 are exact solutions
and ũ1, ũ2, ũ3 are the approximated solutions. As these tables show the accuracy of the Runge-Kutta
fourth-order method is not bad, but the accuracy of the proposed method is very good.

Table 3: Absolute errors of ũ1, ũ2 and ũ3 for Example 5.2. by the Newton-Taylor polynomial solutions method

i |u1(ti)− ũ1(ti)| |u2(ti)− ũ2(ti)| |u3(ti)− ũ3(ti)|
0 neg neg neg
1 2.2× 10−16 2.2× 10−16 5.6× 10−17

2 4.4× 10−16 4.4× 10−16 2.2× 10−16

3 1.8× 10−15 8.9× 10−16 5.8× 10−15

4 3.1× 10−15 1.1× 10−14 2.8× 10−14

5 3.1× 10−15 1.6× 10−14 5.7× 10−14

6 1.8× 10−15 1.1× 10−14 7.5× 10−14

7 2.6× 10−14 4.6× 10−14 1.7× 10−13

8 3.6× 10−13 8.1× 10−13 3.2× 10−12

9 7.8× 10−12 1.8× 10−11 7.8× 10−11

10 2.8× 10−10 6.5× 10−10 3.0× 10−9
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Table 4: Relative errors of ũ1, ũ2 and ũ3 for Example 5.2. by the Newton-Taylor polynomial solutions method

i
∣∣∣u1(ti)−ũ1(ti)

u1(ti)

∣∣∣ ∣∣∣u2(ti)−ũ2(ti)
u2(ti)

∣∣∣ ∣∣∣u3(ti)−ũ3(ti)
u3(ti)

∣∣∣
1 1.5× 10−16 8.9× 10−16 4.4× 10−16

2 2.2× 10−16 4.4× 10−16 2.2× 10−16

3 7.1× 10−16 3.9× 10−16 1.7× 10−15

4 1.0× 10−15 2.8× 10−15 3.6× 10−15

5 8.9× 10−16 2.6× 10−15 3.6× 10−15

6 4.4× 10−16 1.2× 10−15 2.8× 10−15

7 5.7× 10−15 3.8× 10−15 4.0× 10−15

8 7.1× 10−14 5.1× 10−14 5.0× 10−14

9 1.4× 10−12 8.9× 10−13 8.6× 10−13

10 4.7× 10−11 2.6× 10−11 2.4× 10−11

Table 5: Absolute errors of ũ1, ũ2 and ũ3 for Example 5.2. by the Runge-Kutta fourth-order method

i |u1(ti)− ũ1(ti)| |u2(ti)− ũ2(ti)| |u3(ti)− ũ3(ti)|
0 neg neg neg
1 5.2× 10−8 3.2× 10−7 1.6× 10−6

2 1.3× 10−7 6.2× 10−7 1.8× 10−6

3 2.1× 10−7 8.7× 10−7 1.8× 10−6

4 2.4× 10−7 9.6× 10−7 1.5× 10−6

5 1.1× 10−7 5.7× 10−7 1.6× 10−7

6 9.7× 10−7 2.3× 10−6 1.1× 10−5

7 1.0× 10−5 2.6× 10−5 9.9× 10−5

8 1.4× 10−4 3.3× 10−4 1.3× 10−3

9 3.0× 10−3 6.9× 10−3 3.0× 10−2

10 1.1× 10−1 2.5× 10−1 1.2

Table 6: Relative errors of ũ1, ũ2 and ũ3 for Example 5.2. by the Runge-Kutta fourth-order method

i
∣∣∣u1(ti)−ũ1(ti)

u1(ti)

∣∣∣ ∣∣∣u2(ti)−ũ2(ti)
u2(ti)

∣∣∣ ∣∣∣u3(ti)−ũ3(ti)
u3(ti)

∣∣∣
1 3.5× 10−8 1.3× 10−6 1.3× 10−5

2 6.7× 10−8 6.2× 10−7 1.8× 10−6

3 8.3× 10−8 3.9× 10−7 5.2× 10−7

4 8.0× 10−8 2.4× 10−7 1.9× 10−7

5 3.0× 10−8 9.2× 10−8 1.0× 10−8

6 2.4× 10−7 2.5× 10−7 3.9× 10−7

7 52.3× 10−6 2.1× 10−6 2.3× 10−6

8 2.8× 10−5 2.1× 10−5 2.1× 10−5

9 5.4× 10−4 3.4× 10−4 3.3× 10−4

10 1.9× 10−3 1.0× 10−2 9.5× 10−3

References

[1] K. Atkinson and W. Han, Theoritical Numerical Analysis, Springer, New York, 2001.



248 Babayar-Razlighi

[2] B. Babayar-Razlighi and B. Soltanalizadeh, Numerical solution of nonlinear singular Volterra integral system by
the Newton-Product integration method, Math. Comput. Model. 58 (2013) 1696–1703.

[3] B. Babayar-Razlighi, Extrapolation method for Numerical solution of a model for endemic infectious diseases,
Mathematical Researches 5 (1) (2019) 29–38 (In Persian).

[4] B. Babayar-Razlighi, K. Ivaz and M. R. Mokhtarzadeh, Newton-Product Integration for a Stefan Problem with
Kinetics, J. Sci. I. R. of Iran 22(1) (2011) 51–61.

[5] M. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1997.
[6] H. Brunner, Implicitly linear collocation methods for nonlinear Volterra equations, Appl. Numer. Math. 9 (1992)

235-247.
[7] R.L. Burden and J.D. Faires, Numerical Methods, 3st ed., Thomson/Brooks/Cole, 2003.
[8] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill, New York, 1955.
[9] L.M. Delves and J.L. Mohamed, Computational methods for integral equations, Cambridge University Press, 1985.
[10] L. Kantorovich, and G. Akilov, Nonlinearity and Functional Analysis in Normed Spaces. 2nd ed, Pergamon Press,

New York, 1982.
[11] P. Linz, Analytical and numerical methods for Volterra equations, SIAM Philadelphia, 1985.
[12] P. Linz, Theoretical numerical Analysis, John Wiley and sons Inc., 1979.
[13] K. Maleknejad and M. Hadizadeh, Numerical Study of nonlinear Volterra integro-differential equations by Ado-

mian’s method, J. Sci. I.R. Iran 9 (1998) 51–58.
[14] M. Sezer, A. Karamete and M. Gulsu, Taylor polynomial solutions of systems of linear differential equations with

variable coefficients, Int. J. Comput. Math. 82(6) (2005) 755-764.
[15] E. Zeidler, Nonlinear Functional analysis and its applications. I: Fixed point Theorems, Springer-Verlog, New

York, 1985.


	Introduction
	Newton's Method
	Application of Newton's Method for the problem (1.4)
	Convergence of Newton's Method
	The derivative operator is Lipschitz Continuous
	The hypothesis (2) of theorem 2.2 satisfies for some b>0

	The Taylor polynomial solutions Technique Applied to One Step of Newton's Method
	Algorithm of Newton-Taylor polynomial solutions
	Numerical Examples and Discussion

