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Coupled Systems of Equations with Entire and
Polynomial Functions
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Abstract
We consider the coupled system F(z,y) = G(z,y) = 0, where

F(z,y) = 0m Ap(y)z™ % and G(z,y) = 0maBy(y)z™ "

with entire functions Ag(y), Br(y). We derive a priory estimates for the sums of the roots of the
considered system and for the counting function of roots.
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1. Introduction and Statements of the Main Result

Let us consider the system

F(z,y) = G(z,y) =0, (1.1)
where
F(z,y) = Au(y)z™ " and G(z,y) =Y Bi(y)z™* (2,y € C)
k=0 k=0

with the entire functions

Ay) =D awy’, Buly) = by’ k> 1.
j=0 Jj=0
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Such systems arise in various applications. In particular, they describe stationary states of various
systems of nonlinear differential equations [12] and functional-differential equations [§]. The basic
methods for the investigations of systems of the type (1.1) are topological methods, in particular, the
fixed point theorems [4], [10, [I7]. The other approach for the problem of computing zeros of analytic
mappings (in other words, for solving systems of analytic equations) is the logarithmic residue based
approach. A multidimensional logarithmic residue formula is available in the literature, cf. [2, Q).
That formula involves the integral of a differential form, which can be transformed into a sum of
certain Riemann integrals. The zeros and their respective multiplicities can be computed from these
integrals by solving a generalized eigenvalue problem that has the Hankel structure. Besides, in the
case, when A;(z) and Bj(z) are polynomials, the literature is very rich, cf. [5l [I4] and references
therein.

A few words about the numerical methods in the coupled systems theory. The classical numerical
methods can be found in [I5]; recently, the Newton method was considerably developed [3] [16].
Besides the essential role is played the Adomian polynomials [I]. Note that for the application of
the Newton method, the differentiability is required. For the applications of the topological methods
and Newton one, a priory estimates for the roots are often required, however, to the best of our
knowledge, such estimates for (1.1) were not enough considered in the available literature.

A pair of complex numbers (y, z) is a solution of (1.1) if F(x,y) = G(z,y) = 0. Besides x will be
called an X-root coordinate (corresponding to y) and y a Y-root coordinate (corresponding to x).
All the considered roots are counted with their multiplicities. In this paper we suggest the a priory
estimates for the Y-coordinates of the roots of (1.1). Our approach is new and based on the recent
results for matrix-valued functions.

For m = my 4+ ms introduce the m x m-matrices

Qp; Q15 A25 ... Amy—15 A,y 5 0 0 e 0
0 Qo; A1 . Omi—25 QAmi—-1j5 Omqj 0 ce 0
C. — 0 0 0 ce Qo,; Q1,5 g, j azj .. Qmyj
=
boj bij by oo buyo1; bme; 0 0 ... 0
0 b()j blj . bm2—2,j bmz—l,j bmg,j 0 PN 0
0 0 0 ce boj blj bgj bgj c. bmz,j

j=0, 1, ... ). It 1s supposed that Cy 1s mvertible. Put D; = CyC;(7!), tor a v € (0, 1], and assume
=0, 1 It i d that Cj is i ible. Put D; = CyCj(5!), f 0,1 d
that the series

Oy = [Z Dy.D;

k=1

1/2

converges. (1.2)

Here and below the asterisk means the adjointness. So ¢ is an m x m-matrix and under (1.2) by the
Holder inequality, it follows that the pencil

Ho(y) = Z (,wak (y€C)

satisfies the inequality

<<

0o U o 7y

, 2|k
2 k] [Z | y/g|l ] < e
k=1 )

k=1

HoWl <o S
k=1 V"
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where v+ 1/p" =1, ||| is the matrix spectral norm, that is the operator norm corresponding to the
Euclidean norm of vectors,

7k‘p/ l/p,
co = s%p | Dkll, c1 = co [02 ] :

So function Hy has order no more than 1/7.
Put

_ M(©g) fork=1,...m
“F= 00 fork=m+1,m+2,...

Here and below A\;(A) are the eigenvalues of a matrix A counted with their multiplicities and enu-
merated in the decreasing way: |Ap11(A)| < [A(A)|. Now we are in a position to formulate our main
result.

Theorem 1.1. For a v € (0,1], let condition (1.2) hold. Then the Y -roots yy of (1.1) counted with
their multiplicities and enumerated in the nondecreasing way: |yr| < |grs1| (k= 1,2,...) satisfy the
imequalities

i j "
— < —_— =1,2,...).
S5 < ot | G=12
1 1
This theorem is proved in the next section.

Note that by Lemma 2.11.3 [6],

Ny H(Cy)
(m — 1)m=1/2 |det Cy|’

1Coll <

where

Ny(Cy) = /Trace CoCj.

So ||@0|| < 90, where

Nm 100

0y :=
O (m = 1)m=D72 |det Cy

Z IC; H2] 1/2~

Thus,

wr < 0 for k=1,...,mand w, =0 for k > m + 1.

2. Proof of Theorem 1.1

Let Ty, k =1,2,... be n X n-matrices. Consider the entire matrix pencil

:Zk:om(;;n (Ty = I,,, € C), (2.1)

where I,, is the unit n x n-matrix. The characteristic values of H, that is the zeros of det H(z), with
their multiplicities are enumerated in the nondecreasing way are denoted by z(H). Suppose that

1/2
O = [Z k= 1°°TkT,:} converges . (2.2)
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Furthermore, put
Op(H) = M\(Op) for k=1,...,n and Ox(H) =0 for k > n + 1.

Let condition (2.2) hold. Then the characteristic values of the pencil H defined by (2.1) satisfy the
inequalities
o

Z < Z [wk T (G=1,2,..). (2.3)

For the proof see [7, Theorem 12.2.1]. Furthermore, for m = mj +my introduce the m x m Sylvester
matrix

Ay A Ay ... Apy Am, 00 ... 0

0 Ay Ay ... Apms Amt Am, 0 ... 0

S( )_ 0 0 0 AO Al AQ Ag Aml
Y71 By By By ... Bpye1t Bpy, 0 0 ... 0
0 By By ... Bmy—s Bmy1 Bmy, 0 ... 0

0 0 0 ... By B By, B; ... Bu,

with A; = A;(y) and B; = B;(y). So

S(y)=>_ Ci/ =Co>_ Djy’ = Hy(y)
k=0 k=0
As it is well known [I1], the Y-roots of (1.1) are the characteristic values of S(y) that is the zeros of
the resultant det S(y). Take into account that
det S(y) = det Cy det Hy(y).

Now the required result is due to (2.3).

3. The Counting Function for Roots
Put

" (k=12
Xk—warm (k=12 ).
The following result is due to the well-known Lemma 1.2.1 [7] and Theorem 1.1.

Corollary 3.1. Let ¢(t) (0 < t < o0) be a continuous conver scalar-valued function, such that
#(0) = 0. Then under condition (1.2), the inequalities

S o) <D otw) (=1,2,.)
k=1 k=1

are valid. In particular, for any r > 1,

J 1 J
Z|~ <D

T
1 |k k=1
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and thus
j . 1/r j 1/r j | 1/r
— < wy, +m” —_— =1,2,...).
i |z > ]

Furthermore, assume that
ry>1r>1.

Then
1
" = —_— < 0.
Cn(r) ;Oo(k+m)rv 00
Relation (3.1) with the notation

No(©0) = [ mA(80)]'""

yields our next result:

Corollary 3.2. Let conditions (1.2) and (3.1) hold. Then

>

Since g; < gj41, from (1.3), it follows that |y;| > n; where

1
|§k|7’)1/r < NT(®0> + mWC;{T(PYT)‘

_ J
et W + ﬁ]

We thus get our next result.

N -

Gil’

(3.1)

Corollary 3.3. Under the hypothesis of Theorem 1.1, system (1.1) has in |z| < n; no more than

j — 1 Y-root coordinates; in particular, in |z| < m system (1.1) does have Y -root coordinates.

Let vy (r) be the counting function of the Y-roots (1.1) in |z| < r. We thus get the inequality

vy(r) < j—1for any r <n;.
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