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Abstract

This paper concerns with the nonlinear instability analysis of double interfaces separated three per-
fect, incompressible cylindrical magnetic fluids. The cylindrical sheet is acted upon by an axial
uniform magnetic field. The current nonlinear approach depends mainly on solving the linear gov-
erning equations of motion and is subjected to the appropriate nonlinear boundary conditions. This
procedure resulted in two nonlinear characteristic equations governed by the behavior of the inter-
face’s deflection. By means of the Taylor expansion, together with the multiple time scales, technique,
the stability analysis of linear as well as the nonlinear is achieved. The linear stability analysis re-
veals a quadratic dispersion equation in the square of growth rate frequency of the surface wave. On
the other hand, the nonlinear analysis is accomplished by a coupled nonlinear Schrödinger equation
of the evolution amplitudes of the surface waves. The stability criteria resulted in a polynomial of
the eleventh degree in the square of the magnetic field strength, together with resonance transition
curves. Several special cases are reported upon appropriate data choices. The stability criteria are
numerically discussed, at which regions of stability and instability are identified. In the stability pro-
file, the magnetic field intensity is plotted versus the wave number. The influences of the parameters
on the stability are addressed. The nonlinear stability approach divides the phase plane into several
parts of stability/instability. The nonlinear stability shows an in contrast mechanism of the role of
the sheet thickness.
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1. Introduction

Berkovski, and Bashtovoy [1] introduced a handbook on the topic of ferrofluid (FF). Throughout
this book, they have explained the basic principles, significance in regard to its theory in different
practical situations. They showed that the core of magnetic fluid technology is based on liquid and
magnetic phenomena. Furthermore, they discussed the fundamental characteristics of the magnetic
fluid along with measurement techniques. Magnetic nano-particle has received great attention owing
to their potential usefulness in magnetic resonance imaging or colloidal mediators for cancer magnetic
hyperthermia. Rheinländer et al.[2] presented a simple magnetic method for the fractionation of FF.
It was shown that their technique separates the magnetic nano-particle according to the magnetic
moments. Furthermore, the method of fractionates of different magnetic fluids successfully has good
reproducibility. Therefore, the particles obtained by this technique became better suited for a number
of applications. Along with the applications in medicine and biotechnology, Chaniyilparampu et al.
[3] showed that FF could be successfully directed to the tumors in about one half of the patients.
Moreover, they indicated the potential of using the magnetic particles as an effective drug delivery
system, in order to relieve patients of unwanted side effects of anticancer drugs. Therefore, Mornet
et al. [4] introduced a review on this topic. Furthermore, a special emphasis was made on magnetic
nano-particle requirements from a physical point of view. Ganguly et al. [5] performed experimental
and numerical investigations of magnetically induced localization of FF and its subsequent dispersion
in a forced flow. They found that the FF accumulation behaves as a solid obstacle in the flow.
Moreover, their analysis provides meaningful information about FF transport for various magnetic
drug targeting applications. Scherer, and Neto [6] reviewed the general classification and the main
properties of the FF together with theoretical models. In addition, they considered the stability
of a FF in terms of various forces and torques on the magnetic particles. Furthermore, their work
included a few of many technological applications. Among these applications, they selected the
doping of liquid crystals and added many comments for future research on the properties of FF.

A significant review of the hydrodynamic stability of the Rayleigh Taylor and Kelvin-Helmholtz
instabilities had been reported throughout Chandrasekhar’s [7] pioneer book. El Shehawey et al.
[8] studied the electrohydrodynamic (EHD) stability of a fluid layer that imbedded between two
different fluids. Their perfect fluid system was influenced, only, by gravitational forces together
with the tangential electric field. They showed that the tangential electric field plays a stabilizing
role in the stability picture, it may be used to suppress the instability of the system at a certain
wave number. Their stability analysis resulted in two simultaneous linear second-order differential
equations. Mohamed et al. [9] introduced the same problem that was given in Ref [8] but in the
case of a periodic electric field. In this case, they obtained two simultaneous ordinary differential
equations of the Matheieu type. They used the multiple time scale technique to judge the stability
criteria. They showed that the tangential periodic field cannot stabilize a system that is unstable
under a uniform electric field. Mohamed et al. [10] studied the EHD of two interfaces separating three
fluid phases. They considered two cases; the case of the absence of surface charges together with that
in its presence. They showed that the field is still has a destabilizing influence, but this influence is
partially shielded in some situations. El-Dabe et al. [11] studied the EHD stability of two cylindrical
interfaces acted upon by a periodic tangential magnetic field. Two simultaneous ordinary differential
equations of the Mathieu type were obtained. They utilized the multiple time scales method to judge
the stability criteria of the system. They found that the uniform electric field has a stabilizing effect,
meanwhile, the periodic one has a stabilizing influence except at some resonance points. Actually,
the current manuscript given an extension to our previous work [11]. It aims to investigate the
nonlinear stability analysis of the double cylindrical interfaces. For simplicity, the present study
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considers only a perfect fluid without any additional parameters except the gravitational forces as
well as an axial uniform magnetic field. El-Dib and Matoog [12] investigated the problem by electro-
viscoelastic Kelvin-Helmholtz waves of three phase Maxwellian fluids under the influence of a periodic
normal electric field in the absence of surface charges. They used the symmetric and anti-symmetric
modes in their analysis. Moreover, they indicated that the thickness of the horizontal layer, as
well as the frequency of the layer, played a destabilizing role in the stability picture. Moatimid
et al. [13] investigated the influence of an axial periodic field on streaming flows throughout three
coaxial infinitely cylinders. Recently, Moatimid et al. [14] studied the linear stability analysis of a
vertical cylindrical sheet. Their boundary-value problem resulted in a coupled second-order damped
differential equation with complex coefficients. Utilizing the symmetric and anti-symmetric modes,
they combined these equations to obtain a single dispersion equation. Therefore, they acquired the
stability criteria analytically and confirmed them numerically.

Various natural and scientific phenomena are typically modeled and illustrated in view of dif-
ferential equations. In material science, there are many fundamental equations for portraying a
quantum mechanical behavior; for example, see Arnold [15]. In this work, Arnold [15] showed that
the transparent boundary conditions for the transient Schrödinger equation -in a certain domain- can
be derived under the assumption that the given uniform potential lies outside this domain. Among
them, the most important equation is the nonlinear Schrödinger equation which is used to elucidate
the changes of quantum systems with time. Furthermore, this equation has many applications in
various fields of the physical sciences; for instance, in the configuration of optoelectronic gadgets,
in studying the electromagnetic wave proliferation, quantum flow computations, underwater acous-
tics, signal propagation in optical fibers, and many physical nonlinear systems having instability
problems; for an example, see Levy’s book [16]. Throughout this book, Levy presented the applica-
tion of parabolic equation methods in electromagnetic wave propagation. These powerful numerical
techniques have become a dominant tool for assessing clear-air and terrain effects on radio wave
propagation and are growing increasingly popular for solving scattering problems. This book gives
a mathematical background to parabolic equation modeling and describes simple parabolic equation
algorithms before progressing to more advanced topics such as domain truncation. Recently, Arora
et al. [17] developed a hybrid scheme for solving the nonlinear Schrödinger equation in one as well
as two dimensions. Their approach reduced the nonlinear equation into a set of ordinary differential
equations. By means of the modified Runge-Kutta technique, they solved these equations numer-
ically. Furthermore, they found that the numerical results are in good agreement with the results
available in the literature.

Several authors discussed the nonlinear analysis using the method of multiple time scales. Nayfeh
[18] utilized this method to drive two partial differential equations that describe the evolution of two-
dimensional wave-packets of the interface between two semi-infinite perfect fluids. These equations
are combined to yield two alternate nonlinear Schrödinger equations. By making use of these equa-
tions, the stability criteria were achieved. Elhefnawy [19] studied the nonlinear stability analysis
of the Rayleigh Taylor instability of two superposed magnetic fluids. He showed that the evolution
amplitude of the surface wave is governed by a nonlinear Ginzburg-Landau equation. Therefore,
the stability criteria were discussed both analytically and numerically. The nonlinear stability of a
cylindrical interface between two fluids was investigated by Lee [20]. Throughout his nonlinear anal-
ysis, a nonlinear Ginzburg–Landau was obtained. Therefore, the regions of stability and instability
were addressed. Zakaria [21] investigated the nonlinear stability of two superposed magnetic fluids
in the presence of an oblique magnetic field. His analysis revealed Schrödinger and Klein–Gordon
equations. The existing conditions of Stokes waves with their instability conditions were combined
to judge general criteria. He obtained the properties of the existence of instability. These conditions
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were discussed analytically and graphically. El-Dib [22] extended Nayfeh’s approach [18] to derive
the nonlinear stability criteria of double interfaces. The analysis revealed the case of the uniform as
well as periodic external fields. His technique resulted in two Schrödinger equations, by combining
them, the stability criteria were obtained. A weakly nonlinear instability of the surface waves prop-
agating between two visco-elastic cylindrical flows was investigated by Moatimid [23]. Typically, a
nonlinear Schrödinger equation with complex coefficients was obtained. Therefore, the regions of
stability and instability were identified for the wave train disturbances. Elhefnawy et al. [24] studied
the nonlinear instability of finite cylindrical conducting fluids under the effect of a radial electric
field. They found that the evolution of the amplitude of the surface wave was governed by two
partial differential equations. Following Nayfeh’s approach [18], they derived two alternate nonlinear
Schrödinger equations. Therefore, the stability criteria were analytically discussed and confirmed
numerically. Recently, Moatimid et al. [25] investigated the nonlinear instability of a cylindrical
interface between two magnetic fluids in porous media. The coupling of the Laplace transforms and
homotopy perturbation techniques were adopted to obtain an approximate analytical solution of the
interface profile. The nonlinear stability analysis resulted in two levels of solvability conditions. By
means of these conditions, a Ginzburg-Landau equation was conducted.

To our knowledge, the first treatment of the capillary stability of a hollow cylinder, i. e., a liquid
bounded by two cylindrical surfaces had been performed by Dumbleton and Hermans [26]. As per
the authors’ knowledge, it is for the first time to analyze the nonlinear stability analysis of double
interfaces. Therefore, the current investigation deals with the investigation of the nonlinear stability
analysis of double interfaces. An axial uniform magnetic field stength is acted upon on a vertical
magnetic cylindrical shell. The case of a periodic field will be considered in a subsequent paper. So,
the current manuscript gives an extension to our previous work [11] to analyze the nonlinear stability
analysis of a cylindrical sheet between two interfaces. For simplicity, this study is done without any
additional parameters except an axial uniform magnetic field and the gravitational forces. The
problem meets its importance from practical interest of a geophysical and industrial point of view.
Typically, as given in our previous works; for instance, see Refs[23, 25], the following approach is based
mainly on solving the linear equations of motion along with the corresponding nonlinear boundary
conditions. The procedure yields nonlinear characteristic equations of the deflection of the interfaces.
Following our previous work [22], a coupled nonlinear Schrödinger equation is obtained. Therefore,
the stability criteria are achieved in the linear as well as nonlinear approaches. Furthermore, in
light of the numerical estimations, the regions of stability/instability are addressed. To clarify the
manuscript, the rest of the paper is organized as follows: Section 2 is devoted to the methodology
of the problem. In this Section, the equations of motion and the appropriate nonlinear boundary
conditions are presented. The linear stability analysis is drawn in Section 3. The nonlinear stability
approach and, hence, the derivation of the coupled nonlinear Schrödinger equations are introduced
in Section 4. Finally, concluding remarks are summarized in Section 5.

2. Methodology of the Problem

Vertical cylindrical flows consist of three parallel perfect, incompressible magnetic fluids are con-
sidered. Throughout this formulation the subscripts 1,2 and 3 denote the parameters that associated
to the inner, middle and outer fluids, respectively. In the undisturbed state, the three fluids are
separated by two coaxial cylindrical interfaces whose radii are r = R1and r = R2. Therefore, the two
cylindrical surfaces that form the boundaries of the liquid are circular and concentric. The inner,
middle and outer liquids have the uniform densitiesρ1, ρ2 andρ3. The effect of the viscosity of the
liquids in the inner, middle and outer the cylindrical sheet is neglected. Simultaneously, they have,
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Figure 1: Sketch of the model in the undisturbed state.

in order, the magnetic permeability’s µ1, µ2 and µ3, respectively. The three fluids are assumed to
be affected by an axial uniform magnetic field of strength H0. For the reason illustrated below,
the disturbance is assumed to have a cylindrical symmetry. Actually, the magnetic field is imple-
mented along the positive z−direction. Moreover, for simplicity, no surface currents are assumed to
be present at the interfaces. The gravitational acceleration g, along the negative zdirection is, also,
taken into consideration. For more convenience, we work with the cylindrical coordinates (r, θ, z).
Typically, in the equilibrium state, the z−axis represents the axis of symmetry of the system. It is
clear that, in this state, the pressure of the inner liquid, at which r < R1 is larger than that of r > R2,
the difference being T1/R1 + T2/R2, where T1 , and T2 are the amounts of the surface tension at the
inner and outer surface, respectively. It is assumed that this pressure difference remains constant
during the disturbance. The physical model is sketched in Fig. 1.

Typically, as given throughout the pioneer book of Chandrasekhar [7], the liquid jet is stable
for all the asymmetric modes m 6= 0, but it becomes unstable at the axisymmetric mode m = 0.
Consequently, the most interesting mode of disturbance is the axisymmetric mode. Therefore, from
now on, the case of m = 0 is only considered. The disturbed cylinder, especially considering the
Fourier component with the wave number k and the cylindrical symmetry, the inner and outer
surfaces, is given by

r = R1 + η(z, t) (2.1a)

r = R2 + ξ(z, t), (2.1b)

here η(z; t) and ξ(z, t) are a general unknown function which represents the surface deflection behav-
ior.

Therefore, after a small departure from the equilibrium state, the interface profiles may be ex-
pressed as:

S1(r, z; t) = r −R1 − η(z, t) (2.2a)

S2(r, z; t) = r −R2 − ξ(z, t), (2.2b)
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Therefore, the unit outward normal vector of the interfaces may be written as:

n1 = ∇S1/ |∇S1| = (er − ηz ez)(1 + η2
z)
−1/2 (2.3a)

n2 = ∇S2/ |∇S2| = (er − ξz ez)(1 + ξ2
z )
−1/2, (2.3b)

here er and ez are unit vectors along the r− and z−directions, respectively.
The governing equations of motion of an incompressible fluid may be written as:(

∂vj
∂t

+ (vj.∇)vj

)
= − 1

ρj
∇Pj − gez j = 1, 2, 3, (2.4)

where vj = vj(r, z; t) is the fluid velocity and Pj represents the pressure.
The zero-order solution of Eq. (2.4) yields

P0j = −ρjgz + λj, (2.5)

where λj is an arbitrary integration constant.
As shown in the formulation of the problem, the fluids are assuming as perfect flows. Therefore,

one may assume that the fluids are being irrotational flows. It follows that, the perturbed velocity
may be written as

vj = −∇ϕj = −∂ϕj
∂r

er −
∂ϕj
∂z

ez. (2.6)

Because of the incompressibility condition, the potential function ϕj(r, z; t) must satisfy the following
Laplace equation:

∇2ϕj = 0, (2.7)

and
ϕj(r, z; t) = ϕ̂j(r; t)e

ikz + c.c. (2.8)

here c.c. represents the complex conjugate of the preceding term.
The solution of the Laplace’s equation is then become

ϕ̂1(r; t) = A1(t)I0(kr), (2.9a)

ϕ̂2(r; t) = (A2(t)I0(kr) +B2(t)K0(kr)) , (2.9b)

ϕ̂3(r; t) = B3(t)K0(kr), (2.9c)

where A1(t), A2(t), B1(t) and B2(t) are arbitrary time-dependent functions to be evaluated in light of
the appropriate nonlinear boundary conditions. Moreover, I0(kr) and K0(kr) represent the modified
Bessel functions of the first and second kinds, respectively.

The integration of the linear equation of motion (2.4) resulted in the distribution function of the
pressure as given by

Pj = ρj
∂ϕj
∂t

. (2.10)

On the other hand, in accordance with the Maxwell equations; see for instance, Melcher [27], for the
quasi-static approximation, on neglecting the influence of the electric field, they may be written as

∇.µjHj = 0, (2.11)

and
∇×Hj = 0. (2.12)
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As given in the formulation of the problem, no surface currents are assumed to be present at the
surface of separation.

Therefore, the magnetic field may be expressed in terms of the scalar magneto-static potentialsψj(r, z; t),
i.e., Hj = −∇ψj(r, z; t) such that the total perturbed magnetic fields can be expressed as:

Hj = −∂ψj
∂r

er −
(
∂ψj
∂z
−H0

)
ez. (2.13)

The combination of equations (2.11) and (2.13) yields

∇2ψj = 0. (2.14)

As expressed previously in Eq. (2.8), the magnetic potentials may be written as:

ψ̂1(r; t) = C1(t)I0(kr), (2.15a)

ψ̂2(r; t) = C2(t)I0(kr) +D2(t)K0(kr), (2.15b)

ψ̂3(r; t) = D3(t)K0(kr), (2.15c)

where C1(t), C2(t), D2(t) and D3(t) are arbitrary time-dependent functions to be evaluated by using
the appropriate nonlinear boundary conditions.

2.1. Nonlinear Boundary Conditions

The general solutions of the velocity and magnetic potential distributions, as given in equations
(2.9) and (2.15), must satisfy the appropriate nonlinear boundary conditions.

2.1.1. At the Free Interfaces r = R1 + η(z; t) and r = R2 + ξ(z; t)

1-The conservation of mass across the interface, which is so called the kinematic condition, yields

DS1

Dt
= 0 at r = R1 + η(z; t) (2.16)

DS2

Dt
= 0 at r = R2 + ξ(z; t) (2.17)

here D/Dt represents the material derivative operator.
2-The jump of the tangential components of the magnetic is continuous at the interface yield

nj ×
∥∥Hj

∥∥ = 0. j = 1, 2, (2.18)

where ‖∗‖ = ∗2 − ∗1 denotes to the jump of the external and internal fluid layers, respectively.
3- The jump of the normal components of the magnetic is continuous at the interface give

n j.
∥∥µj Hj

∥∥ = 0. j = 1, 2, (2.19)

At this stage, on substituting from equations (2.9) and (2.15) into equations (2.16)-(2.19), one finds
the special solutions which are consistent with the foregoing nonlinear boundary conditions. They
can be written as follows:

ϕ1 = − ηtI0(x)

k (I1(a)− iI0(a)ηz)
, (2.20)

ϕ2 =
ηt (Nxb − iWbxξz)− ξt (Nxa − iWaxηz)

k (Lba + iNabηz + ξz (Wbaηz − iNba))
, (2.21)
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ϕ3 =
ξtK0(x)

k (K1(b) + iK0(b)ξz)
, (2.22)

ψ1 = H0 I0(x)ηz
Λ

(
(µ1 − µ2)ηz [µ2(K0(b) + iK1(b)ξz) (Nba + iLbaηz+ ξz (−iWba +Nbaηz)] +

[µ3(K1(b) + iK0(b)ηz) (Wba + iNabηz + ξz (−iNba + Lbaηz) ]− (µ2−µ3)µ2ξz(1+η2
z)(K0(b)+iK1(b)ξz)
a

)
,

(2.23)

ψ2 = H0
Λ (K0(x)(µ1 − µ2) (I0(a)− iI1(a)ηz) [µ2 (K0(b) + iK1(b)ξz) (I1(a)ξz − (I1(b) + i(I0(a)− I0(b))ξz)ηz) +

µ3 (− ξz(P ba + iV b
a ξz) + i(P ba −Gbb + iGbbξz)ηzξz − (Ebb − iV b

b ξz + Ebaξ
2
z )ηz

]
−

I0(x)(µ2 − µ3) (K0(b) + iK1(b)ξz)× [µ2(iI0(a) + I1(a)ηz) (−iK1(a) + (K0(a)−K0(b))ηz) ξz] +
µ1

(
ηz(E

b
a − iGbaηz) + ξz

(
P aa + i

(
P ba − P aa + V a

a

)
ηz +Naaη

2
z

))])
(2.24)

and

ψ3 = H0 K0(x)ηz
Λ ((µ3 − µ2)ξz [µ2(I0(a)− iI1(a)ηz) (Nba + iWbaηz+ ξz (−iLba +Nbaηz)] +

[µ1(iI1(a) + I0(a)ηz) (−iWba +Nabηz − ξz (Nba + iLbaηz) ] + (µ1−µ2)µ2ηz(1+ξ2
z)(I0(a)−iI1(a)ηz)
b

)
,

(2.25)

where x = kr, a = kR1, b = kR2 and Nxb, Nab, Wax, Wbx, Wba, Lba, E
b
a, G

b
a, P

b
a , V b

a , Eab , Gab , P
a
b , V a

b , Eaa ,
Gaa, P

a
a , V a

a , Ebb , G
b
b, P

b
b , V b

b and Λ are given in the Appendix.
The distributions of the velocity and magnetic potentials contain nonlinear terms. As the nonlinear

terms are ignored, the linear profile arises and equivalent to those obtained earlier by EL-Dabe et al. [11],
and Rosensweig [28]. At this end, the boundary-value problem has been completed.

To analyze the stability of the system, the remaining boundary condition arises from the normal com-
ponent of the stress tensor. In accordance with the presence of the amount of surface tensions, this normal
component must be discontinuous. The total stress tensor can be formulated as follows:

σij = −Pδij + µHiHj −
1

2
µH2δij (2.26)

where δij is the Kronecker delta∥∥nj .F j∥∥ = Ti∇. nj , i, j = 1, 2 (2.27)

where F j is the total force acting on the interfaces, which is defined as

F =

(
σrr σrz
σzr σzz

)(
nr
nz

)
, (2.28)

here nr, nz are the components of the outward unit normal vector n.
On substituting from the foregoing outcomes in Eq. (2.27), after lengthy but straightforward calculation,

one gets the following nonlinear characteristic equations:

L1 η + L2 ξ = N1(η, ξ), (2.29a)

L3 η + L4 ξ = N2(η, ξ), (2.29b)

where the operator Li is defined as Li = iaiH
2
0
∂
∂z + bi

∂2

∂z2 + ci
∂2

∂t2
. In addition, the nonlinear term Ni(η, ξ)

represents all the quadratic and cubic terms in the variables η, ξ and ai, bi and ci are constants. They are
all listed in the Appendix.

From the zero- order of the normal stress tensor, one gets

λ2 − λ1 = (ρ2 − ρ1)gz − T1

R1
+

1

2
H2

0 (µ2 − µ1), (2.30a)

λ3 − λ2 = (ρ3 − ρ2)gz − T2

R2
+

1

2
H2

0 (µ3 − µ2)., (2.30b)
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It is worthwhile to conclude a special case from the previous coupled equations (2.29) as follows:
Returning to our previous work [29], on putting V1 = V2 = 0 and ν1 = ν2 = 0. This case can be obtained

by setting, here, η(z, t) = ξ(z, t), R1 = R2, T1 = T2 and then adding equations (2.29).
The stability analysis of the current work, throughout the linear as well as the nonlinear approach

depends mainly on studying the nonlinear characteristic equations as given in equations (2.29). The following
analysis will be based on our previous work [22].

3. The Linear Stability Approach

Before dealing with the general case, for more convenience, we will study the stability analysis throughout
a linear point of view. In light of this approach, the linearized analysis of the nonlinear equations that are
given by equations (2.29) arises when the nonlinear terms of the surface elevation are ignored.

Therefore, the linearized dispersion equations can be written as follows:

L1 η + L2 ξ = 0, (3.1a)

L3 η + L4 ξ = 0. (3.1b)

Suppose a uniform monochromatic wave train solution of equations (3.1) in the following form:

η(z, t) = γ1 e
i(k z−ω t) + c.c., (3.2a)

ξ(z, t) = γ2 e
i(k z−ω t) + c.c.. (3.2b)

where γ1 and γ2 are the amplitudes of the wave train solutions.
For the nontrivial solutions of γ1 and γ2 in equations (3.1), the determinant of the coefficient matrix

must be cancelled. This concept gives the following dispersion relation:

ω4 + α1ω
2 + α2 = 0, (3.3)

where the coefficients α1 and α2 are listed in the Appendix.
Actually, the dispersion relation, which is a quadratic equation in ω2. It is the same as that already had
been achieved by Dumbleton, and Hermans [26] for the stability of a hollow perfect hollow cylinder. The
former case may be obtained here by setting: ρ1 = ρ3 = 0, together with the absence of the magnetic field
strength, i. e. H0 = 0.

Eq. (3.3) represents a linear dispersion relation of the surface waves. The stability requires that all four
roots of ω′s must be real, i. e. ω2 should be of positive and real. On the basis of Eq. (3.3), it is easily
verified that this implies the following criteria:

α1 < 0, (3.4)

α2 > 0 (3.5)

and
α2

1 − 4α2 > 0. (3.6)

The attention is focused on the implication of the magnetic field strength on the stability configuration.
Subsequently, the magnetic field intensity will be sketched versus the wave number k of the surface wave.
Therefore, it is convenient to rewrite the stability criteria in term of the magnetic field strength H2

0 . There-
fore, the inequalities (3.4)-(3.6) may be written as follows:

q1H
2
0 + q0 < 0, (3.7)

p2H
4
0 + p1H

2
0 + p0 > 0 (3.8)
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and
w2H

4
0 + w1H

2
0 + w0 > 0. (3.9)

where the coefficients q0, q1, p0, p1, p2, w0, w1, and w2 are well-known from the context. They involved all
the physical parameters of the problem.

The inspection of the conditions (3.7)-(3.9), reads that all of them depend on H2
0 . Before dealing

with the numerical calculations, for more convenience, these stability conditions may be rewritten in an
appropriate non-dimensional form. This can be done in a number of ways depending, basically, on the
choice of characteristics of length, time and mass.

Consider that the parameters g
/
ω2, 1/ω and ρ2g

3
/
ω6 refer to the characteristics of length, time and

mass, respectively. The other non-dimensional quantities may be given as

ρj = ρ∗jρ2, k = k∗ω2
/
g,H2

0 = H∗20 ρ2g
2
/
ω2µ2, Tj = T ∗j ρ2g

3
/
ω4 andRj = R∗jg

/
ω2.

For simplicity, the ” ∗ ” mark may be cancelled in the following analysis.
The magnetic field intensity LogH2

0 will be plotted versus the wave number of the surface wavesk.
Actually, the implication of the magnetic field strength depends mainly on the signs of the parameters of
the leading coefficients of the previous criteria. Therefore, if p2, and w2 are positive, simultaneously, q1 is
negative, it follows that the magnetic field has a stabilizing influence. The numerical calculations ensure
this significance. Therefore, the tangential magnetic field plays a stabilizing influence. Typically, this is an
early result. It is first confirmed by many researchers; for instance, see [20, 29, 30].

In what follows, a numerical calculation is done to indicate the influence of various parameters on the
stability configuration. Throughout the following figure, the transition curves that are appear in the inequal-
ities (3.7) - (3.9), are plotted. In these figures, the stable region is referred by the letter S. Simultaneously,
the letter U stands for the unstable one. The following calculations considered a sample chosen system,
whose particulars are: ρ1 = 0.1, ρ3 = 0.02,µ1 = 0.09, µ3 = 2,R1 = 0.5, R2 = 5, T1 = 6 and T2 = 10.
In accordance with these numerical values, it is found that the inequality (2.9) is automatically satisfied.
Subsequently, it has no implication in the stability picture. Meanwhile, the first two inequalities (3.7) and
(3.8) have three transition curves. Therefore, Fig. 2 is plotted to indicate these transition curves, as follows:

The equality of (3.7) is pictured in a dotted curve. Meanwhile, the equality of (3.8) is graphed to give
two-solid curves. The calculations showed that q1 is a negative. Therefore, the region above this curve
is a stable region and is denoted by the letter S1. In contrast, the region below this curve becomes an
unstable region. It is referred by the letters U1. On the other hand, the calculations showed that the leading
coefficient p2 has a positive sign. Consequently, the stable regions lie above the upper curve, together with
the region below the lower curve. These regions are labeled by the letter S2. Simultaneously, the region
bounded between these two curves becomes an unstable region. It is referred by the letters U2.

Mathematically, the equality of the relation (3.8) is a quadratic in H2
0 . Actually, it has two real and

distinct roots, say H∗1 and H∗2 . Considering that H∗2 > H∗1 . In case of p2 > 0, the stability occurs provided
that H2

0 > H∗2 or H2
0 < H∗1 . On the other hand, in case of p2 < 0, the stability occurs provided that

H∗1 < H2
0 < H∗2 .

Consequently, Fig. 2 plots the three transition curves. As shown from the foregoing discussions, the
stability of the system is judged by the upper solid curve. Therefore, the other two curves have no implication
in the stability configuration. Subsequently, to indicate the influence of any parameter, it is enough to use
only this judged curve.

Accordingly, Fig. 3 is plotted to show the influence of the sheet thickness on the stability configuration.
For this purpose, the radius of the outer interface (R2 = 5.0) is held fixed with a variation of the radius of the
inner interface R1 is done. The parameters of the chosen system here is the same as that is given in Fig. 2.
As shown in this figure, the increase of sheet thickness leads to an increasing the stability region. Specially,
at small values of the wave number. Actually, this shows a stabilizing influence of the sheet thickness in the
stability configuration. This result is in agreement with the result that was already obtained by Moatimid
[31]. Finally, Fig. 4 and 5 are depicted to indicate the influences of surface tensions T1 and T2. It was
observed that T1 and T2 have destabilizing effects. These effects are enhanced, especially at large values of
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Figure 2: Plots the linear stability diagram as given in inequalities (3.7)-(3.9).
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the wave number. These results are in correspondence of the previous results that were achieved by El-Sayed
et al. [32], Li-Jun et al. [33] and Awasthi and Asthana [34].

To develop the nonlinear stability influence for the amplitude modulation of the progressive waves, we
need to go to the full equations (2.29). The treatment of these equations may be achieved through the
following perturbation technique.

4. The Nonlinear Stability Approach

The nonlinear stability procedure for equations (2.29) had been discussed in details throughout our
previous work as given by El-Dib [22]. This work discussed the coupled nonlinear dispersion equations in
a general form. Therefore, the current aim focuses on analyzing the nonlinear stability analysis of coupled
cylindrical interfaces separating three different magnetic perfect fluids in the presence of an axial uniform
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magnetic field. For this purpose, equations (2.29) may be rewritten in the following form:

L̃ η = L4N1 − L2N2, (4.1a)

L̃ ξ = L1N2 − L3N1, (4.1b)

where L̃ = L1L4 − L2L3.
The following analysis will be based on the multiple time scale technique [18]. This technique depends

mainly on a small parameter δ, say. It measures the ratio of a typical wave length, or periodic time, relative
to a typical length, or the time scale of modulation. Therefore, one assume that δ be a small parameter that
characterizes the slow modulation. In view of this approach, the independent variables z and t, which are
measured on the scale of the typical wavelength and period time, can be extended to introduce alternative,
independent variables,

Zn = δnz and Tn = δnt, n = 0, 1, 2, ........ (4.2)

Considering Z0, T0 as the appropriate variables of fast variations and Z1, T1, Z2, T2 are the slow ones. The
differential operators can now be expressed as the derivative expansions

∂

∂z
= k

∂

∂θ
+ δ

∂

∂Z1
+ δ2 ∂

∂Z2
+ ........and

∂

∂t
= −ω ∂

∂θ
+ δ

∂

∂T1
+ δ2 ∂

∂T2
+ ........ (4.3)

where θ = kZ0 − ωT0 refer to lowest order.
It is more convenient to expand the operator L̃ in the following form:

L̃

(
ik,−iω + iδ

(
∂

∂Z1
,
∂

∂T1

)
+ iδ2

(
∂

∂Z2
,
∂

∂T2

)
+ ......

)
. (4.4)

The expression of the operator L̃ can be expanded in powers of δ. Using Taylor’s theorem about (k,−ω),
one retains only the terms up to O(δ2). On that account,

L̃→ L̃0 + δ L̃1 + δ2L̃2 + ....., (4.5)

where

L̃0 ≡ (k,−ω)
∂

∂θ
, (4.6a)

L̃1 ≡ i

(
∂L̃0

∂ω

)
∂

∂T1
− i

(
∂L̃0

∂k

)
∂

∂Z1
, (4.6b)

L̃2 ≡ i

(
∂L̃0

∂ω

)
∂

∂T2
− i

(
∂L̃0

∂k

)
∂

∂Z2
− 1

2

(
∂2L̃0

∂ω2

)
∂2

∂T 2
1

− 1

2

(
∂2L̃0

∂k2

)
∂2

∂Z2
1

+
1

2

(
∂2L̃0

∂k ∂ω

)
∂2

∂Z1∂T1
. (4.6c)

Expressing the expansion of the operator (4.5) into Eq. (3.2), one gets(
L̃0 + δ L̃1 + δ2L̃2

)
(η, ξ) = 0, (4.7)

The foregoing analysis follows a perturbation procedure to obtain a uniform valid solution. Actually, this
treatment requires the cancellation of the secular terms. As stated before, this procedure was introduced in
details by El-Dib [22]. On the other hand, it is well known that the coupled nonlinear Schrödinger equations
are described in light of the unidirectional wave modulation. They have been used to describe the spatial
and temporal evolution of the envelope of a sinusoidal wave with phase (kz − ωt). Therefore, following
similar arguments as that was given by El-Dib [22], one finds the following coupled nonlinear Schrödinger
equations:
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i
∂γ1

∂τ
+ P

∂2γ1

∂ζ2
=

2∑
j=1

(
Q1jγ

2
j γj +Q1j+1γ

2
j γ3−j +Q1j+3γ1γ2γj

)
, (4.8a)

i
∂γ2

∂τ
+ P

∂2γ2

∂ζ2
=

2∑
j=1

(
Q2jγ

2
j γj +Q2j+1γ

2
j γ3−j +Q2j+3γ1γ2γj

)
. (4.8b)

where γj is the complex conjugate of γj ,

P =
1

2

dVg
dk

, ζ = δ(z − Vgt), τ = δ2t,

the group velocity may be written as Vg = −∂D
∂ k

(
∂D
∂ω

)−1
. and Qi(j+n) are constant coefficients. They will

be known from the context. To avoid the lengthy of the paper, they will be omitted.
The stability criterion of the coupled nonlinear Schrödinger equations (4.8) has been derived from El-Dib

[22]. He showed that the perturbation is stable in accordance with the following condition:

P S > 0, (4.9)

where S = L2
2 (Q11 +Q23 +Q25) + L2

1 (Q14 +Q16 +Q22) .
The condition (4.9) can be written as follows:

E9(H2
0 )9 + E8(H2

0 )8 + E7(H2
0 )7 + E6(H2

0 )6 + E5(H2
0 )5 + E4(H2

0 )4 + E3(H2
0 )3 + E2(H2

0 )2 + E1 H2
0 + E0

F2 H4
0 + F1 H2

0 + F0

> 0, (4.10)

where Ei and Fj are constant coefficients. They well-known from the context. To avoid the lengthy of the paper, they will be omitted.

The stability criterion requires that the quotient in the L. H. S. in the inequality (4.10) must be positive. This may be occurring if the product of the numerator

and denominator becomes a positive. Subsequently, in light of the nonlinear theory approach, the system is stable provided that the following condition holds:

(E9(H2
0 )9 +E8(H2

0 )8 +E7(H2
0 )7 +E6(H2

0 )6 +E5(H2
0 )5 +E4(H2

0 )4 +E3(H2
0 )3 +E2(H2

0 )2 +E1H
2
0 +E0 > 0,

(4.11a)
which is a polynomial of the eleventh degree in H2

0 .
In addition, one finds the following criterion:

F2H
4
0 + F1H

2
0 + F0 = 0. (4.11b)

The condition (4.11b) is sometimes called the resonance curves.
Otherwise, the system becomes unstable.
Now, for more convenience, a numerical calculation of the stability criteria as is given by the relations

(4.11) will be made. For this purpose, consider a similar treatment as presented in Section 3 to evaluate the
above stability criteria in a non-dimensional form. Therefore, one may assume the previous characteristics
that were given in Section 3.

In order to illustrate the stability criteria throughout the nonlinear stability approach. Typically, it is
convenient to graph LogH2

0 versus the wave number of the surface waves (k). As previously shown, the
stable region is referred by the letter S. Simultaneously, the letter U stands for the unstable one.
Fig. 6 plots the transition curves (4.11). The following calculations considered a chosen sample system,
whose particulars are:
ρ1 = 2, ρ3 = 5, µ1 = 3, µ3 = 5, R1 = 0.01, R2 = 0.1, T1 = 5 and T2 = 50. In accordance with this numerical
choice, the polynomial of the eleventh degree in H2

0 , as given in (49I), resulted in only three real positive
roots of H2

0 . Simultaneously, the resonance curves, as showed in (4.11b), yielded two real positive roots for
H2

0 . Fortunately, the other two roots are coincident with two of three of the previous cases. As seen, the
stability diagram is portioned into four alternate regions of stability/instability. This is in contrast with the
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Figure 6: Plots the nonlinear stability diagram as given in (4.11a).
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Figure 7: Plots the nonlinear stability diagram as given in (4.11a).

linear approach. Therefore, the nonlinear stability analysis gives more accuracy. To confirm the previous
conclusion, finally, Fig. 7 is plotted for the transition curves (4.10) to show what is happening when R1

changed. The chosen system here is the same as that is given in Fig. 6 but with a difference R1 = 0.05.
A comparison between the two curves shows that the increasing of the radius of the inner radius plays a
stabilizing role in the stability picture. Therefore,the nonlinear stability shows an in contrast mechanism of
the role of the sheet thickness.

5. Concluding Remarks

The current paper investigates the linear, as well as nonlinear stability analysis of two cylindrical inter-
faces, separated three perfect, homogeneous, and incompressible magnetic fluids. The system is influenced
by a uniform axial magnetic field. As given by our foregoing papers; see, for instance, Refs. [23, 29],
the nonlinear approach is derived from the linear solutions of the governing equations of motion together
with the appropriate nonlinear boundary conditions. To relax the mathematical manipulation, a simpli-
fied formulation is considered to yield coupled characteristic nonlinear partial differential equations of the
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deflections of the surface waves without any complex coefficients. The case of the nonlinear stability of a
single interface as was given by Moatimid [29] is recovered. As a special case, when ignoring the nonlinear
terms, the linear stability criteria have been obtained. The limiting case of the linear stability analysis of
the coupled interfaces as was given by Dumbleton and Hermans [26] is, also, recovered. In addition, the
special case of the linear coupled interfaces that was given by El-Dabe et al. [11] is furthermore obtained.
The numerical calculations, throughout the linear approach, confirmed similar results as that were given by
many researchers. Following similar arguments that were given by El-Dib [22], it follows that the stability
criteria are judged. Consequently, the nonlinear characteristic equations are analyzed along the utilizing
nonlinear Schrödinger equation. These equations are controlled by the nonlinear stability criterion of the
system. These conditions are illustrated graphically throughout a set of figures. The influences of some
physical parameters had been shown. The concluding remarks may be drawn along the following points:

* The investigation of the linear stability analysis yields the following:
* Away from the interface of a single interface, the current case resulted in a quadratic equation of the

square of the growth rate of the surface waves.
* The linear dispersion relation is given by Eq. (3.3). This equation resulted in several transition cures.
* As given by Moatimid [31], it is found that the increase in the sheet thickness plays a stabilizing

influence on the stability configuration.
* The influence of the amounts of the surface tensions T1 and T2 play a destabilizing effect. This result

is in correspondence with the previous results that were achieved by El-Sayed et al. [32], Li-Jun et al. [33]
and Awasthi and Asthana [34].

* The analysis of the nonlinear stability analysis results in the following:
* The analysis yields coupled nonlinear characteristic equations as appearing in equations (2.29).
* Following our previous work as given by El-Dib [22], one finds the coupled nonlinear Schrödinger

equation as given in equations (4.8).
* The transition curves yields a polynomial of the eleventh degree in H2

0 . Together with resonance
quadratic polynomial in H2

0 .
* The numerical calculations in light of a chosen sample system, divides the stability picture into several

parts of stability/instability.
* The nonlinear stability shows an in contrast mechanism of the role of the sheet thickness.
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Appendix
The coefficients that appear in Eqs. (2.20)-(2.25) may be listed as follows:

Nab = I0(a)K1(b) + I1(b)K0(a), Nax = I0(a)K1(x) + I1(x)K0(a), Nbx = I0(b)K1(x) + I1(x)K0(b),

Nba = I0(b)K1(a) + I1(a)K0(b), Lab = I1(a)K1(b)− I1(b)K1(a), Lba = I1(b)K1(a)− I1(a)K1(b),

Wab = I0(a)K0(b)− I0(b)K0(a), Wax = I0(a)K0(x)− I0(b)K0(x), Wbx = I0(b)K0(x)− I0(x)K0(b),

P ba = I0(a)K0(b), P aa = I0(a)K0(a), P bb = I0(b)K0(b), P ab = I0(b)K0(a),

V b
a = I1(a)K1(b), V a

a = I1(a)K1(a), V b
b = I1(b)K1(b), V a

b = I1(a)K1(b),

Eba = I0(a)K1(b), Eaa = I0(a)K1(a), Ebb = I0(b)K1(b), Eab = I0(b)K1(a),
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and
Gba = I1(a)K0(b), Gaa = I1(a)K0(a), Gbb = I1(b)K0(b), Gab = I1(b)K0(a).

The coefficients that appear in Eqs. (29I, and 29II) may be listed as follows:

L1 = ia1H
2
0

∂

∂z
+ b1

∂2

∂z2
+ c1

∂2

∂t2
,

a1 = −2a(µ1 − µ2)2k3I0(a)Lba
[
µ2

2P
b
aV

a
b + µ2µ3 U

ab
ab + µ1µ2D

ab
ab + (µ1 − µ2)(µ2 − µ3)P baV

b
b + µ1µ3P

a
b V

b
a

][
µ2G

a
bG

b
a + (µ2 − µ3)GbaV

b
a + µ3P

a
b V

b
a

]
,

b1 = −2aT1k
3I1(a)Lba

(
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + (µ1 − µ2)(µ2 − µ3)P baV

b
a + µ1µ3P

a
b V

b
a

)2
,

c1 = −2ak2
[
µ1

(
µ2G

b
aNab + µ3V

b
aWba

)
+ µ2

(
µ2P

b
aLba + µ3E

b
aNba

)]2
[ρ1I0(a)Lab − ρ2I1(a)Lba] ,

L2 = ia2H
2
0

∂

∂z
+ b2

∂2

∂z2
+ c2

∂2

∂t2
,

a2 = −2a(µ1 − µ2)(µ2 − µ3)µ2k
3I0(a)I1(a)Lba

[
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + µ1µ3P

a
b V

b
a+

(µ1 − µ2)(µ2 − µ3)P baV
b
b

]
, b2 = 0,

c2 = −2ρ1k
2I1(a)

[
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + (µ1 − µ2)(µ2 − µ3)P baV

b
a + µ1µ3P

a
b V

b
a

]2
,

L3 = ia3H
2
0

∂

∂z
+ b3

∂2

∂z2
+ c3

∂2

∂t2
,

a3 = −2a(µ1 − µ2)(µ2 − µ3)µ2k
3K1(b)P baLba

[
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + µ1µ3P

a
b V

b
a +

(µ1 − µ2)(µ2 − µ3)P baV
b
b

]
, b3 = 0,

c3 = −2ρ2k
2K1(b)

[
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + (µ1 − µ2)(µ2 − µ3)P baV

b
a + µ1µ3P

a
b V

b
a

]2
,

L4 = ia4H
2
0

∂

∂z
+ b4

∂2

∂z2
+ c4

∂2

∂t2
,

a4 = 2b(µ2 − µ3)2k3K0(a)Lab
[
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + (µ1 − µ2)(µ2 − µ3)P baV

b
b + µ1µ3P

a
b V

b
a

][
µ1P

a
b V

b
a + (µ2 − µ1)GbaV

a
a + µ2E

a
aE

a
b

]
,

b4 = 2bT2k
3K1(b)Lab

(
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + (µ1 − µ2)(µ2 − µ3)P baV

b
b + µ1µ3P

a
b V

b
a

)2
,

c4 = 2bk2
[
µ2

2P
b
aV

a
b + µ2µ3E

a
aE

b
b + µ1µ2G

a
aG

b
b + (µ1 − µ2)(µ2 − µ3)P baV

b
b + µ1µ3P

a
b V

b
a

]2
[ρ2K1(b)Nba + ρ3K0(b)Lab] ,

N1(η, ξ) = N11mηttξz +N12mηzξtt +N13mξ
2
z +N14mηzηtt +N15mξzηzz +N16mξzξtt +N17mηzηzz+

N18mηzξz +N19m η2
z +N11nξttξ

2
z +N12nηttξ

2
z +N13nξ

3
z +N14nξttξzηz +N15nηttξzηz +N16nηzξ

2
z+

N17nξttη
2
z +N18nηttη

2
z +N19n ξzη

2
z +N110n η

3
z +N111n ηzzξ

2
z +N112n ηzηzzξz +N113n ηzzη

2
z

and

N2(η, ξ) = N21mξttηz +N22mηzξtt +N23mη
2
z +N14mηzηtt +N15mξzηzz +N16mξzξtt +N17mηzηzz+

N18mηzξz +N19mξ
2
z +N21nηttη

2
z +N22nξttη

2
z +N23nη

3
z +N24nηttηzξz +N25nξttηzξz+

N26nξzη
2
z +N27nηttξ

2
z +N28nξttξ

2
z +N29n ηzξ

2
z +N210n ξ

3
z +N211n ξzzη

2
z +N212n ξzξzzηz+

N213n ξzzξ
2
z ,

where Nijn and Nijm (i = 1, 2), ( j = 1, 2, .....13) are constant coefficients well-known from the context. To
avoid the lengthy of the paper, they will be omitted.
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The coefficients that appear in Eq. (3.3) may be listed as follows:

α1 =
kH2

0 (a2c3 + a3c2 − a1c4 − a4c1) + b1c4 − b4c1

c1c4 − c2c3
,

and

α2 =

(
ka1H

2
0 − b1k2

) (
ka4H

2
0 − b4k2

)
+ a2a3k

2H2
0

c1c4 − c2c3
.
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