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Abstract

In this study, a predator-prey model (PPMD) was formulated and studied along with infectious on
populations of prey and predator, since each one is splited into two sub-populations i.e., healthy and
infected. It is presumed that only healthy predator of ability to predate the healthy prey and consume
both healthy and prey being infected. Mathematically, the model solutions uniqueness, existence,
and bounded-ness are conversed. All probable equilibrium model points are defined. The stability
analyses as local and the regions of worldwide stability of each point of equilibriums are inspected.
Lastly, few simulations as numerical were offered for validation the geted results theoretically.
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1. Introduction

The study of mathematical models that combine the prey-predator systems and the spread of
infectious diseases are greatly important to many of the animal populations as well as fishing oper-
ations. Currently such studies are creating a new study field recognized as eco-epidemiology. With
trade and economy globalization, pollution of environment progressively turns out to be the mostly
severe issue facing by all world countries. For example, the acid rain, ozone depSupposeion, and
greenhouse effect are the environmental air pollution effects. Another issue in which the world as w-
hole is concerning is what is the way for protecting species in danger of extinction. Global concern is
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increasing over natural and anthropogenic environmental toxins effects on health of ecosystem, such
as numerous countries are suffering and still from the parasitic diseases spreading in both animals
and humans [1].
Truly, many factors are there which impacts the prey-predator dynamics associations i.e., harvesting,
disease, delay, prey refuge, environmental pollution, predation, and lack of food, fishing, etc. besides
the infectious diseases spreading between the preys alone, predators, or both. Thus, the high inter-
est support researchers to invistigate the diseases spread affect at such type for of study called as
eco-epidemiological. Mathematical modeling often is process as evolving. Mathematical systematic
analysis can frequently lead to better bio-economic models understanding. Differential formulas sys-
tem has, to a definite degree, described successfully the associations among species. Huge literature
exist documenting mathematical and ecological results offered by the model.
Despite the theory of predator-prey has been greatly developed, several long standing ecological and
mathematical issues stay open. In addition, infectious diseases became as vital regulating aspect for
animal and human populations sizes. Especially, for ecosystems of prey-predator, infectious diseases
combined with prey-predator association to yield a complex joint effect as prey and predator sizes
regulators. There is several ecological prey-predator systems studies alongwith disease. This factor
(Disease) therefore, was invited to the attention of veterinary medicine and the provision of vaccines
for these diseases. In following years, several workers invistigated the models of environmente along
with prey being infected and the reports that relate focusing on subject [2].
Muhseen and Aaid [3] formulated (PPMD) with Epidemic Disease as SIS in involvment of preda-
tor Holling kind 2 of functional response. In 1994, Venturino [4] deliberated diseases influence on
systems of Lotka-Volterra. In the following time, numerous workers are suggested and invistigated
diverse PPMDs with disease spreading in population of prey. Das [5] was invistigated a PPMD with
disease in predator. Moreover, several investigations regarding PPMD with disease were done in
population of predator. Kuang and Beretta [6] regarded the ratiodependent prey-predator system
solutions global behaviors. Chattopadhyay and Orino [7] analyzed and suggested a 3 dimensional
PPMD with disease just in population of prey. Chen and You [8] were invistigated the extinction,
permanence, and periodic periodic predatorprey system solution along with BeddingtonDeAngelis
functional responsing and structure of stage for prey. They got a necessary and sufficient conditions
set that guarantee the system permanent. Numbers of workers in the previous decade were discussed
systems of simple multi-species comprising 3 trophic levels of food chain [9]. Kesh et al. [10] analyzed
and suggested a model as mathematical of one predator and 2 contesting prey species in which prey
species are following dynamics of Lotka-Volterra and predator functions uptake are ratio dependent.
Hsu et al. [11] were invistigated the 3 trophic levels food chain with ratio-dependent as functional
response MechaelisMenten type and its applications to be controlled biologically. Gakkhar and Naji
[12] studied a 3 species ratio-dependent food chain. PPMD is a vital tool in ecology being mathe-
matical and precisely for our biological phenomena understanding. Actually, several factors are there
that impacting the prey-predator dynamics associations i.e., harvesting, disease, delay, prey refuge,
etc.
In the current work, a mathematical model was proposed and analyzed describing PPMD with liable
predator (prey) and prey being infected (predator) and the transmitted disease among them. The
modified model as world and local stability analysis are analytically and numerically investigated.

2. Formulation of model

Regard model as ecological containing two levels, in the 1 st level the preys is splitted in to 2
classes namely, susceptible and infected, that are signified to their sizes of population at time t by
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X1(t) and X2(t), correspondingly. Furthermore, in the 2 nd level, the predator is splitted in to two
classes namely, infected and susceptible, here Y1(t) and Y2(t) signify the density of population at
time t for the predator as susceptible and infected, correspondingly. At this point, for the purpose
of formulating mathematically the foregoing model, assumptions as follow are taking into account:

1. In the predation absence, the 2 preys that contesting at the 1st level logistically grow with an
intrinsic rates growth r > 0,M > 0 and loading capacities K > 0, e > 0 for X1(t) and X2(t)
correspondingly. Nevertheless, they are contesting each other with competition rates intensity
β > 0 and β1 > 0 correspondingly.

2. In predator existence case in the 2nd level, it is presumed that the predator is splitted into 2
compartments namely helthy predator Y1(t) and disease predator Y2(t). The Healthy predator
consuming the 1st and 2nd preys based on Lotka-Volterra functional response type along with
maximum rates of attack > 0, β1 > 0 and γ1 > 0 then the food is taken up via the predator
with take up rates 0 < e1 < 1 and 0 < e2 < 1 correspondingly. Furthermore, the disease
predator can not attack any Healthy preys, so that it feeds on the disease preys.

Lastly, predators (both healthy and disease predator) are exponentially decay along with normal
death rates and correspondingly in their food absence.

Based on such expectations the foregoing defined food web system dynamics can be mathemati-
cally formulated along with differential formulas set as follow:

dX1

dT
= rX1

(
1− X1

k

)
−M(1− e)X1E − βX1Y1

dX2

dT
= M(1− e)X1E − β1(1− ψ)X2Y1 − (µ1 + γ1)X2

dY1

dT
= e1βX1Y1 + e2ψβ1X2Y1 − µ1Y1

dY2

dT
= e2(1− ψ)β1X2Y1 − (µ1 + γ2)Y2

dE

dT
= θ(1− ε)− αE (2.1)

Subject to the initial conditions with X1(0) ≥ 0, X2(0) ≥ 0, Y1(0) ≥ 0, Y2(0) ≥ 0, E(0) ≥ 0

3. Mathematical analysis

3.1. Boundedness of the solution.

As long as whole parameters are non-negative as well as the association functions are continuously
differentiable the system right hand side (2.1) is variables smooth function (X1, X2, Y1, Y2, E) in the
+ve octant,

Ω = {((X1, X2, Y1, Y2, E)) | X1 ≥ 0, X2 ≥ 0, Y1 ≥ 0, Y2 ≥ 0, E ≥ 0}

Furthermore, it is easy to prove that Ω is an invariant set. In addition, it is easy to prove that, whole
functions of association are globally Lipschitz and then the system (2.1) of solution being unique.
At this point, we will verify the system boundedness (2.1).

Theorem 3.1. All system (1) solutions that initiate in <5
+ are bounded uniformly.
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Proof . Suppose (X1(t), X2(t), Y1(t), Y2(t), E(t)) is any system (2.1) solution along with non-negative
primary condition (X1(0), X2(0), Y1(0), Y2(0), E(0)), , From the 1st formula, we get as t→∞

sup
[
rX1

(
1− x1

k

)]
≤ rk

4
(3.1)

Suppose N(t) = X1(t) +X2(t) + Y1(t) + Y2(t), then from the model we get

dN

dt
= rX1

(
1− X1

k

)
− (µ1 + γ1)X2 − µ1Y1 − (µ1 + γ2)Y2

Assuming a +ve constant q > 0 and q = min {1, µ1 + γ1, µ1, µ1 + γ2} , e2 + ψ < 1 we get

dN

dt
+ qN ≤ H

(
=
rk

4
+X1

)
(3.2)

At this point via utilizing Gronweall Lemma it gets that

N(t) ≤ H

q
+

(
N0 −

H

q

)
e−qt (3.3)

Therefore, N(t) ≤ H
q
, as t→∞. At this point from the last system (2.1) formula we get

dE

dt
= θ(1− ε)− αE

Then dE
dt

+ αE ≤ H̃(= θ(1− ε))
By similar way as above we get:

E(t) ≤ θ

α
· H
q
, as t→∞ (3.4)

Thus, all system (2.1) solution which initiate in <5
+ are regionaly confined

Ω =

{
(X1, X2, Y1, Y2, E) ∈ <5

+ : N ≤ H

q
, 0 ≤ E ≤ θ

α
· H
q

}
(3.5)

Therefore, such solutions are bounded uniformly and the evidence is complete. �

3.2. . point of equilibriums existence.

It is easy to verify that the system (2.1) has at most five points of biological feasible equilibrium.
The existence conditions of each of them along with their local stability analyses are discussed as
following:

1. The vanishing equilibrium point E0 = (0, 0, 0, 0) always exists, where θ = 0.

2. The axial point of equilibrium E1 =
(
X̌1, 0, 0, 0

)
, since X̌1 = k, θ = 0.

3. The 1st 2 species point of equilibrium E2 = (
...
X1,

...
X2, 0,

...
E),

since
...
E = θ(1−ε)

α
,
...
X1 = k

[
1− Mθ(1−e)(1−ε)

rα

]
= u1,

...
X2 = ru1(k−u1)

k(µ1+γ1)
exists, provided

u1 < k (3.6)
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4. The 2nd two species point of equilibrium E3 =
(
X̂1, 0, Ŷ1, 0

)
, since X̂1 = µ1

e1β
, Ŷ1 =

r(ke1β−µ1)
e1β2k

exists provided

µ1 < ke1β (3.7)

5. Finally the+ve point of equilibrium E4 =
(
X̄1, X̄2, Ȳ1, Ē

)
, since Ē = θ(1−ε)

α
, X̄2 = µ1−e1βX̄1

e2ψβ1
,

Ȳ1 =
rα(k−X̄1)−kMθ(1−e)(1−ε)

αkβ
provided that the following conditions hold

Mθ(1− e)(1− ε) < rα (3.8)

X̄1 < k, e1βX̄1 < µ1 (3.9)

While X̄1, signifies +ve root of the quadratic following formula

A1X̄
2
1 + A2X̄1 + A3 = 0 (3.10)

Here

A1 = −re1(1− ψ)

e2ψk

A2 =
rµ1(1− ψ)

e2ψkβ
+
e1β (µ1 + γ1)

e2ψβ1

+
Mθ(1− e)(1− ψ)

α
+
e1β(1− ψ)

e2ψ

[
r

β
− Mθ(1− e)(1− ε)

αβ

]
A3 =

µ1(1− ψ)

e2ψ

[
Mθ(1− e)(1− ε)

αβ
− r

β

]
− µ1 (µ1 + γ1)

e2ψβ1

Obviously, E4 uniquely exists in interior of XY− plane when A3 > 0.

4. Local stability analysis:

At this part, the local equilibrium system (2.1) points stability is established utilizing the method
of linearization. It is simple to prove that the variational system (2.1) matrix, at the general point
(X1, X2, Y1, E), can be stated as J = (aij)4×4 ; i, j = 1, 2, 3, 4, since

J =


r
(
1− 2X1

k

)
−M(1− e)E − βY1 0 −βX1 −M(1− e)X1

M(1− e)E −β(1− ψ)Y1 − µ1 − γ1 −β1(1− ψ)X2 M(1− e)X1

e1βY1 e2ψβ1Y1 e1βX1 + e2ψβ1X2 − µ1 0
0 0 0 −α


(4.1)

Therefore, the variational system (2.1) matrix at E0 = (0, 0, 0, 0) is set through;

J (E0) =


r 0 0 0
0 − (µ1 + γ1) 0 0
0 0 −µ1 0
0 0 θ −α

 (4.2)

Then the eigenvalues of J (E0) are set through;

λ1 = r
λ2 = − (µ1 + γ1)
λ3 = −µ1

λ4 = −α

 (4.3)
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So, E0 = (0, 0, 0, 0) is saddle point.
The variational matrix of the system (2.1) at E1 =

(
X̌1, 0, 0, 0

)
is set through;

J (E1) =


−r 0 −βX̌1 −M(1− e)X̌1

0 − (µ1 + γ1) 0 M(1− e)X̌1

0 0 e1βX̌1 − µ1 0
0 0 0 −α

 (4.4)

Then eigenvalues are set through;
λ̌1 = −r
λ̌2 = − (µ1 + γ1)

λ̌3 = e1βX̌1 − µ1

λ̌4 = −α


So, E1 =

(
X̌1, 0, 0, 0

)
is asymptotically local stable equilibrium when

k <
µ1

e1β
. (4.5)

The variational system (2.1) matrix at E2 =
(...
X1,

...
X2, 0,

...
E
)
, is set through;

J (E2) =


− r
k

...
X1 0 βẌ1 −M(1− e)

...
X1

M(1− e)
...
E − (µ1 + γ1) −β1(1− ψ)

...
X2 M(1− e)

...
X1

0 0 e1β
...
X1 + e2ψβ1

...
X2 − µ1 0

0 0 θ −α

 (4.6)

Then eigenvalues are set through;

...
λ 1 = Mθ(1−e)(1−ε)

α
− r...

λ 2 = − (µ1 + γ1)...
λ 3 = e1β

...
X1 + e2ψβ1

...
X2 − µ1...

λ 4 = −α

 (4.7)

So, E2 =
(...
X1,

...
X2, 0,

...
E
)

is a asymptotically locally stable equilibrium if

e1βk +
e2ψβ1r

µ1 + γ1

< µ1 +
e1βkMθ(1− e)(1− ε)

rα
. (4.8)

The variational system (2.1) matrix at E3 =
(
X̂1, 0, Ŷ1, 0

)
is set through;

J (E3) =


− rµ1
e1βk

0 −βX̂1 −M(1− e)X̂1

0 −β1(1− ψ)Ŷ1 − µ1 − γ1 0 M(1− e)X̂1

e1βŶ1 e2ψβ1Ŷ1 0 0
0 0 0 −α

 (4.9)

The characteristic formula is set through;

(−α− λ)
[
λ3 + Â1λ

2 + Â2λ+ Â3

]
= 0 (4.10)
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Here

Ā1 = − (â11 + â22)

Ā2 = â11â22 + â13â31

Ā3 = â13â22â31

So either (−α− λ) = 0, which gives the eigenvalue in the X− direction by λ̂X = −α or
λ3 + Â1λ

2 + Â2λ+ Â3 = 0.
At this point, based on Criterion of Routh-Hawirtiz all J (E3) eigenvalues of roots with real negative

parts if and only if λ̂i(i = 1, 3) > 0 and ∆ = Â1Â2 − Â3 > 0. So, E3 =
(
X̂1, 0, Ŷ1, 0

)
is a

asymptotically locally stable equilibrium if

f1 < f2 (4.11)

since

f1 =
rµ1

e1βk

(
β1(1− ψ)Ŷ1 + µ1 + γ1

)[( rµ1

e1βk

)
−
(
β1(1− ψ)Ŷ1 + µ1 + γ1

)]
f2 =

(
−e1β

2X̂1Ŷ1

)[
2
(
−β1(1− ψ)Ŷ1 − µ1 − γ1

)
+

rµ1

e1βk

]
(4.12)

From ecological stand point, such equilibrium is so vital. The cause is quite clear that in such
case all 4 populations will simultaneously exist. The variational the system (2.1) matrix at E4 =(
X̄1, X̄2, Ȳ1, Ē

)
can be written as;

J (E3) =


− rX̄1

k
0 −βX̄1 −M(1− e)X̄1

M(1− e)Ē −β1(1− ψ)Ȳ1 − µ1 − γ1 −β1(1− ψ)X̄2 M(1− e)X̄1

e1βȲ1 e2ψβ1Ȳ1 0 0
0 0 0 −α

 (4.13)

The characteristic formula is set through;

(−α− λ)
[
λ3 + Ā1λ

2 + Ā2λ+ Ā3

]
= 0 (4.14)

Here

Ā1 = − (ā11 + ā22)

Ā2 = ā11ā22 + ā13ā31 − ā23ā32

Ā3 = ā11ā23ā32 + ā13 (ā22ā31 − ā21ā32)

So either (−α− λ) = 0, which gives the eigenvalue in the X− direction by λ̄X = −α or
λ3 + A1λ

2 + Ā2λ+ Ā3 = 0.
At this point, based on the Criterion of Routh-Hawirtiz all the J (E4) eigenvalues of roots with real
negative parts if and only if λ̄i(i = 1, 3) > 0 and ∆ = Ā1Ā2 − Ā3 > 0.
So, E4 =

(
X̄1, X̄2, Ȳ1, Ē

)
is a asymptotically locally stable equilibrium if

D2 < D1 (4.15)

since

D1 = β1(1− ψ)Ȳ1 + µ1 + γ1

[
rx̄1

k

(
rX̄1

k
+ β1(1− ψ)Ȳ1 + µ1 + γ1

)
+
(
β1(1− ψ)X̄2e2ψβ1Ȳ1

)]
D2 = −βX̄1

[
e1βȲ1

(
−rX̄1

k
+ 2

(
−β1(1− ψ)Ȳ1 − µ1 − γ1

))
−M(1− e)e2ψβ1Ȳ1Ē

]
(4.16)
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5. Analysis of global stability

At this part, the global stability region (attraction basin) of every equilibrium system (2.1) points
is displayed as illustrated in formulas as follow.

Theorem 5.1. Adopt that the point of equilibrium E1 is asymptotically being local. Then it is a
asymptotically globally stable in the subregion of <4

+ provided that

X̌1 < min

{
µ1

β
,

α

M(1− e)

}
(5.1)

Proof . Regard the following +ve as function being definite

V1 (X1, X2, Y1, E) =

(
X1 − X̌1 −X1 ln

X1

X̌1

)
+X2 + Y1 + E

Obviously, V1 : <4
+ → < is a differentiable continuous function such that V1

(
X̌1, 0, 0, 0

)
= 0 and

V1 (X1, X2, Y1, E) > 0,∀ (X1, X2, Y1, E) 6=
(
X̌1, 0, 0, 0

)
. Further,

dV1

dt
=

(
x1 − X̌1

X1

)[
rX1 −

r

k1

X2
1 −M(1− e)X1E − βX1Y1

]
+M(1− e)X1E − β1(1− ψ)X2Y1 − (µ1 + γ1)X2

+ e1βX1Y1 + e2ψβ1X2Y1 − µ1Y1 − αE

At this point, through making some algebraic manipulations and utilizing the condition (5.1), we
acquire

dV1

dt
≤− r

k

(
X1 − X̌1

)2 −
(
α−M(1− e)X̌1

)
E −

(
µ1 − βX̌1

)
Y1 (5.2)

− (µ1 + γ1)X2 − β1(1− ψ(1− e))X2Y1

Consequently, due to the condition above dV1
dt

< 0 is ve definite and thus V1 is Lyapunov function
with respect to E1 in the region that satisfies the given condition. Thus E1 is asymptotically globally
stable and the evidence is complete. �

Theorem 5.2. Adopt that the point of equilibrium E2 is asymptotically locally stable. Then it is
asymptotically locally stable in the sub-region of <4

+ that satisfied the following conditions

β
...
X1 + e2ψβ1X2 + µ1 < β1(1− ψ)X2

(
X2 −

...
X2

)
...
X2 < X2

θ(1− ε)(E −
...
E) < Y1

[
β1(1− ψ)X2

(
X2 −

...
X2

)
− βẌ1 − e2ψβ1X2 − µ1

]
(5.3)

q2
12 < 4q11q22

q2
14 < 4q11q44

q2
24 < 4q22q44

Proof . Regard the following +ve definite function

V2 (X1, X2, Y1, E) =

(
X1 −

...
X1 −

...
X1 ln

X

Ẍ1

)
+

1

2

(
X2 −

...
X2

)2
+ Y1 +

1

2
(E −

...
E)2
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Obviously, V2 : <4
+ → < is a differentiable continuouse function such that V2

(...
X1,

...
X2, 0,

...
E
)

= 0 and

V2 (X1, X2, Y1, E) > 0,∀ (X1, X2, Y1, E) ∈ <4
+ and (X1, X2, Y1, E) 6=

(...
X1,

...
X2, 0,

...
E
)

Considering the derivative to the time and shortening the resulting terms, we obtain that

dV2

dt
=
(
X1 −

...
X1

) [
r − r

k1

X1 −M(1− e)E − βY1

]
+
(
X2 −

...
X2

)
[M(1− e)X1E − β1(1− ψ)X2Y1 − (µ1 + γ1)X2]

+ [e1βX1Y1 + e2ψβ1X2Y1 − µ1Y1] + (E −
...
E)[θ(1− ε)− αE]

dV2

dt
=−

[q11

2

(
X1 −

...
X1

)2 − q12

(
X1 −

...
X1

) (
X2 −

...
X2

)
+
q22

2

(
X2 −

...
X2

)2
]

−
[q11

2

(
X1 −

...
X1

)2
+ q14

(
X1 −

...
X1

)
(E −

...
E) +

q44

2
(E −

...
E)2
]

−
[q22

2

(
X2 −

...
X2

)2 − q24

(
X2 −

...
X2

)
(E −

...
E) +

q44

2
(E −

...
E)2
]

− Y1

[
β(1− ψ)X2

(
X2 −

...
X2

)
− β

...
X1 − e2ψβ1X2 − µ1

]
+ θ(1− ε)(E −

...
E)

Consequently by using (5.3) conditions we get that

dV2

dt
≤−

[√
q11

2

(
X1 − Ẍ1

)
−
√
q22

2

(
X2 − Ẍ2

)]2

−
[√

q11

2

(
X1 −

...
X1

)
−
√
a44

2
(E −

...
E)

]2

−
[√

a22

2

(
X2 − Ẍ2

)
−
√
a44

2
(E −

...
E)

]2

+ θ(1− ε)(E −
...
E) (5.4)

− Y1

[
β(1− ψ)X2

(
X2 −

...
X2

)
− βẌ1 − e2ψβ1X2 − µ1

]
since

q11 =
r

k
, q12 = M(1− e)

...
E, q22 = µ1 + γ1

q14 = M(1− e), q44 = α, q24 = M(1− e)X1 (5.5)

Obviously, dV2
dt

is -ve definite and thus V2 is Layapunov function with regard to E2. So E2 is asymp-
totically locally stable in the sub-region that satisfies the given condition. �

Theorem 5.3. Adopt that the point of equilibrium E3 is asymptotically being local. Then it is asymp-
totically locally stable in the subregion of R4

+ provided that

X̂1 <
α

M(1− e)
X̂1 < X1 (5.6)

Ŷ1 < Y1

ψ <
1

2

Proof . Regard the following +ve definite function

V3 (X1, X2, Y1, E) =

(
X1 − X̂1 −X1 ln

X1

X̂1

)
+X2 +

(
Y1 − Ŷ1 − Y1 ln

Y1

Ŷ1

)
+ E
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Obviously, V3 : <4
+ → < is a differentiable continuouse function such that V3

(
X̂1, 0, Ŷ1, 0

)
= 0 and

V3 (X1, X2, Y1, E) > 0,∀ (X1, X2, Y1, E) 6=
(
X̂1, 0, Ŷ1, 0

)
. Further,

dV3

dt
=

(
X1 − X̂1

X1

)[
rX1 −

r

k1

X2
1 −M(1− e)X1E − βX1Y1

]
+M(1− e)X1E − β1(1− ψ)X2Y1 − (µ1 + γ1)X2

+

(
Y1 − Ŷ1

Y1

)
[e1βX1Y1 + e2ψβ1X2Y1 − µ1Y1]− αE

At this point, by doing some algebraic manipulations and using the condition (5.6), we get

dV3

dt
≤− r

k

(
X1 − X̂1

)2

− β (1− e1)
(
X1 − X̂1

)(
Y1 − Ŷ1

)
−
[
α−M(1− e)X̂1

]
E

−
[
β1Y1(1− 2ψ) + e2ψβ1Ŷ1 + (µ1 + γ1)

]
X2 (5.7)

Consequently, due to the condition above dV3
dt

< 0 is ve definite and thus V3 is Lyapunov function
with regard to E3 in the region that satisfies the given condition. Thus E3 is asymptotically locally
stable and the Evidence is complete. �

Theorem 5.4. Adopt that the point of equilibrium E4 is asymptotically locally stable. Then it is
asymptotically locally stable in the sub-region of R4

+ that satisfied the following conditions

e2ψβ < β1(1− ψ)X2

X̄2 < X2

Ȳ1 < Y1

Ē < E (5.8)

µ1 + γ1 < β1(1− ψ)Ȳ1

q2
12 < q11q22

q2
14 < q11q44

q2
24 < q22q44

Proof . Regard the following +ve definite function

V4 (X1, X2, Y1, E) =

(
X1 − X̄1 −X1 ln

X1

X̄1

)
+

(
X2 − X̄2

)2

2
+

(
Y1 − Ȳ1 − Y1 ln

Y1

Ȳ1

)
+

(E − Ē)2

2

Obviously, V4 : <4
+ → < is a differentiable continuouse function such that V4

(
X̄1, X̄2, Ȳ1, Ē

)
= 0 and

V4 (X1, X2, Y1, E) > 0,∀ (X1, X2, Y1, E) ∈ R4
+ and (X1, X2, Y1, E) 6=

(
X̄1, X̄2, Ȳ1, Ē

)
Considering the derivative with regard to the time and shortening the resulting terms, we obtain
that

dV4

dt
=

(
x1 − X̄1

X1

)[
rX1 −

r

k1

X2
1 −M(1− e)X1E − βX1Y1

]
+
(
X2 − X̄2

)
[M(1− e)X1E − β1(1− ψ)X2Y1 − (µ1 + γ1)X2]

+

(
Y1 − Ȳ1

Y1

)
[e1βX1Y1 + e2ψβ1X2Y1 − µ1Y1] + (E − Ē)[θ(1− ε)− αE]
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dV4

dt
=−

[q11

2

(
X1 − X̄1

)2
+ q12

(
X1 − X̄1

) (
X2 − X̄2

)
+
q22

2

(
X2 − X̄2

)2
]

−
[q11

2

(
X1 − X̄1

)2
+ q14

(
X1 − X̄1

)
(E − Ē) +

q44

2
(E − Ē)2

]
−
[q22

2

(
X2 − X̄2

)2 − q24

(
X2 − X̄2

)
(E − Ē) +

q44

2
(E − Ē)2

]
− [β1(1− ψ)X2 − e2ψβ]

(
X2 − X̄2

) (
Y1 − Ȳ1

)
+ θ(1− ε)(E − Ē)

Consequently by using (5.8) conditions we get that

dV4

dt
≤−

[√
q11

2

(
X1 − X̄1

)
+

√
q22

2

(
X2 − X̄2

)]2

−
[√

q11

2

(
X1 − X̄1

)
+

√
a44

2
(E − Ē)

]2

−
[√

q22

2

(
X2 − X̄2

)
−
√
a44

2
(E − Ē)

]2

(5.9)

− [β1(1− ψ)X2 − e2ψβ]
(
X2 − X̄2

) (
Y1 − Ȳ1

)
+ θ(1− ε)(E − Ē)

since

q11 =
r

k
, q12 = M(1− e)Ē, q22 = β1(1− ψ)Ȳ1 − (µ1 + γ1)

q14 = M(1− e), q24 = M(1− e)X1, q44 = α

Obviously, dV4
dt

is -ve definite and thus V4 is Layapunov function with regard to E4. So E4 is asymp-
totically locally stable in the subregion that satisfies the given condition. �

6. Numerical Simulation

For visualizing the foregoing analytical results and understands the influence of variable the
parameters on the global system (2.1) dynamics, the numerical simulation is pereformed at this
part. The study objectives are endorsing our obtained analytical results and detecting the control
parameters set that affect the system dynamics. Recalling system (2.1) that containing 2 enter-
specific competitions associations, the 1st one between the 2 preys (healthy and infected) at the 1st
level, whereas the 2nd one between the healthy and infected predator in the 2nd level. It was found
the data set that satisfies the coexistence for 4 populations of them as shown below. Furthermore, as
long as we offerings the conditions that render the system to be asymptotically stable +ve equilibrium
point analytically; thus, still possibility is there for having such data. Consequently, system (2.1) is
solved numerically for different sets of primary conditions and for various set of feasible parameters
biologically hypothetical. It is noticed that for the following hypothetical parameters set, the system
(2.1) has a globally asymptotically stable +ve point of equilibrium as illustrated in the below figures:

r = 1.1, k = 0.7,m = 0.4, e = 0.2, β = 0.4

β1 = 0.6, ψ = 0.4, µ1 = 0.1, γ1 = 0.2, ε = 0.6 (6.1)

e1 = 0.4, e2 = 0.3, γ2 = 0.1, θ = 0.3, α = 0.5

We got that the system (2.1) trajectories with 3 different sets of +ve primary conditions asymptoti-
cally approach to the +ve point of equilibrium E4 as illustrated in Fig.1
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Figure 1: Asymptotically locally stable +ve point of equilibrium E4 of system (2.1) for: (a) Trajecto-
ries of X1(t) (b) Trajectories of X2(t) (c) Trajectories of Y1(t) (d) Trajectories of Y2(t) (e) Trajectories
of E(t).

Obviously, Fig. 1 verifies our gotten analytical results in respect to existence that +ve point of
equilibrium is asymptotically locally stable. However, for the data by formula (6.1) with θ = 0 and
µ1 = 0.2, the solution of system (2.1) approaches asymptotically to the vanishing equilibrium point
E1 shown in the following typical, figure 2
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Figure 2: Asymptotically locally stable of vanishing equilibrium point E1 of system (2.1) for:(a)
Trajectories of X1(t) (b) Trajectories of X2(t) (c) Trajectories of Y1(t) (d) Trajectories of Y2(t) (e)
Trajectories of E(t).

At this point and for the purpose of investigating the varying parameters effect value at a time on
the dynamical system (2.1) behavior, results as follow are noticed. Based on the figure 3, it is obvious
that the system (2.1) solution approaches asymptotically to the 1st 2 species point of equilibrium for
the parameters values shown in Eq. (6.1) with varying µ1 = 0.2, to obtain the trajectories of system
(2.1) approach asymptotically to the E2 as shown in Figure. 3
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Figure 3: Asymptotically locally stable of the 1st 2 species equilibrium E2 of system (2.1) for: (a)
Trajectories of X1(t) (b) Trajectories of X2(t) (c) Trajectories of Y1(t) (d) Trajectories of Y2(t) (e)
Trajectories of E(t).

We select the environment pollution coefficient values θ = 0,leaving other parameters constant as
shown in formula (6.1), we obtain the system (2.1) trajectories still approaches to the 2nd 2 species
point of equilibrium. Furthermore the effect of environment is shown in figure 4
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Figure 4: asymptotically locally stable of point of equilibrium E3 of system (2.1) (a) Trajectories of
X1(t) (b) Trajectories of X2(t) (c) Trajectories of Y1(t) (d) Trajectories of Y2(t) (e) Trajectories of
E(t).

7. CONCLUSIONS AND DISCUSSION

At the current study, we have invistigated the diseased susceptible model stability, prey being
infected and predators around steady interior state. The model including five non-linear differential
autonomous formulas which describing the 4 different populations dynamics, namely Susceptible
prey (X1), , prey being infected (X2), healthy predator (Y1) and infected predator (Y2). The system
(2.1) boundedness was discussed. The conditions existences of all possible point of equilibriums are
detected. The global and local stability analyses of such points are achieved. Also, we invistigated the
stochastic model (2.1) perturbation, that produces an important change in the populations intensity
because of low, medium and high oscillations variances. Lastly, for completing our vision to the
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global dynamical system (2.1) behavior, numerical simulation is applied utilizing parameters values
set hypothetically via Eq. (6.1). The numerical simulation results are summarized as follow.

1. (E4) is mostly significant point of equilibrium since it offers all the 4 species coexistence si-
multaneously. For ecological eco-system coexistence balance of all the species in respective
proportions is very important. The stability of (E4) specifies all species existence for a long
time.

2. The system (2.1) trajectory approaches asymptotically to +ve point of equilibrium starting from
diverse primary points utilizing the data Eq. (6.1), that specifies existence of asymptotically
locally stable +ve point of equilibrium.

3. Increasing the inhibition disease rate or disease death rate higher than specific value cause
extinction in predator species because of food lacking. Additional increasing as a minimum
one of such parameters leads to extinction in the prey being infected specie and the system
(2.1) trajectory approaches asymptotically to free point of equilibrium. Or else, the system
still continues at a +ve point of equilibrium.

4. We observed that environment pollution coefficient (θ)has a leading function in the systems
(2.1) equilibria existence and stability.

Keeping the foregoing in mind, all such outcomes relied on the parameters values set hypothetical
set by Eq. (6.1), diverse results might be gotten for data different sets.
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