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Abstract

In this paper, we investigate the problem of finding a common element of the solution set of convex
minimization problem, the solution set of variational inequality problem and the solution set of fixed
point problem with an infinite family of quasi-nonexpansive mappings in real Hilbert spaces. Based
on the well-known proximal point algorithm and viscosity approximation method, we propose and
analyze a new iterative algorithm for computing a common element. Under very mild assumptions,
we obtain a strong convergence theorem for the sequence generated by the proposed method. Appli-
cation to convex minimization and variational inequality problems coupled with inclusion problem is
provided to support our main results. Our proposed method is quite general and includes the iterative
methods considered in the earlier and recent literature as special cases.
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1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and norm ‖.‖ respectively. Let K be
a nonempty closed convex subset of H. An operator A : K → H is called monotone if

〈Ax− Ay, x− y〉 ≥ 0, ∀ x, y ∈ K,
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A is said α-inverse strongly monotone if there exists a constant α > 0 such that

〈Ax− Ay, x− y〉 ≥ α‖Ax− Ay‖2, ∀ x, y ∈ K.

It is immediate that if A is α- inverse strongly monotone, then A is monotone and Lipschitz contin-
uous.

The problem find u ∈ K such that

〈Au, v − u〉 ≥ 0, ∀v ∈ K, (1.1)

is called a variational inequality problem. We denote the set of solutions of variational inequality
problem (1.1) by V I(A,K). Please note that on the one hand, this problem takes into account some
special cases, in signal processing, networking, resource allocation, image recovery, and so on, the
constraints can be expressed as variational inequality problems. Consequently, the problem of finding
solutions of variational inequality problems has become a flourishing area of contemporary research
for numerous mathematicians working in nonlinear operator theory (see, for example, [6, 21] and the
references contained in them). In most of the early results on iterative methods for approximating
solutions of variational inequality problem, the map A was often assumed to be inverse strongly
monotone.
A well known method for solving the variational inequality problem is the projection algorithm which
starts with x1 ∈ K and generates a sequence {xn} using the following recursion formula,

xn+1 = PK(xn − λnAxn), n ≥ 1, (1.2)

where {λn} a sequence of positive numbers satisfying appropriate conditions. In the case that A is
α-inverse strongly monotone, Iiduka et al. [12] proved that the sequence {xn} generated by (1.2)
converges weakly to an element of V I(A,K). Furthermore, it is worth pointing out that related
iterative methods for solving variational inequality can be found in [1, 7, 20, 22].
Let E be a real normed space, K be a nonempty subset of E. A map T : K → E is said to be
Lipschitz if there exists an L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ K, (1.3)

if L < 1, T is called contraction and if L = 1, T is called nonexpansive.
We denote by Fix(T ) the set of fixed points of the mapping T, that is Fix(T ) := {x ∈ D(T ) : x =
Tx}. We assume that Fix(T ) is nonempty. If T is nonexpansive mapping, it is well known Fix(T )
is closed and convex. A map T is called quasi-nonexpansive if ‖Tx− p‖ ≤ ‖x− p‖ holds for all x in
K and p ∈ Fix(T ).
The mapping T : K → K is said to be firmly nonexpansive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(x− y)− (Tx− Ty)‖2, ∀x, y ∈ K.

We note that the following inclusions hold for the classes of the mappings:

firmly nonexpansive ⊂ nonexpansive ⊂ quasi-nonexpansive.

We illustrate these by the following example.
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Example 1.1. Let X = l∞ and C := {x ∈ l∞ : ‖x‖∞ ≤ 1} . Define T : C → C by Tx = (0, x2
1, x

2
2, x

3
3, ...)

for x = (x1, x2, x3, ...) in C. Then, it is clear that T is continuous and map C into C. Moreover,
Tp = p if and only if p = 0. Futhermore,

‖Tx− p‖∞ = ‖Tx‖∞ = ‖(0, x2
1, x

2
2, x

2
3, ...)‖∞

≤ ‖(x1, x2, x3, ...)‖∞ = ‖x‖∞
= ‖x− p‖∞.

Therefore, T is quasi-nonexpansive. However, T is not nonexpansive.

One of the most investigated methods for approximating fixed points of nonexpansive mappings is
known as viscosity approximation method, in light of Moudafi [24]. Let C be a nonempty, closed
and convex subset of a real Hilbert space H. Let T : C → C be a nonexpansive mapping such that
Fix(T ) 6= ∅ and f : C → C be a contraction. The viscosity approximation method is defined by{

x0 ∈ C,
xn+1 = αnf(xn) + (1− αn)Txn,

(1.4)

where {αn} is a sequence in (0, 1). Under certain conditions, then, the sequence {xn} generated by
(1.4) converges strongly to a fixed point of T.

Zeng and Yao [34] introduced a new extragradient method for finding a common element of the
set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality
problem. They obtained the following strong convergence theorem.

Theorem 1.2 (see Zeng and Yao [34]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A : C → H be a monotone k-Lipschitz continuous mapping, and let T : C → C
be a nonexpansive mapping such that Fix(T ) ∩ V I(A,C) 6= ∅. Let the sequences {xn} , {yn} be
generated by

x0 ∈ H,
yn = PC(xn − λnAxn),
xn+1 = αnx0 + (1− αn)TPC(xn − λnAyn),

(1.5)

where {λn} and {αn} satisfy the following conditions:
(a) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1),

(b) {αn} ⊂ (0, 1),
∞∑
n=0

αn =∞, lim
n→∞

αn = 0.

Then the sequences {xn} and {yn} converge strongly to the same point PFix(T )∩V I(A,K)(x0) provided
that

lim
n→∞

‖xn+1 − xn‖ = 0. (1.6)

Remark 1.3. The iterative scheme (1.5) in Theorem 1.2 has strong convergence but imposed the
assumption (1.6) on the sequence {xn}.

The minimization problem (MP) is one of the most important problems in nonlinear analysis and
optimization theory. The MP is defined as follows: find x ∈ H, such that

g(x) = min
y∈H

g(y),
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where g : H → (−∞, +∞] is a proper convex and lower semi-continuous. The set of all minimizers
of g on H is denoted by argminy∈H g(y). A successful and powerful tool for solving this problem is
the well-known Proximal Point Algorithm (shortly, the PPA) which was initiated by Martinet [23]
in 1970 and later studied by Rockafellar [5] in 1976. The PPA is defined as follows: x1 ∈ H,

xn+1 = argminy∈H

[
g(y) +

1

2λn
‖xn − y‖2

]
,

(1.7)

where λn > 0 for all n ≥ 1. In [5] Rockafellar proved that the sequence {xn} given by (1.7) converges
weakly to a minimizer of g. He then posed the following question:
Q1: does the sequence {xn} converges strongly? This question was resolved in the negative by Güler
[13] (1991). He produced a proper lower semi continuous and convex function g in l2 for which the
PPA converges weakly but not strongly. This leads naturally to the following question:
Q2: Can the PPA be modified to guarantee strong convergence? In response to Q2, several works
have been done (see, e.g., Güler [13], Kamimura and Takahashi [19], Chidume and Djitte [10] and
the references therein). In the recent years, the problem of finding a common element of the set of
solutions of convex minimization, variational inequality and the set of fixed point problems in real
Hilbert spaces, Banach spaces and complete CAT(0) (Hadamard) spaces have been intensively stud-
ied by many authors; see, for example, [32, 31, 31, 15, 14, 4, 16] and the references therein.

Motivated and inspired by the above results, we introduce and study an iterative algorithm
and prove that the sequence generated by our iterative process converges strongly to a common
element of the set of solution of variational inequality problem, the set of minimizers of proper lower
semicontinuous convex function and the set of common fixed points of an infinite family of quasi-
nonexpansive mappings in real Hilbert spaces. No compactness assumption is made. The algorithm
and results presented in this paper improve and extend some recents results. Application is also
included. Finally, our method of proof is of independent interest.

2. Preliminaries

In this section, we give some preliminaries, definitions and results which will be needed in the
sequel. Let K be a nonempty, closed convex subset of H. For any y ∈ H, there exists a unique point
in K, denoted by PK(u), such that

‖y − PK(u)‖ ≤ ‖y − x‖, ∀x ∈ K.

It is well known that the projection operator can be characterized by the following properties

(i) 〈x− PKx, y − PKx〉 ≤ 0 ∀x ∈ K;

(ii) 〈PKx− PKy, x− y〉 ≤ ‖PKx− PKy‖2 ∀ y, x ∈ K;

(iii) ‖PKy − x‖2 ≤ ‖x− y‖2 − ‖PKy − y‖2, ∀x, y ∈ K.

Remark 2.1. In the context of variational inequality problem (1.1), we have

u ∈ V I(A,K)⇐⇒ u ∈ Fix(PK(I − θA)), θ > 0. (2.1)

The demiclosedness of a nonlinear operator T usually plays an important role in dealing with the
convergence of fixed point iterative algorithms.
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Definition 2.2. Let K be a nonempty, closed convex subset of a real Hilbert space H and let T :
K → K be a single-valued mapping. I − T is said to be demiclosed at 0 if for any sequence {xn} ⊂
D(T ) such that {xn} converges weakly to p and ‖xn − Txn‖ converges to zero, then p ∈ Fix(T ).

Lemma 2.3 (Demiclosedness principle [5]). Let K be a nonempty, closed convex subset of a
real Hilbert space H and let T : K → K be a nonexpansive mapping. Then I − T is demiclosed.

Lemma 2.4 ([9]). Let H be a real Hilbert space. Then for any x, y ∈ H, the following inequalities
hold:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.
‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − (1− λ)λ‖x− y‖2, λ ∈ (0, 1).

Lemma 2.5 (Xu, [33]). Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence
in R such that

(a)
∞∑
n=0

αn =∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| <∞. Then lim
n→∞

an = 0.

Lemma 2.6 (Aoyama et. al [3], Nilsrakoo et al. [26]). Let K be a nonempty closed subset of a

Banach space and let {Tn}n≥0 be a sequence of mappings of K into itself. Suppose that
∞∑
n=0

sup
{
‖Tn+1x−

Tnx‖ : x ∈ B
}
<∞ for any bounded subset B of K. Then, for any x ∈ K {Tnx} converges strongly

to some point of K. Moreover, let T be a mapping of K into itself defined by Tx = lim
n→∞

Tnx for all

x ∈ K. Then,
lim
n→∞

sup
x∈K
‖Tnx− Tx‖ = 0.

Lemma 2.7. (Rockafellar, [28]) Let K be a nonempty closed and convex subset of a real Hilbert
space H and A is a monotone, hemicontinuous map of C into H. Let B ⊂ H × H be an operator
defined as follows:

Bz =

{
Az +NK(z) if z ∈ K,
∅ if z /∈ K, (2.2)

where NK(z) is the normal K at z and is defined as follows:

NK(z) = {w ∈ H : 〈w, z − v〉 ≥ 0 ∀ v ∈ K}.

Then, B is maximal monotone and B−1(0) = V I(A,K).

Lemma 2.8. Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. Let
A : K → H be an α-inverse strongly monotone mapping. Then, I − θA is nonexpansive mapping for
all x, y ∈ K and θ ∈ [0, 2α].

Proof . For all x, y ∈ K, we have

‖(I − θA)x− (I − θA)y‖2 = ‖(x− y)− θ(Ax− Ay)‖2

= ‖x− y‖2 − 2θ〈Ax− Ay, x− y〉+ θ2‖Ax− Ay‖2

≤ ‖x− y‖2 + θ(θ − 2α)‖Ax− Ay‖2.
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This shows that I − θA is nonexpansive. � Let g : H → (−∞, +∞] be a proper convex and lower
semi-continuous function. For any λ > 0, define the Moreau-Yosida resolvent of g in a real Hilbert
space H as follows:

Jgλx = argminu∈H

[
g(u) +

1

2λ
‖x− u‖2

]
,

for all x ∈ H. It was shown in [13] that the set of fixed points of the resolvent associated with g
coincides with the set of minimizers of g. Also, the resolvent Jgλ of g is nonexpansive for all λ > 0
(see [18]).

Lemma 2.9. (Miyadera [25]) For any r > 0 and µ > 0, the following holds:

Jgr x = Jgµx(
µ

r
x+ (1− µ

r
)Jgr x).

Lemma 2.10 (Sub-differential inequality, [2]). Let g : H → (−∞, +∞] be a proper convex
and lower semicontinuous function. Then, for all x, y ∈ H and λ > 0, the following sub-differential
inequality holds:

1

λ
‖Jgλx− y‖

2 − 1

λ
‖x− y‖2 +

1

λ
‖x− Jgλx‖

2 + g(Jgλx) ≤ g(y). (2.3)

3. Strong convergence theorems

The following is our main result.

Theorem 3.1. Let K be a nonempty, closed and convex subset of a real Hilbert H and A : K → H
be an α-inverse strongly monotone operator. Let f : K → K be a contraction with coefficient
b and g : K → (−∞, +∞] be a proper convex and lower semi-continuous function. For each

n = 0, 1, ..., let Tn : K → K be a quasi-nonexpansive mapping such that Γ :=
∞⋂
n=0

Fix(Tn) ∩

V I(A,K)∩argminu∈K g(u) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:
un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

zn = PK(I − θnA)un,
yn = βnzn + (1− βn)Tnzn,
xn+1 = αnf(xn) + (1− αn)Tnyn,

(3.1)

where {αn} and {βn} are sequences in [0, 1] such that lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, lim
n→∞

inf βn(1 −

βn) > 0, θn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1

and some λ.

Assume that (a)
∞∑
n=0

sup
{
‖Tn+1x − Tnx‖ : x ∈ B

}
< ∞ for any bounded subset B of K and

Fix(T ) =
∞⋂
n=0

F (Tn) where T be a mapping of K into itself defined by Tx = lim
n→∞

Tnx for all x ∈ K.

(b) I − T is demiclosed at origin. Then, the sequence {xn} generated by (3.1) converges strongly to
an element of Γ.
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Proof . We first prove that the sequences {xn} is bounded. Let p ∈ Γ. Then, g(p) ≤ g(u) for all
u ∈ K This implies that

g(p) +
1

2λn
‖p− p‖2 ≤ g(u) +

1

2λn
‖u− p‖2

and hence Jgλnp = p for all n ≥ 1, where Jgλn is the Moreau-Yosida resolvent of g in K. By using
inequality (2.1) and Lemma 2.8, we have

‖zn − p‖ = ‖PK(I − θnA)un − p‖ ≤ ‖un − p‖ = ‖Jgλnxn − p‖ ≤ ‖xn − p‖, ∀n ≥ 0.

Using (3.1), Tn is quasi-nonexpansive and Lemma 2.8, we have

‖yn − p‖ = ‖βnzn + (1− βn)Tnzn − p‖
≤ βn‖zn − p‖+ (1− βn)‖zn − p‖
= ‖zn − p‖.

Hence,
‖yn − p‖ ≤ ‖zn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (3.2)

Using (3.1) and inequality (3.2), we have

‖xn+1 − p‖ = ‖αnf(xn) + (1− αn)Tnyn − p‖
≤ αnλn‖xn − p‖+ (1− αn)‖yn − p‖+ αn‖f(p)− p‖
≤ αnb‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖f(p)− p‖
≤ [1− (1− b)αn]‖xn − p‖+ αn‖f(p)− p‖

≤ max {‖xn − p‖,
‖f(p)− p‖

1− b
}.

By induction, we conclude that

‖xn − p‖ ≤ max {‖x0 − p‖,
‖f(p)− p‖

1− b
}, n ≥ 1.

Hence {xn} is bounded. We observe that PΓ(f) is a contraction. Indeed, for all x, y ∈ K, we have

‖PΓf(x)− PΓf(y)‖ ≤ ‖f(x)− f(y)‖
≤ b‖x− y‖.

Banach’s Contraction Mapping Principle guarantees that PΓf has a unique fixed point, say x1 ∈ H.
That is, x1 = PΓf(x1). By using properties of metric projection, it is equivalent to the following
variational inequality problem

〈x1 − f(x1), x1 − p〉 ≤ 0, ∀ p ∈ Γ. (3.3)

We show that the uniqueness of a solution of variational inequality (3.3).
Suppose both x∗ ∈ Γ and x∗∗ ∈ Γ are solutions to (3.3), then

〈x∗ − f(x∗), x∗ − x∗∗〉 ≤ 0 (3.4)

and
〈x∗∗ − f(x∗∗), x∗∗ − x∗〉 ≤ 0. (3.5)
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Adding up (3.4) and (3.5) yields

〈x∗∗ − x∗ + f(x∗)− f(x∗∗), x∗∗ − x∗〉 ≤ 0. (3.6)

Noticing that
〈x∗∗ − x∗ + f(x∗)− f(x∗∗), x∗∗ − x∗〉 ≥ (1− b)‖x∗ − x∗∗‖2,

which implies that x∗ = x∗∗ and the uniqueness is proved. Below we use x∗ to denote the unique
solution of (3.3). From (3.1), inequality (3.2) and Lemma 2.4, we have

‖yn − p‖2 = ‖βnzn + (1− βn)Tnzn − p‖2

= (1− βn)‖zn − p‖2 + βn‖zn − p‖2 − βn(1− βn)‖Tnzn − zn‖2.

≤ (1− βn)‖xn − p‖2 + βn‖xn − p‖2 − βn(1− βn)‖Tnzn − zn‖2.

Hence,
‖yn − p‖2 ≤ ‖xn − p‖2 − βn(1− βn)‖zn − Tnzn‖2. (3.7)

Therefore, by Lemma 2.4 and inequality (3.7), we have

‖xn+1 − p‖2 = ‖αnf(xn) + (1− αn)Tnyn − p‖2

≤ ‖αn(f(xn)− f(p)) + (1− αn)
(
Tnyn − p

)
‖2 + 2αn〈p− f(p), p− xn+1〉

≤ αnb
2‖xn − p‖2 + (1− αn)‖yn − p‖2 + 2αn〈p− f(p), p− xn+1〉

≤ αnb‖xn − p‖2 + (1− αn)
[
‖xn − p‖2 − βn(1− βn)‖zn − Tnzn‖2]

+2αn〈p− f(p), p− xn+1〉
≤ [1− (1− b)αn]‖xn − p‖2 − (1− αn)βn(1− βn)‖zn − Tnzn‖2

+2αn〈p− f(p), p− xn+1〉.

Therefore,

(1− αn)βn(1− βn)‖zn − Tnzn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈p− f(p), p− xn+1〉. (3.8)

Since {xn} is bounded, then there exists a constant B > 0 sucht that

〈p− f(p), p− xn+1〉 ≤ B, for all n ≥ 0.

Hence,
(1− αn)βn(1− βn)‖zn − Tnzn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnB. (3.9)

Now we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
Case 1. Assume that there is n0 ∈ N such that {‖xn − x∗‖} is decreasing for all n ≥ n0. Since
{‖xn − x∗‖} is monotonic and bounded, {‖xn − x∗‖} is convergent. Clearly, we have

‖xn − p‖2 − ‖xn+1 − p‖2 → 0. (3.10)

It then implies from (3.9) that

lim
n→∞

(1− αn)βn(1− βn)‖zn − Tnzn‖2 = 0. (3.11)
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Using the fact that lim
n→∞

inf βn(1− βn) > 0, we have

lim
n→∞
‖zn − Tnzn‖ = 0. (3.12)

We observe that,
‖zn − Tzn‖ ≤ ‖zn − Tnzn‖+ ‖Tnzn − Tzn‖. (3.13)

By inequalities (3.12), (3.13) and Lemma 2.6, we have

lim
n→∞

‖zn − Tzn‖ = 0. (3.14)

From (3.1), convexity of ‖.‖2 and Lemma 2.8, it follows that

‖xn+1 − p‖2 = ‖αnf(xn) + (1− αn)yn − p‖2

≤ αn‖f(xn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖f(xn)− p‖2 + (1− αn)‖zn − p‖2

= αn‖(λnxn)− p‖2 + (1− αn)‖PK(I − θnA)un − PK(I − θnA)p‖2

≤ αn‖f(xn)− p‖2 + (1− αn)
[
‖un − p‖2 + θn(θn − 2α)‖Aun − Ap‖2

]
≤ αn‖f(xn)− p‖2 + (1− αn)‖xn − p‖2 + (1− αn)a(b− 2α)‖Aun − Ap‖2.

Therefore, we have

(1− αn)a(2α− b)‖Aun − Ap‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖f(xn)− p‖2.

Since, αn → 0 as n→∞, inequality (3.10) and {xn} is bounded, we obtain

lim
n→∞

‖Aun − Ap‖2 = 0. (3.15)

It follows from (3.1) that

‖zn − p‖2 = ‖PK(I − θnA)un − PK(I − θnA)p‖2

≤ 〈zn − p, (I − θnA)un − (I − θnA)p〉

=
1

2

[
‖(I − θnA)un − (I − θnA)p‖2 + ‖zn − p‖2 − ‖(I − θnA)un − (I − θnA)p− (zn − p)‖2

]
≤ 1

2

[
‖un − p‖2 + ‖zn − p‖2 − ‖un − zn‖2 + 2θn〈zn − p,Aun − Ap〉 − θn2‖Aun − Ap‖2

]
≤ 1

2

[
‖xn − p‖2 + ‖zn − p‖2 − ‖un − zn‖2 + 2θn〈zn − p,Aun − Ap〉 − θn2‖Aun − Ap‖2

]
.

So, we obtain

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖un − zn‖2 + 2θn〈zn − p,Aun − Ap〉 − θn2‖Aun − Ap‖2,

and thus

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖f(xn)− p‖2 + (1− αn)‖zn − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − (1− αn)‖un − zn‖2 − (1− αn)θn
2‖Aun − Ap‖2

+ 2θn(1− αn)〈zn − p,Aun − Ap〉.
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Since, αn → 0 as n→∞, inequalities (3.10) and (3.15), we obtain

lim
n→∞

‖un − zn‖ = 0. (3.16)

Let p ∈ F. Using Lemma 2.10 and since g(p) ≤ g(un), we get

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖un − p‖2. (3.17)

Therefore, from (3.1), Lemma 2.4 and inequality (3.17), we get that

‖xn+1 − p‖2 = ‖αnf(xn) + (1− αn)yn − p‖2

= ‖αn(f(xn)− p) + (1− αn)(yn − p)‖2

≤ (1− αn)2‖yn − p‖2 + 2αn〈f(xn)− p, xn+1 − p〉
≤ (1− αn)2‖zn − p‖2 + 2αn〈f(xn)− p, xn+1 − p〉
≤ (1− αn)2(‖xn − p‖2 − ‖xn − un‖2) + 2αn‖f(xn)− p‖‖xn+1 − p‖
≤ (1− 2αn + α2

n)‖xn − p‖2 − (1− αn)2‖xn − un‖2 + 2αn‖f(xn)− p‖‖xn+1 − p‖
≤ ‖xn − p‖2 + αn‖xn − p‖2 − (1− αn)2‖xn − un‖2 + 2αn‖f(xn)− p‖‖xn+1 − p‖,

and hence

(1− αn)2‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖xn − p‖2 + 2αn‖f(xn)− p‖‖xn+1 − p‖.

Thanks inequality (3.10), {xn} is bounded and αn → 0 as n→∞, we have

lim
n→∞

‖xn − un‖ = 0. (3.18)

Using inequalities (3.16) and (3.18), we have

lim
n→∞

‖xn − zn‖ = 0. (3.19)

Now, we prove that lim sup
n→+∞

〈x∗− f(x∗), x∗−xn〉 ≤ 0. Since H is reflexive and {xn} is bounded, there

exists a subsequence {xnk
} of {xn} which converges weakly to ω in K and

lim sup
n→+∞

〈x∗ − f(x∗), x∗ − xn〉 = lim
k→+∞

〈x∗ − f(x∗), x∗ − xnk
〉.

From (3.14), inequality (3.19) and I − T is demiclosed, we obtain ω ∈ Fix(T ). Using (3.1) and
Lemma 2.9 we arrive at

‖xn − Jgλxn‖ ≤ ‖un − Jgλxn‖+ ‖un − xn‖
≤ ‖Jgλnxn − J

g
λxn‖+ ‖un − xn‖

≤ ‖un − xn‖+ ‖Jgλ
(λn − λ

λn
Jgλnxn +

λ

λn
xn

)
− Jgλxn‖

≤ ‖un − xn‖+ ‖λn − λ
λn

Jgλnxn +
λ

λn
xn − xn‖

≤ ‖un − xn‖+
(

1− λ

λn

)
‖un − xn‖

≤
(

2− λ

λn

)
‖un − xn‖.



A modified proximal point algorithms 12 (2021) No. 2, 511-526 521

Hence,
lim
n→∞
‖xn − Jgλxn‖ = 0. (3.20)

Since Jgλ is single valued and nonexpasive, using (3.20) and Lemma 2.3, then ω ∈ Fix(Jgλ) =
argminx∈K g(u). Let us show ω ∈ V I(A,K). Now, let us introduce the multivalued map B : H → 2H

defined by:

Bz =

{
Az +NK(z) if z ∈ K,
∅ if z /∈ K, (3.21)

where NK(z) is the normal K at z and is defined as follows:

NK(z) = {w ∈ H : 〈w, z − v〉 ≥ 0 ∀ v ∈ K}.

From Lemma 2.7, we have that B is maximal monotone and B−1(0) = V I(A,K). Let (u, v) ∈ G(A),
where G(A) := {[x, u] : x ∈ D(A), u = Ax}. Since v − Au ∈ NK(u) and zn ∈ K, we have

〈u− zn, v − Au〉 ≥ 0.

On other hand, from zn = PK(I − θnA)un, we have, 〈u− zn, zn − (I − θnA)un〉 ≥ 0 and hence

〈u− zn,
zn − un
θn

+ Aun〉 ≥ 0.

Therefore, we have

〈u− znk
, v〉 ≥ 〈u− znk

, Au〉

≥ 〈u− znk
, Au〉 − 〈u− znk

,
znk
− unk

θnk

+ Aunk
〉

≥ 〈u− znk
, Au− Aznk

〉+ 〈u− znk
, Aznk

− Aunk
〉 − 〈u− znk

,
znk
− unk

θnk

〉

≥ 〈u− znk
, Aznk

− Aunk
〉 − 〈u− znk

,
znk
− unk

θnk

〉.

By using A is
1

α
Lipschitz, we have

〈u− znk
, v〉 ≥ −N

(‖znk
− unk

‖
α

+
‖znk

− unk
‖

a

)
.

where N is a positive constant such that supk≥1{‖u − znk
‖} ≤ M. Since znk

⇀ ω, it follows from
(3.16) that 〈u − ω, v〉 ≥ 0 as k → ∞. Since B is maximal monotone, we have a ∈ B−1(0) and we
obtain that ω ∈ V I(A,K). Therefore, ω ∈ Γ.
Hence,

lim sup
n→+∞

〈x∗ − f(x∗), x∗ − xn〉 = lim
k→+∞

〈x∗ − f(x∗), x∗ − xnk
〉

= 〈x∗ − f(x∗), x∗ − ω)〉 ≤ 0.
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Finally, We show that the sequence {xn} converges to the point x∗. Observe that

‖xn+1 − x∗‖2 = ‖αnf(xn) + (1− αn)yn − x∗‖2

≤ ‖αn(f(xn)− f(x∗)) + (1− αn)(yn − x∗)‖2 + 2αn〈x∗ − f(x∗), x∗ − xn+1〉

≤
(
αn‖f(xn)− f(x∗)‖+ ‖(1− αn)(yn − x∗)‖

)2

+ 2αn〈x∗ − f(x∗), x∗ − xn+1〉

≤
(
αnb‖xn − x∗‖+ (1− αn)‖yn − x∗‖

)2

+ 2αn〈x∗ − f(x∗), x∗ − xn+1〉

≤
(

(1− αn(1− b))‖xn − x∗‖
)2

+ 2αn〈x∗ − f(x∗), x∗ − xn+1〉

≤ (1− αn(1− b))‖xn − x∗‖2 + 2αn〈x∗ − f(x∗), x∗ − xn+1〉

Hence, by Lemma 2.5, we conclude that the sequence {xn} converges strongly to the point x∗ ∈ Γ.
Case 2. Assume that the sequence {‖xn − x∗‖} is not monotonically decreasing sequence. Set
Bn = ‖xn − x∗‖ and τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough) by
τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}.
We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for
n ≥ n0. From (3.9), we have

(1− ατ(n))βτ(n)(1− βτ(n))g(‖zτ(n) − Tτ(n)zτ(n)‖) ≤ 2ατ(n)B → 0 as n→∞.

Hence,
lim
n→∞
‖zτ(n) − Tτ(n)zτ(n)‖ = 0. (3.22)

At the same time, we observe that

‖zτ(n) − Tzτ(n)‖ ≤ ‖zτ(n) − Tτ(n)zτ(n)‖+ ‖Tτ(n)zτ(n) − Tzτ(n)‖. (3.23)

Thanks inequalities (3.22), (3.23) and Lemma 2.6, we have

lim
n→∞
‖zτ(n) − Tzτ(n)‖ = 0.

Following similar to the argument as in Case 1, we can show that {xτ(n)} and {yτ(n)} are bounded
in K and lim sup

τ(n)→+∞
〈x∗ − f(x∗), x∗ − xτ(n))〉 ≤ 0. We have for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2 ≤ ατ(n)[−(1− b)‖xτ(n) − x∗‖2 + 2〈x∗ − f(x∗), x∗ − xτ(n)+1〉],

which implies that

‖xτ(n) − x∗‖2 ≤ 2

1− b
〈x∗ − f(x∗), x∗ − xτ(n)+1〉.

Then, we have
lim
n→∞
‖xτ(n) − x∗‖2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n 6= τ(n) (that is, n > τ(n)); because
Bj > Bj+1 for τ(n) + 1 ≤ j ≤ n. As consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof. �
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Remark 3.2. let {Tn}n≥0 be a sequence of nonexpansive mappings of K into K, let {λn}n≥0 be a
sequence of real number such that and 0 ≤ λn ≤ 1. For each n ≥ 0, we define a mapping Wn of K
into K as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1− λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,
...

Un,k = λkTkUn,k+1 + (1− λk)I,
...

Un,2 = λ2T2Un,3 + (1− λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1− λ1)I. (3.24)

Such that is called Wn is the so called W -mapping generated by an countable infinite family of
nonexpansive mappings T1, T2, ..., Tn, ... and scalars λ1, λ2, ..., λn, ... such that the common fixed points

set F :=
∞
∩
n=1

F (Tn) 6= ∅, see for example [30]. Clearly, Wn is nonexpansive and from [30], we know that
∞
∩
n=1

F (Tn) = F (Wn). Furthermore, from [27], we have the sequence {Wn}n≥1 satisfies the condition
∞∑
n=0

sup
{
‖Wn+1x−Wnx‖ : x ∈ B

}
<∞ for any bounded subset B of K imposed in Theorem 3.1.

By above remark, Lemma 2.3 and the fact that nonexpansive mapping is quasi-nonexpansive. We
obtain the following result.

Theorem 3.3. Let K be a nonempty, closed and convex subset of a real Hilbert H and A : K → H
be an α-inverse strongly monotone operator. Let f : K → K be a contraction with coefficient b and
g : K → (−∞, +∞] be a proper convex and lower semi-continuous function. For each n = 1, ..., let

Tn : K → K be a nonexpansive mapping such that Γ :=
∞⋂
n=1

Fix(Tn)∩V I(A,K)∩argminu∈K g(u) 6= ∅.

Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:
un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

zn = PK(I − θnA)un,
yn = βnzn + (1− βn)Wnzn,
xn+1 = αnf(xn) + (1− αn)Wnyn,

(3.25)

where {αn} and {βn} are sequences in [0, 1] such that lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, lim
n→∞

inf βn(1 −

βn) > 0, θn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1

and some λ. Then, the sequence {xn} generated by (3.25) converges strongly to an element of Γ.

We apply Theorem 3.1 to approximate fixed points of quasi-nonexpansive mapping.

Corollary 3.4. Let K be a nonempty, closed and convex subset of a real Hilbert H and A : K → H
be an α-inverse strongly monotone operator. Let f : K → K be a contraction with coefficient b and
g : K → (−∞, +∞] be a proper convex and lower semi-continuous function. Let T : K → K be a
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quasi-nonexpansive mapping such that Γ := Fix(T ) ∩ V I(A,K) ∩ argminu∈K g(u) 6= ∅ and I − T is
demiclosed at origin. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:

un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

zn = PK(I − θnA)un,
yn = βnzn + (1− βn)Tzn,
xn+1 = αnf(xn) + (1− αn)Tyn,

(3.26)

where {αn} and {βn} are sequences in [0, 1] such that lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, lim
n→∞

inf βn(1 −

βn) > 0, θn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1

and some λ. Then, the sequence {xn} generated by (3.26) converges strongly to an element of Γ.

4. Application

In this section, we study the problem of finding a common element of the set of solution of convex
minimization problem, the set of solution of variational inequality problem and the set of zeros of
monotone operator in real Hilbert spaces.

Lemma 4.1. [3] Let C be a nonempty, closed, and convex subset of a real Hilbert space H and let B
be an monotone operator on H such that such that B−1(0) 6= ∅ and D(B) ⊂ C ⊂ R(I + rB), for all

r > 0. Suppose that {rn} is a sequence of (0,∞) such inf{rn : n ∈ N} > 0 and
∞∑
n=0

|rn+1 − rn| <∞,

then (a)
∞∑
n=0

sup
{
‖Jrn+1x − Jrnx‖ : x ∈ B

}
< ∞ for any bounded subset B of C and Fix(Jr) =

B−1(0) =
∞⋂
n=0

Fix(Jrn) where Jr be a mapping of C into itself defined by Jrx = lim
n→∞

Jrnx, for all

x ∈ C.

Hence, one has the following result.

Theorem 4.2. Let K be a nonempty, closed and convex subset of a real Hilbert H and A : K → H
be an α-inverse strongly monotone operator. Let f : K → K be a contraction with coefficient b and
g : K → (−∞, +∞] be a proper convex and lower semi-continuous function. Let B be an monotone
operator on H such that Γ := B−1(0) ∩ V I(A,K) ∩ argminu∈K g(u) 6= ∅, D(B) ⊂ K ⊂ R(I + rB),
for all r > 0. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:

un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

zn = PK(I − θnA)un,
yn = βnzn + (1− βn)Jrnzn,
xn+1 = αnf(xn) + (1− αn)Jrnyn,

(4.1)

where {αn}, {βn} are sequences in [0, 1] and rn is a sequence of (0,∞) such inf{rn : n ∈ N} > 0 and
∞∑
n=0

|rn+1 − rn| <∞,
∞∑
n=0

αn =∞, lim
n→∞

inf βn(1− βn) > 0, θn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
and {λn}

is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequence {xn} generated by
(4.1) converges strongly to an element of Γ.



A modified proximal point algorithms 12 (2021) No. 2, 511-526 525

Proof . Letting Tn = Jrn = (I + rnB)−1 in Theorem 3.1 and the fact that resolvent of B is
nonexpansive mapping. The proof follows Theorem 3.1 and Lemma 4.1. �

5. Conclusion

In this work, we introduce and analyze a new iterative algorithm which is a combination of
viscosity approximation method and proximal point algorithm for approximating a common element
of the set of minimizers of a convex function, the set of solution of variational inequality problem and
the set of common fixed points of an infinite family of quasi-nonexpansive mappings in real Hilbert
spaces. Moreover, compactness assumption does not need to get strong convergnce. All the results
in this paper hold for nonexpansive mappings in real Hilbert spaces.
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