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Abstract

In this paper, given a poset (X,≤), we introduce some drifts on a groupoid (X, ∗) with respect to
(X,≤), and we obtain several properties of these drifts related to the notion of Bin(X). We discuss
some connections between fuzzy subalgebras and upward drifts.
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1. Introduction

The notion of a semiring was first introduced by H. S. Vandiver in 1934. Semirings have proven
to be useful in some areas of applied mathematics and computer sciences. Semirings have also
proved useful in studying automata and formal languages ([1]). The notion of a fuzzy subset of a
set was introduced by L. A. Zadeh ([10]). His seminal paper in 1965 has opened up new insights
and applications in a wide range of scientific fields. J. N. Mordeson and D. S. Malik ([7]) published
a remarkable book, Fuzzy commutative algebra, presented a fuzzy ideal theory of commutative rings
and applied the results to the solution of fuzzy intersection equations. The fuzzy semiring and
the K-fuzzy semiring, where K denotes some subset of R closed under the operation min, +, or
max. Min-max-plus computations (and suitable semirings) are used in several areas, for example, in
mathematical physics in the study of several partial differential equations. It is interesting to observe
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that the fuzzy calculus, which is used for artificial intelligence purposes, indeed involves essentially
“(min, max) semirings” ([3]).

The notion of the semigroup (Bin(X), �) was introduced by H. S. Kim and J. Neggers ([5]). H.
Fayoumi ([2]) introduced the notion of the center ZBin(X) in the semigroup Bin(X) of all binary
systems on a set X, and showed that if (X, •) ∈ ZBin(X), then x 6= y implies {x, y} = {x• y, y •x}.
Moreover, she showed that a groupoid (X, •) ∈ ZBin(X) if and only if it is a locally-zero groupoid.
J. S. Han et al. ([4]) introduced the notion of hypergroupoids (HBin(X),�), and showed that
(HBin(X),�) is a supersemigroup of the semigroup (Bin(X),�) via the identification x ←→ {x}.
They also proved that (HBin∗(X),	, [∅]) is a BCK-algebra.

H. S. Kim et al. ([6]) introduced several types of drifts. Using the product “�” in (Bin(X),�),
they discussed connections between order relations of Bin(R) with drifts, fuzzy universal for upward
drifts, and suitable groupoids.

In this paper, given a poset (X,≤), we introduce several upward drifts on a groupoid (X, ∗)
with respect to (X,≤), and we obtain some properties related to the notion of Bin(X). We discuss
relations between fuzzy subalgebras and upward drifts. We concentrate on several types of upward
drifts, although other types are mentioned also. For basic notions on partially ordered sets, we refer
to ([8]).

2. Preliminaries

Given a non-empty set X, we let Bin(X) be the collection of all groupoids (X, ∗), where ∗ : X×X →
X is a map and where ∗(x, y) is written in the usual product form. Given elements (X, ∗) and (X, •)
of Bin(X), define a product “�” on these groupoids as follows:

(X, ∗)� (X, •) = (X,�)

where
x� y = (x ∗ y) • (y ∗ x)

for any x, y ∈ X. Using this notion, H. S. Kim and J. Neggers proved the following theorem.

Theorem 2.1. ([5]) (Bin(X), �) is a semigroup, i.e., the operation “�” as defined in general is
associative. Furthermore, the left zero semigroup is the identity for this operation.

Given the real numbers R, we shall discuss certain groupoids (R, ∗) which we will refer to as
drifts. Let “∗” be a binary operation on R, i.e., (R, ∗) is a groupoid. We recognize the following
types. A groupoid (R, ∗) is said to be an upward drift if x ∗ y ≥ min{x, y} for any x, y ∈ R. It
is said to be strict if x ∗ y > min{x, y} for any x 6= y ∈ R. Thus, if we consider µ(x) = x, then
although µ is not a fuzzy subset, µ(x ∗ y) ≥ min{µ(x), µ(y)}, i.e., it satisfies a similar identity. A
groupoid (R, ∗) is said to be a strong upward drift if x ∗ y ≥ max{x, y} for any x, y ∈ R. It is said
to be strict if x ∗ y > max{x, y} for any x, y ∈ R. A groupoid (R, ∗) is said to be a downward
drift if x ∗ y ≤ max{x, y} for any x, y ∈ R. It is said to be strict if x ∗ y < min{x, y} for all
x 6= y ∈ R. It is said to be a strong down drift if x ∗ y ≤ min{x, y} for any x, y ∈ R. It is said to
be strict if x ∗ y < min{x, y} for all x 6= y ∈ R. A groupoid (R, ∗) is said to be an average drift
if min{x, y} ≤ x ∗ y ≤ max{x, y} for any x, y ∈ R, i.e., it is both upward and downward as a drift.
Again, it is said to be strict if min{x, y} < x ∗ y < max{x, y} for any x 6= y ∈ R, i.e., it is both a
strict upward drift and a strict downward drift.
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Example 2.2. ([6]) (1). Let x ∗ y := λx + (1 − λ)y for any x, y ∈ R where 0 ≤ λ ≤ 1. Then
x∗y ≥ min{x, y} and x∗y ≤ max{x, y} for any x, y ∈ R, so that (R, ∗) is an example of an average
drift.
(2). Let x ∗ y := |x| + |y| for any x, y ∈ R. Then |x| ≥ x implies x ∗ y ≥ max{x, y}, i.e., (R, ∗) is
an example of a strong upward drift.
(3). Let x ∗ y := −(|x| + |y|) for any x, y ∈ R. Then −|x| ≤ x implies x ∗ y ≤ min{x, y}, i.e., (R,
∗) is an example of a strong downward drift.
(4). Let (R, ∗) be an (strong, resp.) upward (downward, resp.) drift. If we define a new binary
operation ? on R by x ? y := −(x ∗ y) for any x, y ∈ R, then (R, ?) is a (strong, resp.) downward
(upward, resp.) drift.

Theorem 2.3. ([6]) The set of all upward drifts forms a subsemigroup of (Bin(R),�).

Proposition 2.4. ([6]) Let (R, ∗) and (R, •) be groupoids defined by x ∗ y := λx + (1 − λ)y and
x • y := µx + (1 − µ)y for any x, y ∈ R where 0 ≤ λ, µ ≤ 1. If we define (R,�) := (R, ∗)�(R, •),
then (R,�) is an average drift.

Remark 2.5. Let (R, ∗) ∈ Bin(R) and let e ∈ R such that x ∗ x = e for any x ∈ R. Then (R,
∗) is neither an upward drift nor a downward drift. In fact, assume that (R, ∗) is an upward drift.
Then e = x ∗ x ≥ min{x, x} = x for any x ∈ R, a contradiction. Similarly, if we assume that (R,
∗) is a downward drift, then e = x ∗ x ≤ max{x, x} = x for any x ∈ R, a contradiction.

Example 2.6. ([6]) Define a binary operation “∗” on R by x ∗ y := x + y for any x, y ∈ R. Then
1 + 3 > max{1, 3}; (−1) + (−3) < min{−1,−3}, and min{1, 2} < 1 + 2 < max{1, 2} does not hold,
i.e., (R,+) is not a drift of any kind.

Remark 2.7. Given any groupoid (R, ∗) we have an associated partition of the plane into an (strong)
upward drift, a (strong) downward drift and an average drift region.

Example 2.8. ([6]) Suppose (R, ∗) is the groupoid with x ∗ y := x2 + y2 for any x, y ∈ R. Then
partitioning the plane can be done as follows: R2 = A ∪B where A = {(x, y) |x2 + (y − 1

2
)2 ≤ (1

2
)2}

and B = {(x, y) | (x − 1
2
)2 + y2 ≤ (1

2
)2}. It can be easily seen that A is an upward drift region and

B is a strong downward drift region.

3. Upward drifts on a poset

Let (X,≤) be a poset. A groupoid (X, ∗) is said to be an upward drift if for all x, y ∈ X, we have

x ∗ y ≥ x or x ∗ y ≥ y. (3.1)

If (R,≤) is the real numbers with the standard order, then min{x, y} ∈ {x, y} and thus the condition
(3.1) has the equivalent form, for all x, y ∈ R,

x ∗ y ≥ min{x, y}. (3.2)
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If (X, ∗) is a left-zero semigroup, then x ∗ y = x implies x ∗ y ≥ x and thus (X, ∗) is an upward
drift for any poset (X,≤).

An upward drift (X, ∗) is said to be strict if for all x, y ∈ X

x ∗ y > x or x ∗ y > y. (3.3)

Given a poset (X,≤), we denote by UD(X,≤) the set {(X, ∗) ∈ Bin(X) | (X, ∗) is an upward
drift with respect to (X,≤)}, and we denote by SUD(X,≤) the set {(X, ∗) ∈ Bin(X) | (X, ∗) is a
strict upward drift with respect to (X,≤)}.

If (X, ∗) is a left-zero semigroup, then x ∗ y = x for all x, y ∈ X. If (3.3) is satisfied, then
x ∗ y = x > y for all y ∈ X, and thus x ∗ x = x > x, an impossibility. Hence (X, ∗) 6∈ SUD(X,≤).

Theorem 3.1. (UD(X,≤),�) is a subsemigroup of (Bin(X),�) and (SUD(X,≤),�) is a two-
sided ideal of (UD(X,≤),�).

Proof . Given (X, ∗), (X, •) ∈ Bin(X), we let (X,�) := (X, ∗)�(X, •). Then x�y = (x∗y)•(y∗x) ≥
x ∗ y or x�y = (x ∗ y) • (y ∗x) ≥ y ∗x, since (X, •) is an upward drift. Since (X, ∗) is also an upward
drift, we obtain x�y ≥ x or x�y ≥ y, proving that (UD(X,≤),�) is a subsemigroup of (Bin(X),�).

If (X, ∗) ∈ SUD(X,≤), then x�y = (x ∗ y) • (y ∗ x) > x ∗ y or x�y > y ∗ x, so that if
x�y > x ∗ y, then x�y > x ∗ y ≥ x or x�y > x ∗ y ≥ y, i.e., the condition (3.3) is satisfied and
(X,�) ∈ SUD(X,≤). Similarly, if (X, ∗) ∈ SUD(X,≤), then x�y = (x ∗ y) • (y ∗ x) ≥ x ∗ y or
x�y ≥ y ∗ x. It follows from (3.3) that x�y > x or x�y > y, and thus (X,�) satisfies (3.3) as well,
i.e., (X,�) ∈ SUD(X,≤). �

A groupoid (X, ∗) is said to be selective [6, 7] if x ∗ y ∈ {x, y} for all x, y ∈ X. Since selective
groupoids can be connected to digraphs, we have another natural connection between groupoids of
a certain type and digraphs.

Proposition 3.2. Let (X,≤) be an anti-chain, i.e., x ≤ y ⇔ x = y, for all x, y ∈ X. Then
(X, ∗) ∈ UD(X,≤) if and only if (X, ∗) is selective.

Proof . If (X, ∗) ∈ UD(X,≤), then either x ∗ y ≥ x or x ∗ y ≥ y for all x, y ∈ X. Since (X,≤)
is an anti-chain, it follows that either x ∗ y = x or x ∗ y = y for all x, y ∈ X, which is equivalent
to x ∗ y ∈ {x, y} for all x, y ∈ X, proving that (X, ∗) is a selective groupoid. The converse is
straightforward. �

Proposition 3.3. Let (X, ∗) be a selective groupoid. If (X,≤) is any poset, then (X, ∗) ∈ UD(X,≤).

Proof . Assume (X, ∗) 6∈ UD(X,≤). Then there exist elements x, y (x 6= y) in X such that x∗y 6≥ x
and x ∗ y 6≥ y. Since (X, ∗) is selective, we have x ∗ y ∈ {x, y}. The condition x ∗ y 6≥ x implies
x ∗ y = y. In fact, if x ∗ y = x, then x = x ∗ y 6≥ x, a contradiction. Similarly, x ∗ y ∈ {x, y} and
x ∗ y 6≥ y implies that x ∗ y = x. Hence we obtain x = x ∗ y = y, a contradiction. �

If a selective groupoid is a strict upward drift, then x ∗ y > x or x ∗ y > y. Hence, since x ∗ x > x
is impossible in this case, we may restrict our definition of the strictness to a weaker form:
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An upward drift (X, ∗) is said to be oriented if for all x, y ∈ X with x 6= y,

x ∗ y > x or x ∗ y > y. (3.4)

Given a poset (X,≤), we denote by OUD(X,≤) the set {(X, ∗) ∈ Bin(X) | (X, ∗) is an oriented
upward drift with respect to (X,≤)}.

Example 3.4. Let (X,≤) be a poset and let (X, ∗) be a left-zero semigroup. Assume (X, ∗) is an
oriented upward drift. Then for all x 6= y in X, either x ∗ y > x or x ∗ y > y. Since (X, ∗) is a
left-zero semigroup, we have x > y for all y 6= x in X. Similarly, the fact y ∗x = y implies that y > x
for all x ∈ y in X. It follows that, if x 6= y, then x > y, y > x, a contradiction, so that if |X| ≥ 2,
then (X, ∗) is not an oriented upward drift with respect to (X,≤).

Theorem 3.5. (OUD(X,≤),�) is a two-sided ideal of (UD(X,≤),�).

Proof . Let (X, ∗), (X, •) ∈ UD(X,≤) and let (X, •) ∈ OUD(X,≤). If x 6= y in X, then x�y =
(x∗y)•(y∗x) > x∗y or x�y > y∗x. Since (X, ∗) ∈ UD(X,≤), we have either (x∗y ≥ x or x∗y ≥ y)
or (y ∗ x ≥ y or y ∗ x ≥ x). It follows that x�y > x or x�y > y, proving that (X,�) ∈ OUD(X,≤).
Similarly, if (X, ∗) ∈ OUD(X,≤) and (X, •) ∈ UD(X,≤), then x�y = (x ∗ y) • (y ∗ x) ≥ x ∗ y or
x�y ≥ y ∗ x. Since (X, •) ∈ OUD(X,≤), we have either (x ∗ y > x or x ∗ y > y) or (x ∗ y > y or
x ∗ y > x). It follows that x�y > x or x�y > y, proving that (X,�) ∈ OUD(X,≤). �

4. Strong upward drifts on a poset

In [6] we defined the notion of the strong upward drift on the real numbers. In this section we define
it on partially ordered sets.

Let (X,≤) be a poset. A groupoid (X, ∗) is said to be a strong upward drift if, for all x, y ∈ X,
we have

x ∗ y ≥ x and x ∗ y ≥ y. (4.1)

If (R,≤) is the real numbers with the standard order, then max{x, y} ∈ {x, y} and thus condition
(4.1) has the equivalent form, for all x, y ∈ R,

x ∗ y ≥ max{x, y}. (4.2)

We have associated strict conditions:

x ∗ y > x and x ∗ y ≥ y (4.1)∗L,

x ∗ y ≥ x and x ∗ y > y (4.1)∗R,

x ∗ y > x and x ∗ y > y (4.1)∗.
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Example 4.1. (a). Let X1 := [0,∞) and let λ, µ ≥ 0. If we define x∗y := λx+µy for all x, y ∈ X1,
then (3.3)∗L does not hold. In fact, if x ∗ y > x, x ∗ y ≥ y for all x, y ∈ X1, then λx + µy > x,
λx+ µy ≥ y. It follows that µy > (1− λ)x for all x, y ∈ X1. If we let y := 0, then 0 > (1− λ)x for
all x ∈ X1 and hence 0 > (1− λ)0 = 0, a contradiction.
(b). Let X2 := (0,∞) and let λ, µ ≥ 1. If we define x ∗ y := λx + µy for all x, y ∈ X2, then
(3.3)∗L, (3.3)∗R and (3.3)∗ hold. In fact, x ∗ y ≥ y is equivalent to λx > 0 ≥ (1 − µ)y which is true
for all x, y ∈ X2. Moreover, x ∗ y > x is equivalent to µy > 0 ≥ (1 − µ)x which is also true for all
x, y ∈ X2.

Example 4.2. (a). Let X := R, the set of all real numbers. If we define x ∗ y := max{x+ 1, y} for
all x, y ∈ X, then x ∗ y = max{x+ 1, y} ≥ x+ 1 > x, and x ∗ y = max{x+ 1, y} ≥ y. Hence (3.3)∗L
holds. But (3.3)∗R does not hold, since 2 ∗ 5 = max{2 + 1, 5} 6> 5.
(b). Let X := R, the set of all real numbers. If we define x ∗ y := max{x, y + 1} for all x, y ∈ X,
then it is easy to see that (3.3)∗R holds, but not (3.3)∗L.
(c). Let X := R, the set of all real numbers. If we define x ∗ y := max{x, y + 1} for all x, y ∈ X,
then x ∗ y = max{x + 1, y + 1} ≥ x + 1 > x and x ∗ y = max{x + 1, y + 1} ≥ y + 1 > y, i.e., (3.3)∗

holds.

Given a poset (X,≤), we denote the set of all strong upward drifts (X, ∗) with respect to (X,≤)
by SUD(X,≤), i.e.,

SUD(X,≤) = {(X, ∗) ∈ Bin(X) | (X, ∗) : strong upper drift w. r. t. (X,≤)}.

Theorem 4.3. (SUD(X,≤),�) is a subsemigroup of (Bin(X),�).

Proof . Given (X, ∗), (X, •) ∈ SUD(X,≤), we let (X,�) := (X, ∗)� (X, •). Then x�y = (x ∗ y) •
(y ∗ x) ≥ x ∗ y and x�y = (x ∗ y) • (y ∗ x) ≥ y ∗ x, since (X, •) is a strong upward drift. Since (X, ∗)
is also a strong upward drift, we obtain x�y ≥ x and x�y ≥ y, proving the theorem. �

Proposition 4.4. (SUD(X,≤),�) is a right ideal of (UD(X,≤),�).

Proof . Given (X, ∗) ∈ SUD(X,≤) and (X, •) ∈ UD(X,≤), we have x�y = (x ∗ y) • (y ∗ x) ≥ x ∗ y
or x�y = (x ∗ y) • (y ∗ x) ≥ y ∗ x for all x, y ∈ X. Since (X, ∗) ∈ SUD(X,≤), we obtain x�y ≥ x
and x�y ≥ y, proving that (X,�) = (X, ∗)�(X, •) ∈ SUD(X,≤). �

Corollary 4.5. ([6]) If (R, ∗) is a strong upward drift and (R, •) is an upward drift, where R is the
set of all real numbers, then (R,�) := (R, ∗)�(R, •) is also a strong upward drift.

Proposition 4.6. Let (X, ∗) be a strong upward drift and let (X, •) satisfy the condition (3.3)∗L. If
(X,�) := (X, ∗)�(X, •), then (X,�) satisfies the condition (3.3)∗.
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Proof . Given x, y ∈ X, since (X, •) is strong and (X, ∗) satisfies the condition (3.3)∗L, we have

x�y = (x ∗ y) • (y ∗ x) > x ∗ y ≥ x, y,

i.e., x�y > x and x�y > y. Hence (X,�) satisfies the condition (3.3)∗. �

Proposition 4.7. Let (X, ∗) satisfy (3.3)∗L. Let (X, •) be a strong upward drift. If (X,�) :=
(X, ∗)�(X, •), then (X,�) satisfies the condition (3.3)∗.

Proof . Given x, y ∈ X, since (X, •) is strong, we have

x�y = (x ∗ y) • (y ∗ x) ≥ x ∗ y, y ∗ x.

Since (X, ∗) satisfies the condition (3.3)∗L, we obtain x ∗ y > x, x ∗ y ≥ y and y ∗ x > y, y ∗ x ≥ x.
Hence we have x�y ≥ x ∗ y > x and x�y ≥ y ∗x > y. This shows that (X,�) satisfies the condition
(3.3)∗. �

Proposition 4.8. Let (X,≤) be a poset and let (X, ∗) be a leftoid for f : X → X such that x ≤ f(x)
for all x ∈ X. Then (X, ∗) ∈ UD(X,≤).

Proof . Given x, y ∈ X, we have x ∗ y = f(x) ≥ x. It follows that (X, ∗) ∈ UD(X,≤). �

Proposition 4.9. Let (X,≤) be a poset and let (X, ∗) be a leftoid for f : X → X. If (X, ∗) ∈
SUD(X,≤), then (X, ∗) is a trivial groupoid.

Proof . If (X, ∗) ∈ SUD(X,≤), then f(x) = x ∗ y ≥ y for all x, y ∈ X. It follows that f(x) ≥ f(y)
for all x, y ∈ X. If we exchange x with y, then we have f(y) ≥ f(x), proving that f(x) = f(y) for
all x, y ∈ X, proving that x ∗ y = f(x), a constant. This shows that (X, ∗) is a trivial groupoid. �

Proposition 4.10. Let (X, ∗) be a leftoid for f : X → X such that x ≤ f(x) for all x ∈ X and let
(X, •) be a rightoid for g : X → X such that y ≤ g(y) for all y ∈ X. If (X,�) := (X, ∗)�(X, •),
then (X,�) ∈ UD(X,≤).

Proof . Given x, y ∈ X, we have

x�y = (x ∗ y) • (y ∗ x)

= f(x) • f(y)

= g(f(y))

≥ f(y)

≥ y.

It follows that (X,�) ∈ UD(X,≤). �
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5. Positive and strict upwards

Let (X,≤) be a poset. A groupoid (X, ∗) is said to be a positive upward drift with respect to the
poset (X,≤) if for all x, y ∈ X,

x ∗ y > x and x ∗ y > y. (5.1)

For example, if X := (0,∞) and x ∗ y := x + y for all x, y ∈ X where “+” is the usual addition
on the set of all real numbers. Then (X, ∗) is a positive upward drift with respect to the standard
order relation on the set of all real numbers, since x+ y > x and x+ y > y for all x, y ∈ X.

Proposition 5.1. Every positive upward drift is infinite.

Proof . Let x ∈ X. Since (X, ∗) is a positive upward drift, we have x < x ∗ x. It follows that
x < x ∗ x < (x ∗ x) ∗ (x ∗ x). If we define x2

n+1
:= x2

n ∗ x2n , then we obtain x < x2 < · · · < x2
n−1

<
x2

n
< x2

n+1
< · · · , proving that |X| =∞. �

Given a poset (X,≤), we denote the set of all positive upward drifts (X, ∗) with respect to (X,≤)
by PD(X,≤), i.e.,

PD(X,≤) = {(X, ∗) ∈ Bin(X) | (X, ∗) : positive upward w.r.t. (X,≤)}.

Theorem 5.2. Let (X,≤) be a poset and let (X, ∗) ∈ PD(X,≤). If (X,�) := (X, ∗)�(X, •) and
(X, •) ∈ UD(X,≤), then (X,�) ∈ PD(X,≤).

Proof . Given x, y ∈ X, since (X, •) is an upward drift, we have either x�y = (x∗y)• (y ∗x) ≥ x∗y
or x�y = (x ∗ y) • (y ∗x) ≥ y ∗x. Since (X, ∗) is a positive upward drift, x ∗ y > x, y and y ∗x > y, x.
It follows that x�y > x and x�y > y, proving that (X,�) is a positive upward drift. �

Note that Theorem 5.2 shows that (PD(X,≤),�) is a right ideal of (UD(X,≤),�).

Example 5.3. Let X := (0,∞). Define a binary operation ∗ on X by x ∗ y := x+y
2

+ α(x, y) for all
x, y ∈ X, where

α(x, y) :=

{
0 if x 6= y,

1 if x = y.

If x < y, then x ∗ y = x+y
2

+ 0 > x, but x ∗ y = x+y
2
< y. Hence (X, ∗) is a strict upward drift, but

not a positive upward drift with respect to the natural order (X,≤).

Proposition 5.4. Let (X,≤) be a poset and let (X, ∗) be a positive upward drift with respect to
(X,≤). If (X,�) := (X, •)�(X, ∗) and (X, •) is an upward drift, then (X,�) is a positive upward
drift.
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Proof . The proof is similar to the proof of Theorem 5.2, and we omit it. �

Given a poset (X,≤), we denote the set of all strict upward drifts (X, ∗) with respect to (X,≤)
by SD(X,≤), i.e.,

SD(X,≤) = {(X, ∗) ∈ Bin(X) | (X, ∗) : strict upward w.r.t. (X,≤)}.

It follows that PD(X,≤) ⊆ SD(X,≤) ⊆ UD(X,≤). The following can be easily proved.

Proposition 5.5. The set of all strict upward drifts (SD(X,≤),�) is a two-sided ideal of (UD(X,≤
),�).

6. Fuzzy subalgebras and upward drifts

A map µ : (X, ∗) → [0, 1] is said to be a fuzzy subalgebra ([9]) of (X, ∗) if, for all x, y ∈ X,
µ(x ∗ y) ≥ min{µ(x), µ(y)}.

Proposition 6.1. Let (X, ∗) ∈ UD(X,≤). If µ : X → [0, 1] is order-preserving, then it is a fuzzy
subalgebra of (X, ∗).

Proof . Given x, y ∈ X, since (X, ∗) ∈ UD(X,≤), we obtain x∗y ≥ x or x∗y ≥ y. Since µ is order-
preserving, we have µ(x ∗ y) ≥ µ(x) or µ(x ∗ y) ≥ µ(y). It follows that µ(x ∗ y) ≥ min{µ(x), µ(y)},
proving the proposition. �

Let X be a non-empty set and let µ : X → [0, 1] be a fuzzy subset of X. Define an order relation
<µ on X by

(i) if x, y ∈ µ−1(α), α ∈ [0, 1], then x || y (incomparable);

(ii) if x ∈ µ−1(α), y ∈ µ−1(β), α < β in [0, 1], then x <µ y.

Define a relation x ≤µ y on X by x = y or x <µ y. Then it is easy to show that (X,≤µ) is a partially
ordered set induced by the fuzzy subset µ. Note that the poset (X,≤µ) is an ordinal sum of maximal
anti-chains. It is known that it is equivalent to the condition that (X,≤µ) is N -free.

Remark 6.2. The mapping µ : (X,≤µ) → [0, 1] is order-preserving. In fact, if x ≤µ y, then there
exist α, β ∈ [0, 1] such that x ∈ µ−1(α), y ∈ µ−1(β). It follows that µ(x) = α < β = µ(y).

Theorem 6.3. Let (X, ∗) ∈ Bin(X) and let µ : X → [0, 1] be a fuzzy subset. If either µ(x ∗ y) >
min{µ(x), µ(y)} or x ∗ y ∈ {x, y} for all x, y ∈ X, then (X, ∗) ∈ UD(X,≤µ).

Proof . Assume that (X, ∗) 6∈ UD(X,≤µ). Then there exist x, y ∈ X such that x ∗ y 6≥µ x and
x∗y 6≥µ. It follows that x∗y 6∈ {x, y}. In fact, x∗y ∈ {x, y} implies that either x∗y = x or x∗y = y,
i.e., x∗y ≥µ x or x∗y ≥µ y, a contradiction. By the assumption, we obtain µ(x∗y) > min{µ(x), µ(y)}.
Suppose µ(x ∗ y) > µ(x). If we take α := µ(x), β := µ(x ∗ y), then x ∈ µ−1(α), x ∗ y ∈ µ−1(β), α < β.
It follows that x <µ x ∗ y, i.e., x ≤µ x ∗ y, a contradiction. If we assume that µ(x ∗ y) > µ(y), then
we obtain y ≤µ x ∗ y, a contraction. �
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Example 6.4. Let X := {a, b, c, d} be a set with the following table:

∗ a b c d
a a a c d
b b b c b
c c c c c
d d d d d

Define a map µ : X → [0, 1] by µ(a) = µ(b) = 0, µ(c) = µ(d) = 1. By routine calculations, we obtain
(X, ∗) ∈ UD(X,≤µ) where ≤µ= {(a, a), (b, b), (c, c), (d, d), (a, c), (a, d), (b, c), (b, d)}.

Example 6.5. Let (X, ∗) ∈ Bin(X) such that x ∗ x = 0 for all x ∈ X with |X| ≥ 2. Define a map
ν : X → [0, 1] by

ν(x) :=

{
1 if x = 0,

0 if x 6= 0.

Then it is not a fuzzy subalgebra of (X, ∗), since ν(x ∗ x) = ν(0) = 0 < 1 = min{ν(x), ν(x)}
for all x 6= 0 in X. Moreover, x ∗ x = 0 6∈ {x, x} for all x 6= 0. Let x 6= y in X − {0}. Then
x, y ∈ ν−1(1), and hence x || y. Since ν(0) < ν(x) for all x 6= 0, we obtain the poset (X,≤ν) where
≤ν= {(x, x) |x ∈ X} ∪ {(0, x) |x ∈ X}. This shows that (X, ∗) 6∈ UD(X,≤ν).

Example 6.6. Let X := {a, b, c, d, e} be a set with the following table:

∗ a b c d e
a a a c d e
b b b d e e
c c d c d e
d d e d d e
e e b e d e

Then (X, ∗) 6∈ UD(X,≤), since d ∗ b = e 6∈ {a, d}, where ≤:= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b),
(a, c), (b, d), (c, d), (c, e)}. Define a map µ : X → [0, 1] by µ(a) = 0, µ(b) = µ(c) = 1/2, µ(d) =
3/4, µ(e) = 1. Then it is easy to show that µ is order-preserving. By Proposition 6.1, µ is a
fuzzy subalgebra of (X, ∗). By applying Theorem 6.3, we obtain (X, ∗) ∈ UD(X,≤µ) where ≤µ=
{(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (b, d), (c, d), (d, e)}.

7. Conclusion

In this paper we have emphasized a variety of upward drifts conditions. Certainly the theory of
downward drifts is expected to be similar. The theory of average drifts probably contains results
of a novel nature, given that it should have qualities different from either that of the theory of
upward drifts and downward drifts. From the examples included it is also clear that much more
can be discovered by considering other special types of groupoids and other constructions, involving
directed products, homomorphism, etc.. All this will have to be considered in the future in the
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interest of keeping this paper from growing too large for an introduction of the ideas presented here.
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