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Abstract

The common coupled coincidence points and common coupled fixed points in fuzzy semi-metric
spaces are investigated in this paper. In fuzzy semi-metric space, the symmetric condition is not
necessarily assumed to be satisfied. In this case, regarding the non-symmetry of metric, there are
four kinds of triangle inequalities that can be considered. In order to investigate the common coupled
coincidence points and common coupled fixed points, the fuzzy semi-metric space is further assumed
to satisfy the so-called canonical condition that is inspired from the intuitive observations. The
sufficient conditions for guaranteeing the common coupled coincidence points and common coupled
fixed points will be different for the four different kinds of triangle inequalities.
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1. Introduction

Probabilistic metric space was introduced by Schweizer and Sklar [15, 16, 17] in which the (con-
ventional) metric space is associated with the probability theory. For more details on the theory of
probabilistic metric space, we may also refer to Hadžić and Pap [8] and Chang et al. [2]. The Menger
space is a special kind of probabilistic metric space. Inspired by the Menger space, Kramosil and
Michalek [11] proposed the so-called fuzzy metric space that is described below.
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Let X be a nonempty universal set, let ∗ be a t-norm, and let M be a mapping defined on
X ×X × [0,∞) into [0, 1]. The 3-tuple (X,M, ∗) is called a fuzzy metric space when the following
conditions are satisfied:

� for any x, y ∈ X, M(x, y, t) = 1 for all t > 0 if and only if x = y;

� M(x, y, 0) = 0 for all x, y ∈ X;

� M(x, y, t) = M(y, x, t) for all x, y ∈ X and t ≥ 0;

� M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t ≥ 0 (the so-called triangle
inequality).

The mapping M in fuzzy metric space (X,M, ∗) can be regarded as a membership function of
a fuzzy subset of X × X × [0,∞). Sometimes M is called a fuzzy metric of the space (X,M, ∗).
According to the first and second conditions of fuzzy metric space, the mapping M(x, y, t) can be
interpreted as the membership degree of the distance that is less than or equal to t between x and
y. In this paper, we shall consider the so-called fuzzy semi-metric space in which the symmetric
condition M(x, y, t) = M(y, x, t) is not assumed to be satisfied. In this case, there are four kinds
of triangle inequalities that should be considered. In order to investigate the the common coupled
coincidence points and common coupled fixed points, the fuzzy semi-metric space is further assumed
to satisfy the so-called canonical condition that is inspired from the intuitive observations.

The common coupled coincidence points and common coupled fixed points in fuzzy metric spaces
have been studied by Hu et al. [9], Mohiuddine and Alotaibi [12], Qiu and Hong [13], and the
references therein. In this paper, we shall study the common coupled coincidence points and com-
mon coupled fixed points in fuzzy semi-metric spaces that is endowed with four kinds of triangle
inequalities. Although the common coupled fixed points are the special case of common coupled
coincidence points, if the uniqueness is considered, then the sufficient conditions will be completely
different. Therefore we shall separately study the common coupled fixed points and common coupled
coincidence points regarding the uniqueness.

This paper is organized as follows. In Section 2, we propose the fuzzy semi-metric space that is
endowed with four kinds of triangle inequalities. In Section 3, we introduce the auxiliary functions
that will be used to study the Cauchy sequence in fuzzy semi-metric space. In Section 4, we study
the Cauchy sequence in fuzzy semi-metric space by means of the auxiliary functions established in
Section 3. In Section 5, we derive many kinds of common coupled coincidence points in fuzzy semi-
metric spaces that can be endowed with the different types of triangle inequalities introduced in
Section 2. Finally, in Section 6, we also study the common coupled fixed points in fuzzy semi-metric
spaces.

2. Fuzzy Semi-Metric Spaces

The function ∗ : [0, 1] × [0, 1] → [0, 1] that satisfies the following axioms is called a t-norm
(triangular norm):

� (boundary condition) a ∗ 1 = a.

� (commutativity) a ∗ b = b ∗ a.

� (increasing property) If b < c, then a ∗ b ≤ a ∗ c.
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� (associativity) (a ∗ b) ∗ c = a ∗ (b ∗ c).

By the commutativity of t-norm, if the t-norm is continuous with respect to the first component
(resp. second component), then it is also continuous with respect to the second component (resp. first
component). In other words, for any fixed a ∈ [0, 1], if the function f(x) = a ∗ x (resp. f(x) = x ∗ a)
is continuous, then the function g(x) = x ∗ a (resp. g(x) = a ∗ x) is continuous. Similarly, if the t-
norm is left-continuous (resp. right-continuous) with respect to the first or second component, then
it is also left-continuous (resp. right-continuous) with respect to each component. The following
properties regarding t-norm will be used in the further study.

Proposition 2.1. (Wu [19]) Suppose that the t-norm ∗ is left-continuous at 1 with respect to the
first or second component. We have the following properties.

(i) For any a, b ∈ (0, 1) with a > b, there exists r ∈ (0, 1) such that a ∗ r ≥ b.

(ii) For any a ∈ (0, 1) and any p ∈ N, there exists r ∈ (0, 1) such that

p times︷ ︸︸ ︷
r ∗ r ∗ · · · ∗ r> a.

Proposition 2.2. We have the following properties.

(i) Given any fixed a, b ∈ [0, 1], suppose that the t-norm ∗ is continuous at a and b with respect the
first or second component. If {an}∞n=1 and {bn}∞n=1 are two sequences in [0, 1] such that an → a
and bn → b as n→∞, then an ∗ bn → a ∗ b as n→∞.

(ii) Given any fixed a, b ∈ (0, 1], suppose that the t-norm ∗ is left-continuous at a and b with respect
the first or second component. If {an}∞n=1 and {bn}∞n=1 are two sequences in [0, 1] such that
an → a− and bn → b− as n→∞, then an ∗ bn → a ∗ b as n→∞.

(iii) Given any fixed a, b ∈ [0, 1), suppose that the t-norm ∗ is right-continuous at a and b with
respect the first or second component. If {an}∞n=1 and {bn}∞n=1 are two sequences in [0, 1] such
that an → a+ and bn → b+ as n→∞, then an ∗ bn → a ∗ b as n→∞.

Definition 2.3. Let X be a nonempty universal set, and let M be a mapping defined on X ×X ×
[0,∞) into [0, 1]. Then (X,M) is called a fuzzy semi-metric space when the following conditions are
satisfied:

� for any x, y ∈ X, M(x, y, t) = 1 for all t > 0 if and only if x = y;

� M(x, y, 0) = 0 for all x, y ∈ X with x 6= y;

We say that M satisfies the symmetric condition when M(x, y, t) = M(y, x, t) for any x, y ∈ X and
t > 0. We say that M satisfies the strongly symmetric condition when M(x, y, t) = M(y, x, t) for all
x, y ∈ X and t ≥ 0.

In general, the fuzzy semi-metric space (X,M) does not necessarily satisfy the symmetric condi-
tion. Therefore four kinds of triangle inequalities are proposed below.

Definition 2.4. Let X be a nonempty universal set, let ∗ be a t-norm, and let M be a mapping
defined on X ×X × [0,∞) into [0, 1].

� We say that M satisfies the ./-triangle inequality when the following inequality is satisfied:

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0.
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� We say that M satisfies the .-triangle inequality when the following inequality is satisfied:

M(x, y, t) ∗M(z, y, s) ≤M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0.

� We say that M satisfies the /-triangle inequality when the following inequality is satisfied:

M(y, x, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0.

� We say that M satisfies the �-triangle inequality when the following inequality is satisfied:

M(y, x, t) ∗M(z, y, s) ≤M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0.

We say that M satisfies the strong ◦-triangle inequality for ◦ ∈ {./, ., /, �} when s, t > 0 is replaced
by s, t ≥ 0.

Given a fuzzy semi-metric space (X,M), when we say that the mapping M satisfies some kinds
of triangle inequalities, it implicitly means that the t-norm ∗ is considered in (X,M).

Remark 2.5. The following interesting observations will be used in the further study.

� Suppose that M satisfies the ./-triangle inequality. Then

M(a, b, t1) ∗M(b, c, t2) ∗M(c, d, t3) ≤M(a, c, t1 + t2) ∗M(c, d, t3) ≤M(a, d, t1 + t2 + t3).

On the other hand, we also have

M(b, a, t1) ∗M(c, b, t2) = M(c, b, t2) ∗M(b, a, t1) ≤M(c, a, t1 + t2),

which implies

M(b, a, t1) ∗M(c, b, t2) ∗M(d, c, t3) ≤M(d, a, t1 + t2 + t3).

In general, we have

M (x1, x2, t1) ∗M (x2, x3, t2) ∗ · · · ∗M (xp, xp+1, tp) ≤M (x1, xp+1, t1 + t2 + · · ·+ tp)

and

M (x2, x1, t1) ∗M (x3, x2, t2) ∗ · · · ∗M (xp+1, xp, tp+1) ≤M (xp+1, x1, t1 + t2 + · · ·+ tp) .

� Suppose that M satisfies the .-triangle inequality. Since

M(c, b, t2) ∗M(a, b, t1) = M(a, b, t1) ∗M(c, b, t2) ≤ min {M(a, c, t1 + t2),M(c, a, t1 + t2)} ,

which implies

M(a, b, t1) ∗M(c, b, t2) ∗M(d, c, t3) ≤ min {M(a, d, t1 + t2 + t3),M(d, a, t1 + t2 + t3)} . (2.1)

In general, we have

M (x1, x2, t1) ∗M (x3, x2, t2) ∗M (x4, x3, t3) ∗ · · · ∗M (xp+1, xp, tp)

≤ min {M (x1, xp+1, t1 + t2 + · · ·+ tp) ,M (xp+1, x1, t1 + t2 + · · ·+ tp)} .
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� Suppose that M satisfies the /-triangle inequality. Since

M(b, c, t2) ∗M(b, a, t1) = M(b, a, t1) ∗M(b, c, t2) ≤ min {M(a, c, t1 + t2),M(c, a, t1 + t2)} ,

which implies

M(b, a, t1) ∗M(b, c, t2) ∗M(c, d, t3) ≤ min {M(a, d, t1 + t2 + t3),M(d, a, t1 + t2 + t3)} . (2.2)

In general, we have

M (x2, x1, t1) ∗M (x2, x3, t2) ∗M (x3, x4, t3) ∗ · · · ∗M (xp, xp+1)

≤ min {M (x1, xp+1, t1 + t2 + · · ·+ tp) ,M (xp+1, x1, t1 + t2 + · · ·+ tp)} .

� Suppose that M satisfies the �-triangle inequality. Then

M(a, b, t1) ∗M(b, c, t2) ∗M(d, c, t3) = M(b, c, t1) ∗M(a, b, t2) ∗M(d, c, t3)

≤M(c, a, t1 + t2) ∗M(d, c, t3) ≤M(a, d, t1 + t2 + t3) (2.3)

and

M(b, a, t1) ∗M(c, b, t2) ∗M(c, d, t3) ≤M(a, c, t1 + t2) ∗M(c, d, t3)

= M(c, d, t3) ∗M(a, c, t1 + t2) ≤M(d, a, t1 + t2 + t3). (2.4)

In general, we have the following cases.

(a) If p is even, then

M (x1, x2, t1) ∗M (x2, x3, t2) ∗M (x4, x3, t3) ∗M (x4, x5, t4) ∗M (x6, x5, t5)

∗M (x6, x7, t6) ∗ · · · ∗M (xp, xp+1, tp) ≤M (xp+1, x1, t1 + t2 + · · ·+ tp)

and

M (x2, x1, t1) ∗M (x3, x2, t2) ∗M (x3, x4, t3) ∗M (x5, x4, t4) ∗M (x5, x6, t5)

∗M (x7, x6, t6) ∗ · · · ∗M (xp, xp+1, tp) ≤M (x1, xp+1, t1 + t2 + · · ·+ tp) .

(b) If p is odd, then

M (x1, x2, t1) ∗M (x2, x3, t2) ∗M (x4, x3, t3) ∗M (x4, x5, t4) ∗M (x6, x5, t5)

∗M (x6, x7, t6) ∗ · · · ∗M (xp, xp+1, tp) ≤M (x1, xp+1, t1 + t2 + · · ·+ tp)

and

M (x2, x1, t1) ∗M (x3, x2, t2) ∗M (x3, x4, t3) ∗M (x5, x4, t4) ∗M (x5, x6, t5)

∗M (x7, x6, t6) ∗ · · · ∗M (xp+1, xp tp) ≤M (xp+1, x1, t1 + t2 + · · ·+ tp) .

Definition 2.6. Let (X,M) be a fuzzy semi-metric space.

� We say that M is nondecreasing when, given any fixed x, y ∈ X, M(x, y, t1) ≥ M(x, y, t2) for
t1 > t2 > 0.
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� We say that M is symmetrically nondecreasing when, given any fixed x, y ∈ X, M(x, y, t1) ≥
M(y, x, t2) for t1 > t2 > 0.

Proposition 2.7. Let (X,M) be a fuzzy semi-metric space. Then we have the following properties.

(i) If M satisfies the ./-triangle inequality, then M is nondecreasing.

(ii) If M satisfies the .-triangle inequality or the /-triangle inequality, then M is both nondecreasing
and symmetrically nondecreasing.

(iii) If M satisfies the �-triangle inequality, then M is symmetrically nondecreasing.

Let (X, d) be a metric space. If the sequence {xn}∞n=1 in (X, d) converges to x, i.e., d(xn, x)→ 0

as n→∞, then it is denoted by xn
d−→ x as n→∞. In this case, we also say that x is a d-limit of

the sequence {xn}∞n=1.

Definition 2.8. Let (X,M) be a fuzzy semi-metric space, and let {xn}∞n=1 be a sequence in X.

� We write xn
M.

−→ x as n→∞ when

lim
n→∞

M(xn, x, t) = 1 for all t > 0.

In this case, we call x a M.-limit of the sequence {xn}∞n=1.

� We write xn
M/

−→ x as n→∞ when

lim
n→∞

M(x, xn, t) = 1 for all t > 0.

In this case, we call x a M/-limit of the sequence {xn}∞n=1.

� We write xn
M−→ x as n→∞ when

lim
n→∞

M(xn, x, t) = lim
n→∞

M(x, xn, t) = 1 for all t > 0.

In this case, we call x a M-limit of the sequence {xn}∞n=1.

The following interesting results will be used for the further study.

Proposition 2.9. Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ that is left-
continuous with respect to the first or second component, and let {(xn, yn, tn)}∞n=1 be a sequence
in X ×X × (0,∞). Assume that the following inequality is satisfied

sup
n

(an ∗ bn) ≥
(

sup
n
an

)
∗
(

sup
n
bn

)
for any sequences {an}∞n=1 and {bn}∞n=1 in [0, 1].

(i) Suppose that M satisfies the ./-triangle inequality, and that tn → t◦, xn
M−→ x◦ and yn

M−→ y◦

as n→∞. Then the following statements hold true.

� If the mapping M(x◦, y◦, ·) : (0,∞)→ [0, 1] is continuous at t◦, then

lim
n→∞

M(xn, yn, tn) = M(x◦, y◦, t◦).
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� If the mapping M(y◦, x◦, ·) : (0,∞)→ [0, 1] is continuous at t◦, then

lim
n→∞

M(yn, xn, tn) = M(y◦, x◦, t◦).

(ii) Suppose that M satisfies the .-triangle inequality or the /-triangle inequality, and that tn → t◦,

xn
M−→ x◦ and yn

M−→ y◦ as n→∞. Then the following statements hold true.

� If the mapping M(x◦, y◦, ·) : (0,∞)→ [0, 1] is continuous at t◦, then

lim
n→∞

M(xn, yn, tn) = lim
n→∞

M(yn, xn, tn) = M(x◦, y◦, t◦).

� If the mapping M(y◦, x◦, ·) : (0,∞)→ [0, 1] is continuous at t◦, then

lim
n→∞

M(yn, xn, tn) = lim
n→∞

M(yn, xn, tn) = M(y◦, x◦, t◦).

(iii) Suppose that M satisfies the �-triangle inequality. Then the following statements hold true.

� Suppose that the mapping M(x◦, y◦, ·) : (0,∞) → [0, 1] is continuous at t◦, and that

tn → t◦ as n → ∞. If xn
M.

−→ x◦ and yn
M.

−→ y◦ as n → ∞ simultaneously, or xn
M/

−→ x◦

and yn
M/

−→ y◦ as n→∞ simultaneously, then

lim
n→∞

M(yn, xn, tn) = M(x◦, y◦, t◦).

� Suppose that the mapping M(y◦, x◦, ·) : (0,∞) → [0, 1] is continuous at t◦, and that

tn → t◦ as n → ∞. If xn
M.

−→ x◦ and yn
M.

−→ y◦ as n → ∞ simultaneously, or xn
M/

−→ x◦

and yn
M/

−→ y◦ as n→∞ simultaneously, then

lim
n→∞

M(xn, yn, tn) = M(y◦, x◦, t◦).

Definition 2.10. Let (X,M) be a fuzzy semi-metric space, and let {xn}∞n=1 be a sequence in X.

� We say that {xn}∞n=1 is a >-Cauchy sequence when, given any pair (r, t) with t > 0 and
0 < r < 1, there exists nr,t ∈ N such that M(xm, xn, t) > 1 − r for all pairs (m,n) of integers
m and n with m > n ≥ nr,t.

� We say that {xn}∞n=1 is a <-Cauchy sequence when, given any pair (r, t) with t > 0 and
0 < r < 1, there exists nr,t ∈ N such that M(xn, xm, t) > 1 − r for all pairs (m,n) of integers
m and n with m > n ≥ nr,t.

� We say that {xn}∞n=1 is a Cauchy sequence when, given any pair (r, t) with t > 0 and 0 < r < 1,
there exists nr,t ∈ N such that M(xm, xn, t) > 1−r and M(xn, xm, t) > 1−r for all pairs (m,n)
of integers m and n with m,n ≥ nr,t and m 6= n.

Definition 2.11. Let (X,M) be a fuzzy semi-metric space.

� We say that (X,M) is (>, .)-complete when each >-Cauchy sequence is convergent in the sense

of xn
M.

−→ x.

� We say that (X,M) is (>, /)-complete when each >-Cauchy sequence is convergent in the sense

of xn
M/

−→ x.
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� We say that (X,M) is (<, .)-complete when each <-Cauchy sequence is convergent in the sense

of xn
M.

−→ x.

� We say that (X,M) is (<, /)-complete when each <-Cauchy sequence is convergent in the sense

of xn
M/

−→ x.

Definition 2.12. Let (X,M) be a fuzzy semi-metric space.

� We say that the function f : X → X is (., .)-continuous with respect to M when, given any

sequence {xn}∞n=1 in X, xn
M.

−→ x as n→∞ implies f(xn)
M.

−→ f(x) as n→∞.

� We say that the function f : X → X is (., /)-continuous with respect to M when, given any

sequence {xn}∞n=1 in X, xn
M.

−→ x as n→∞ implies f(xn)
M/

−→ f(x) as n→∞.

� We say that the function f : X → X is (/, .)-continuous with respect to M when, given any

sequence {xn}∞n=1 in X, xn
M/

−→ x as n→∞ implies f(xn)
M.

−→ f(x) as n→∞.

� We say that the function f : X → X is (/, /)-continuous with respect to M when, given any

sequence {xn}∞n=1 in X, xn
M/

−→ x as n→∞ implies f(xn)
M/

−→ f(x) as n→∞.

Based on the intuitive concept of the value M(x, y, t), we see that M(x, y, t) = 1 means the
distance between x and y that is surely less than or equal to t, and M(x, y, t) = 0 means the distance
between x and y that is surely greater than t. Therefore if x 6= y with distance txy 6= 0 between x
and y, then it is impossible for M(x, y, t) = 0 and for all t > 0. In other words, there exists t0 > 0
with txy < t0 satisfying M(x, y, t0) 6= 0. We propose the following definition.

3. Auxiliary Functions Based on the Infimum

Since M(x, y, t) is the membership degree of the distance between x and y that is less than or equal
to t, it is natural to see that the mapping M(x, y, ·) is nondecreasing or symmetrically nondecreasing
as shown in Proposition 2.7. On the other hand, since the distance will always be less than or equal
to a large t, it is also reasonable to argue that if t is sufficiently large, then the membership degree
M(x, y, t) is close to 1. Therefore we propose the following definition.

Definition 3.1. Let (X,M) be a fuzzy semi-metric space. We say that M satisfies the canonical
condition when

lim
t→+∞

M(x, y, t) = 1 for any fixed x, y ∈ X.

Let (X,M) be a fuzzy semi-metric space along with a t-norm *. We define the mapping η :
X4 × [0,+∞)→ [0, 1] by

η(x, y, u, v, t) = M(x, y, t) ∗M(u, v, t).

The following properties will be used to define the auxiliary functions.

Proposition 3.2. Let (X,M) be a fuzzy semi-metric space. Suppose that M satisfies the canonical
condition. If the t-norm ∗ is left-continuous at 1 with respect to the first or second component, then

lim
t→+∞

η(x, y, u, v, t) = 1. (3.1)
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The theorems of common coupled coincidence points and common coupled fixed points should be
based on the Cauchy sequences. Therefore we introduce the auxiliary functions to obtain the useful
properties regarding the Cauchy sequences. .

Definition 3.3. Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M
satisfies the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the
first or second component. Given any fixed x, y, u, v ∈ X and any fixed λ ∈ (0, 1], we define the set

Π(λ, x, y, u, v) = {t > 0 : η(x, y, u, v, t) ≥ 1− λ} .

and the function Ψ(λ, ·, ·, ·, ·) : X4 → [0,+∞) by

Ψ(λ, x, y, u, v) = inf Π(λ, x, y, u, v) = inf {t > 0 : η(x, y, u, v, t) ≥ 1− λ} .

We need to claim Π(λ, x, y, u, v) 6= ∅. In this case, we have Ψ(λ, x, y, u, v) < +∞. Suppose that
Π(λ, x, y, u, v) = ∅. By definition, we must have η(x, y, u, v, t) < 1− λ for all t > 0. This says that

lim
t→+∞

η(x, y, u, v, t) ≤ 1− λ < 1,

which contradicts (3.1). Therefore we indeed have Π(λ, x, y, u, v) 6= ∅. This says that Definition 3.3
is well-defined.

Proposition 3.4. Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M
satisfies the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first
or second component. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), we have the following properties.

(i) If ε > 0 is sufficiently small such that Ψ(λ, x, y, u, v) > ε, then

η (x, y, u, v,Ψ(λ, x, y, u, v)− ε) < 1− λ.

(ii) Suppose that M satisfies the ./-triangle inequality or the .-triangle inequality or the /-triangle
inequality. For any ε > 0, we have

η (x, y, u, v,Ψ(λ, x, y, u, v) + ε) ≥ 1− λ (3.2)

(iii) Suppose that M satisfies the .-triangle inequality or the /-triangle inequality. For any ε > 0,
we have

η (x, y, u, v,Ψ(λ, y, x, u, v) + ε) ≥ 1− λ

and
η (x, y, u, v,Ψ(λ, x, y, v, u) + ε) ≥ 1− λ.

(iv) Suppose that M satisfies the .-triangle inequality or the /-triangle inequality or the �-triangle
inequality. For any ε > 0, we have

η (x, y, u, v,Ψ(λ, y, x, v, u) + ε) ≥ 1− λ

Proposition 3.5. Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M
satisfies the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the first
or second component.
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(i) Suppose that M satisfies the ./-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · , yp ∈
X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1) such that

Ψ(µ, x1, xp, y1, yp) ≤ Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + · · ·
+ Ψ(λ, xp−2, xp−1, yp−2, yp−1) + Ψ(λ, xp−1, xp, yp−1, yp) (3.3)

Ψ(µ, x1, xp, yp, y1) ≤ Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + · · ·
+ Ψ(λ, xp−2, xp−1, yp−1, yp−2) + Ψ(λ, xp−1, xp, yp, yp−1) (3.4)

Ψ(µ, xp, x1, y1, yp) ≤ Ψ(λ, xp, xp−1, yp−1, yp) + Ψ(λ, xp−1, xp−2, yp−2, yp−1)

+ · · ·+ Ψ(λ, x3, x2, y2, y3) + Ψ(λ, x2, x1, y1, y2)

Ψ(µ, xp, x1, yp, y1) ≤ Ψ(λ, xp, xp−1, yp, yp−1) + Ψ(λ, xp−1, xp−2, yp−1, yp−2)

+ · · ·+ Ψ(λ, x3, x2, y3, y2) + Ψ(λ, x2, x1, y2, y1).

(ii) Suppose that M satisfies the .-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · , yp ∈
X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1) such that

max {Ψ(µ, x1, xp, y1, yp),Ψ(µ, x1, xp, yp, y1),Ψ(µ, xp, x1, y1, yp),Ψ(µ, xp, x1, yp, y1)}
≤ Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x3, x2, y3, y2) + Ψ(λ, x4, x3, y4, y3)

+ · · ·+ Ψ(λ, xp, xp−1, yp, yp−1)

(iii) Suppose that M satisfies the /-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · , yp ∈
X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1) such that

max {Ψ(µ, x1, xp, y1, yp),Ψ(µ, x1, xp, yp, y1),Ψ(µ, xp, x1, y1, yp),Ψ(µ, xp, x1, yp, y1)}
≤ Ψ(λ, x2, x1, y2, y1) + Ψ(λ, x2, x3, y2, y3) + Ψ(λ, x3, x4, y3, y4)

+ · · ·+ Ψ(λ, xp−1, xp, yp−1, yp)

(iv) Suppose that M satisfies the �-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · , yp ∈
X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1) such that the following inequalities are satis-
fied.

� If p is even, then

Ψ(µ, x1, xp, y1, yp) ≤ Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + Ψ(λ, x4, x3, y4, y3)

+ Ψ(λ, x4, x5, y4, y5) + Ψ(λ, x6, x5, y6, y5) + Ψ(λ, x6, x7, y6, y7)

+ · · ·+ Ψ(λ, xp, xp−1, yp, yp−1) (3.5)

Ψ(µ, x1, xp, yp, y1) ≤ Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + Ψ(λ, x4, x3, y3, y4)

+ Ψ(λ, x4, x5, y5, y4) + Ψ(λ, x6, x5, y5, y6) + Ψ(λ, x6, x7, y7, y6)

+ · · ·+ Ψ(λ, xp, xp−1, yp−1, yp) (3.6)

Ψ(µ, xp, x1, y1, yp) ≤ Ψ(λ, x2, x1, y1, y2) + Ψ(λ, x3, x2, y2, y3) + Ψ(λ, x3, x4, y4, y3)

+ Ψ(λ, x5, x4, y4, y5) + Ψ(λ, x5, x6, y6, y5) + Ψ(λ, x7, x6, y6, y7)

+ · · ·+ Ψ(λ, xp−1, xp, yp, yp−1) (3.7)

Ψ(µ, xp, x1, yp, y1) ≤ Ψ(λ, x2, x1, y2, y1) + Ψ(λ, x3, x2, y3, y2) + Ψ(λ, x3, x4, y3, y4)

+ Ψ(λ, x5, x4, y5, y4) + Ψ(λ, x5, x6, y5, y6) + Ψ(λ, x7, x6, y7, y6)

+ · · ·+ Ψ(λ, xp−1, xp, yp−1, yp) (3.8)
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� If p is odd, then

Ψ(µ, x1, xp, y1, yp) ≤ Ψ(λ, x2, x1, y2, y1) + Ψ(λ, x3, x2, y3, y2) + Ψ(λ, x3, x4, y3, y4)

+ Ψ(λ, x5, x4, y5, y4) + Ψ(λ, x5, x6, y5, y6) + Ψ(λ, x7, x6, y7, y6)

+ · · ·+ Ψ(λ, xp−1, xp, yp−1, yp) (3.9)

Ψ(µ, x1, xp, yp, y1) ≤ Ψ(λ, x2, x1, y1, y2) + Ψ(λ, x3, x2, y2, y3) + Ψ(λ, x3, x4, y4, y3)

+ Ψ(λ, x5, x4, y4, y5) + Ψ(λ, x5, x6, y6, y5) + Ψ(λ, x7, x6, y6, y7)

+ · · ·+ Ψ(λ, xp−1, xp, yp, yp−1) (3.10)

Ψ(µ, xp, x1, y1, yp) ≤ Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + Ψ(λ, x4, x3, y3, y4)

+ Ψ(λ, x4, x5, y5, y4) + Ψ(λ, x6, x5, y5, y6) + Ψ(λ, x6, x7, y7, y6)

+ · · ·+ Ψ(λ, xp, xp−1, yp−1, yp) (3.11)

Ψ(µ, xp, x1, yp, y1) ≤ Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + Ψ(λ, x4, x3, y4, y3)

+ Ψ(λ, x4, x5, y4, y5) + Ψ(λ, x6, x5, y6, y5) + Ψ(λ, x6, x7, y6, y7)

+ · · ·+ Ψ(λ, xp, xp−1, yp, yp−1) (3.12)

Proof . We just prove part (i). If µ = 1, then Ψ(1, x1, xp, y1, yp) = 0. The result is obvious.
Therefore we assume µ ∈ (0, 1). According to part (ii) of Proposition 2.1, there exists λ ∈ (0, 1) such
that

(1− λ) ∗ · · · ∗ (1− λ) > 1− µ. (3.13)

Given any ε > 0, by the first observation of Remark 2.5, we have

M (x1, xp,Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + · · ·+ Ψ(λ, xp−1, xp, yp−1, yp) + (p− 1)ε)

≥M (x1, x2,Ψ(λ, x1, x2, y1, y2) + ε) ∗ · · · ∗M (xp−1, xp,Ψ(λ, xp−1, xp, yp−1, yp) + ε) (3.14)

and

M (y1, yp,Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + · · ·+ Ψ(λ, xp−1, xp, yp−1, yp) + (p− 1)ε)

≥M (y1, y2,Ψ(λ, x1, x2, y1, y2) + ε) ∗ · · · ∗M (yp−1, yp,Ψ(λ, xp−1, xp, yp−1, yp) + ε) (3.15)

Applying the increasing property and commutativity of t-norm to (3.14) and (3.15), we obtain

η (x1, xp, y1, yp,Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + · · ·+ Ψ(λ, xp−1, xp, yp−1, yp) + (p− 1)ε)

≥ η (x1, x2, y1, y2,Ψ(λ, x1, x2, y1, y2) + ε) ∗ · · · ∗ η (xp−1, xp, yp−1, yp,Ψ(λ, xp−1, xp, yp−1, yp) + ε)

≥ (1− λ) ∗ · · · ∗ (1− λ) (by (3.2) and the increasing property of t-norm)

> 1− µ (by (3.13)).

By the definition of Ψλ, we obtain

Ψ(λ, x1, x2, y1, y2) + Ψ(λ, x2, x3, y2, y3) + · · ·+ Ψ(λ, xp−1, xp, yp−1, yp) + (p− 1)ε ≥ Ψ(µ, x1, xp, y1, yp).

Taking ε→ 0+, we obtain the inequality (3.3).
On the other hand, we also have

M (x1, xp,Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + · · ·+ Ψ(λ, xp−1, xp, yp, yp−1) + (p− 1)ε)

≥M (x1, x2,Ψ(λ, x1, x2, y2, y1) + ε) ∗ · · · ∗M (xp−1, xp,Ψ(λ, xp−1, xp, yp, yp−1) + ε) (3.16)
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and

M (yp, y1,Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + · · ·+ Ψ(λ, xp−1, xp, yp, yp−1) + (p− 1)ε)

≥M (y2, y1,Ψ(λ, x1, x2, y2, y1) + ε) ∗ · · · ∗M (yp, yp−1,Ψ(λ, xp−1, xp, yp, yp−1) + ε) (3.17)

Applying the increasing property and commutativity of t-norm to (3.16) and (3.17), we obtain

η (x1, xp, yp, y1,Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + · · ·+ Ψ(λ, xp−1, xp, yp, yp−1) + (p− 1)ε)

≥ η (x1, x2, y2, y1,Ψ(λ, x1, x2, y2, y1) + ε) ∗ · · · ∗ η (xp−1, xp, yp, yp−1,Ψ(λ, xp−1, xp, yp, yp−1) + ε)

≥ (1− λ) ∗ · · · ∗ (1− λ) (by (3.2) and the increasing property of t-norm)

> 1− µ (by (3.13)).

By the definition of Ψλ, we obtain

Ψ(λ, x1, x2, y2, y1) + Ψ(λ, x2, x3, y3, y2) + · · ·+ Ψ(λ, xp−1, xp, yp, yp−1) + (p− 1)ε ≥ Ψ(µ, x1, xp, yp, y1).

Taking ε → 0+, we obtain the inequality (3.4). The other inequalities can be similarly obtained.
This completes the proof. �

Proposition 3.6. Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M
satisfies the canonical condition, and that the t-norm ∗ is left-continuous at 1 with respect to the
first or second component. Let {xn}∞n=1 and {yn}∞n=1 be two sequences in X. Then the following
statements hold true.

(i) {xn}∞n=1 and {yn}∞n=1 are two >-Cauchy sequences if and only if, given any ε > 0 and λ ∈ (0, 1),
there exists nε,λ ∈ N such that m > n ≥ nε,λ implies Ψ(λ, xm, xn, ym, yn) < ε.

(ii) {xn}∞n=1 is a >-Cauchy sequences and {yn}∞n=1 is a <-Cauchy sequences if and only if, given any
ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N such that m > n ≥ nε,λ implies Ψ(λ, xm, xn, yn, ym) <
ε.

(iii) {xn}∞n=1 is a <-Cauchy sequences and {yn}∞n=1 is a >-Cauchy sequences if and only if, given any
ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N such that m > n ≥ nε,λ implies Ψ(λ, xn, xm, ym, yn) <
ε.

(iv) {xn}∞n=1 and {yn}∞n=1 are two <-Cauchy sequences if and only if, given any ε > 0 and λ ∈ (0, 1),
there exists nε,λ ∈ N such that m > n ≥ nε,λ implies Ψ(λ, xn, xm, yn, ym) < ε.

4. Cauchy Sequences

We shall present many kinds of situations that can guarantee the Cauchy sequence in order to
derive the theorems of common coupled coincidence points and common coupled fixed points.

Given any a ∈ [0, 1], for convenience, we write

(∗a)n =

n times︷ ︸︸ ︷
a ∗ a ∗ · · · ∗ a

and

[
∗η
(
a, b, c, d,

t

kn

)]2n
=

2n times︷ ︸︸ ︷
η

(
a, b, c, d,

t

kn

)
∗ η
(
a, b, c, d,

t

kn

)
∗ · · · ∗ η

(
a, b, c, d,

t

kn

)
.
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Proposition 4.1. Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M
satisfies the canonical condition, and that the t-norm is left-continuous at 1 in the first or second
component. Let 0 < k < 1 be any fixed constant, and let {xn}∞n=1 and {yn}∞n=1 be two sequences in
X.

(i) Suppose that M satisfies the ./-triangle inequality. Then the following statements hold true.

� Assume that there exist fixed elements a1, b1, c1, d1 ∈ X such that

sup
λ∈(0,1)

Ψ (λ, a1, b1, c1, d1) <∞, (4.1)

and that

η (xn, xn+1, yn, yn+1, t) ≥
[
∗η
(
a1, b1, c1, d1,

t

kn

)]2n
for each n ∈ N. (4.2)

Then {xn}∞n=1 and {yn}∞n=1 are <-Cauchy sequences.

� Assume that there exist fixed elements a2, b2, c2, d2 ∈ X such that

sup
λ∈(0,1)

Ψ (λ, a2, b2, c2, d2) <∞, (4.3)

and that

η (xn, xn+1, yn+1, yn, t) ≥
[
∗η
(
a2, b2, c2, d2,

t

kn

)]2n
for each n ∈ N, (4.4)

Then {xn}∞n=1 is a <-Cauchy sequence and {yn}∞n=1 is a >-Cauchy sequence.

� Assume that there exist fixed elements a3, b3, c3, d3 ∈ X such that

sup
λ∈(0,1)

Ψ (λ, a3, b3, c3, d3) <∞, (4.5)

and that

η (xn+1, xn, yn, yn+1, t) ≥
[
∗η
(
a3, b3, c3, d3,

t

kn

)]2n
for each n ∈ N, (4.6)

then {xn}∞n=1 is a >-Cauchy sequence and {yn}∞n=1 is a <-Cauchy sequence.

� Assume that there exist fixed elements a4, b4, c4, d4 ∈ X such that

sup
λ∈(0,1)

Ψ (λ, a4, b4, c4, d4) <∞, (4.7)

and that

η (xn+1, xn, yn+1, yn, t) ≥
[
∗η
(
a4, b4, c4, d4,

t

kn

)]2n
for each n ∈ N, (4.8)

Then {xn}∞n=1 and {yn}∞n=1 are >-Cauchy sequences.

(ii) Suppose that M satisfies the .-triangle inequality or the /-triangle inequality. We also Assume
that (4.1), (4.2), (4.7) and (4.8) are satisfied. Then {xn}∞n=1 and {yn}∞n=1 are both >-Cauchy
and <-Cauchy sequences; that is, {xn}∞n=1 and {yn}∞n=1 are Cauchy sequences.
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(iii) Suppose that M satisfies the �-triangle inequality, and that any one of the following two condi-
tions is satisfied:

� conditions (4.1), (4.2), (4.7) and (4.8) are satisfied;

� conditions (4.3), (4.4), (4.5) and (4.6) are satisfied.

Then {xn}∞n=1 and {yn}∞n=1 are both >-Cauchy and <-Cauchy sequences.

Proof . To prove part (i), it suffices to prove the first case. Given any λ ∈ (0, 1), from (4.2), we
have the following inclusions{

t > 0 :

[
∗η
(
a1, b1, c1, d1,

t

kn

)]2n
≥ 1− λ

}
⊆ {t > 0 : η (xn, xn+1, yn, yn+1, t) ≥ 1− λ} . (4.9)

Using part (ii) of Proposition 2.1, there exists λ0 ∈ (0, 1) such that

[∗(1− λ0)]2n > 1− λ.

Therefore, if

η

(
a1, b1, c1, d1,

t

kn

)
≥ 1− λ0

then, using the increasing property for t-norm,[
∗η
(
a1, b1, c1, d1,

t

kn

)]2n
≥ [∗(1− λ0)]2n > 1− λ,

which also says that {
t > 0 : η

(
a1, b1, c1, d1,

t

kn

)
≥ 1− λ0

}
⊆

{
t > 0 :

[
∗η
(
a1, b1, c1, d1,

t

kn

)]2n
> 1− λ

}

⊆

{
t > 0 :

[
∗η
(
a1, b1, c1, d1,

t

kn

)]2n
≥ 1− λ

}
. (4.10)

Therefore we obtain

Ψ(λ, xn, xn+1, yn, yn+1)

= inf {t > 0 : η (xn, xn+1, yn, yn+1, t) ≥ 1− λ}

≤ inf

{
t > 0 :

[
∗η
(
a1, b1, c1, d1,

t

kn

)]2n
≥ 1− λ

}
(by (4.9))

≤ inf

{
t > 0 : η

(
a1, b1, c1, d1,

t

kn

)
≥ 1− λ0

}
(by (4.10))

= inf {kn · t > 0 : η (a1, b1, c1, d1, t) ≥ 1− λ0}
= kn · inf {t > 0 : η (a1, b1, c1, d1, t) ≥ 1− λ0}
= kn ·Ψ(λ0, a1, b1, c1, d1). (4.11)
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Now we assume that m,n ∈ N with m > n. Given any µ ∈ (0, 1], by part (i) of Proposition 3.5,
there exists λ ∈ (0, 1) (which depends on m and n) such that

Ψ(µ, xn, xm, yn, ym)

≤ Ψ(λ, xn, xn+1, yn, yn+1) + Ψ(λ, xn+1, xn+2, yn+1, yn+2)

+ · · ·+ Ψ(λ, xm−1, xm, ym−1, ym)

≤ kn ·Ψ(λ0, a1, b1, c1, d1) + kn+1 ·Ψ(λ0, a1, b1, c1, d1)

+ · · ·+ km−1 ·Ψ(λ0, a1, b1, c1, d1) (by (4.11))

= Ψ(λ0, a1, b1, c1, d1) ·
kn · (1− km−n)

1− k
≤ Ψ(λ0, a1, b1, c1, d1) ·

kn

1− k

≤

[
sup
λ∈(0,1)

Ψ(λ, a1, b1, c1, d1)

]
· kn

1− k
→ 0 as n→∞, (4.12)

which also says that, given any ε ∈ (0, 1) and µ ∈ (0, 1), there exists nµ,ε ∈ N such that m > n ≥ nµ,ε
implies Ψ(µ, xn, xm, yn, ym) < ε. By the fourth case of Proposition 3.6, it follows that {xn}∞n=1

and {yn}∞n=1 are <-Cauchy sequences. The other results can be similarly obtained by using the
corresponding cases of Proposition 3.6 and part (i) of Proposition 3.5.

To prove part (ii), we consider the following cases.

� Suppose that M satisfies the .-triangle inequality. Using part (ii) of Proposition 3.5, we have

max {Ψ(µ, xn, xm, yn, ym),Ψ(µ, xm, xn, yn, ym),Ψ(µ, xn, xm, ym, yn),Ψ(µ, xm, xn, ym, yn)}
≤ Ψ(λ, xm, xm−1, ym, ym−1) + Ψ(λ, xm−1, xm−2, ym−1, ym−2)

+ · · ·+ Ψ(λ, xn+2, xn+1, yn+2, yn+1) + Ψ(λ, xn, xn+1, yn, yn+1). (4.13)

By referring to (4.11), we can similarly obtain

Ψ(λ, xn+1, xn, yn+1, yn) ≤ kn ·Ψ(λ0, a4, b4, c4, d4). (4.14)

By using (4.11), (4.14), (4.13) and referring to (4.12), we have

max {Ψ(µ, xn, xm, yn, ym),Ψ(µ, xm, xn, yn, ym),Ψ(µ, xn, xm, ym, yn),Ψ(µ, xm, xn, ym, yn)}

≤ max

{[
sup
λ∈(0,1)

Ψ(λ, a1, b1, c1, d1)

]
,

[
sup
λ∈(0,1)

Ψ(λ, a4, b4, c4, d4)

]}
· kn

1− k
→ 0 as n→∞.

Using the above argument, we can show that {xn}∞n=1 and {yn}∞n=1 are both >-Cauchy and
<-Cauchy sequences.

� Suppose that M satisfies the /-triangle inequality. Using part (iii) of Proposition 3.5, we have

max {Ψ(µ, xn, xm, yn, ym),Ψ(µ, xm, xn, yn, ym),Ψ(µ, xn, xm, ym, yn),Ψ(µ, xm, xn, ym, yn)}
≤ Ψ(λ, xn+1, xn, yn+1, yn) + Ψ(λ, xn+1, xn+2, yn+1, yn+2)

+ · · ·+ Ψ(λ, xm−2, xm−1, ym−2, ym−1) + Ψ(λ, xm−1, xm, ym−1, ym).

Using the above argument, we can show that {xn}∞n=1 and {yn}∞n=1 are both >-Cauchy and
<-Cauchy sequences.
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To prove part (iii), we consider the following cases.

� Assume that (4.1), (4.2), (4.7) and (4.8) are satisfied. If p is even, then, using (3.5) and (3.8)
in part (iv) of Proposition 3.5, we can similarly show that {xn}∞n=1 and {yn}∞n=1 are both >-
Cauchy and <-Cauchy sequences. If p is odd, then, using (3.9) and (3.12) in Proposition 3.5,
we can similarly obtain the desired results.

� Assume that (4.3), (4.4), (4.5) and (4.6) are satisfied. If p is even, then, using (3.6) and (3.7)
in part (iv) of Proposition 3.5, we can similarly show that {xn}∞n=1 and {yn}∞n=1 are both >-
Cauchy and <-Cauchy sequences. If p is odd, then, using (3.10) and (3.11) in Proposition 3.5,
we can similarly obtain the desired results.

This completes the proof. �

Remark 4.2. We shall present the sufficient conditions to guarantee the finiteness (4.1).

� Suppose that M satisfies the ./-triangle inequality or the .-triangle inequality or the /-triangle
inequality. Then the mapping M(x, y, ·) is nondecreasing by parts (i) and (ii) of Proposition 2.7.
Now we also assume that a and b have a finite distance beginning from a to b, and that c and
d have a finite distance beginning from c to d. Then, by definition, there exists t∗ab > 0 and
t∗cd > 0 such that M(a, b, t∗ab) = 1 and M(c, d, t∗cd) = 1. Let t∗ = max{t∗ab, t∗cd}. Since the
mapping M(x, y, ·) is nondecreasing, it follows that

η (a, b, c, d, t∗) = M (a, b, t∗) ∗M (c, d, t∗) = 1 ≥ 1− λ for all λ ∈ (0, 1),

which says that
Ψ (λ, a, b, c, d) ≤ t∗ < +∞ for all λ ∈ (0, 1).

Therefore we conclude that

sup
λ∈(0,1)

Ψ (λ, a, b, c, d) ≤ t∗ < +∞.

� Suppose that M satisfies the .-triangle inequality or the /-triangle inequality or the �-triangle
inequality. Then the mapping M(x, y, ·) is symmetrically nondecreasing by parts (ii) and (iii)
of Proposition 2.7. Now we also assume that a and b have a finite distance beginning from b
to a, and that c and d have a finite distance beginning from d to c. Then, by definition, there
exists t∗ba > 0 and t∗dc > 0 such that M(b, a, t∗ba) = 1 and M(d, c, t∗dc) = 1. Let t∗ = max{t∗ba, t∗dc}.
Since the mapping M(x, y, ·) is symmetrically nondecreasing, it follows thatM(a, b, t∗) = 1 and
M(c, d, t∗) = 1. Therefore we can similarly obtain

sup
λ∈(0,1)

Ψ (λ, a, b, c, d) ≤ t∗ < +∞.

5. Common Coupled Coincidence Points

Now we are in a position to present the theorems of common coupled coincidence points. Let X
be a nonempty universal set. We consider the mappings T : X ×X → X and f : X → X.

� We say that the mappings T and f commute when

f(T (x, y)) = T (f(x), f(y))

for all x, y ∈ X.
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� An element (x, y) ∈ X ×X is called a coupled coincidence point of mappings T and f when

T (x, y) = f(x) and T (y, x) = f(y).

In particular, if x = f(x) = T (x, y) and y = f(y) = T (y, x), then (x, y) is called a common
coupled fixed point of T and f .

Let X be a universal set. Let {Tn}∞n=1 be a sequence of mappings defined on X ×X into X, and
let f be a mapping defined on X into itself satisfying Tn(X,X) ⊆ f(X) for all n ∈ N. Given any
two initial elements x0, y0 ∈ X, since Tn(X,X) ⊆ f(X), there exist x1, y1 ∈ X such that

f(x1) = T1(x0, y0) and f(y1) = T1(y0, x0).

Similarly, there also exist x2, y2 ∈ X such that

f(x2) = T2(x1, y1) and f(y2) = T2(y1, x1).

Continuing this process, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 such that

f(xn) = Tn(xn−1, yn−1) and f(yn) = Tn(yn−1, xn−1) (5.1)

for n ∈ N.
In the sequel, we shall study the common coupled coincidence point by separately considering

the four different types of triangle inequalities. We first present some assumptions and conditions.
For the mappings f and {Tn}∞n=1, we consider the following assumptions:

(I) the mappings Tn : X ×X → X and f : X → X satisfy Tn(X,X) ⊆ f(X) for all n ∈ N;

(II) the mappings f and Tn commute, i.e., f(Tn(x, y)) = Tn(f(x), f(y)) for all x, y ∈ X and all
n ∈ N.

Regarding the auxiliary function Ψ that is associated with the mappings f and T1 in the sequence
{Tn}∞n=1, we consider the following three conditions:

(a) there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Ψ (λ, f(x∗), T1(x
∗, y∗), f(y∗), T1(y

∗, x∗)) <∞; (5.2)

(b) there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Ψ (λ, T1(x
∗, y∗), f(x∗), T1(y

∗, x∗), f(y∗)) <∞.

(c) there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Ψ (λ, f(x∗), T1(x
∗, y∗), f(y∗), T1(y

∗, x∗)) <∞

and
sup
λ∈(0,1)

Ψ (λ, T1(x
∗, y∗), f(x∗), T1(y

∗, x∗), f(y∗)) <∞.

Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗. We consider the following assump-
tions.
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(1) the t-norm ∗ is left-continuous with respect to the first or second component;

(2) for any fixed x, y ∈ X, the mapping M(x, y, ·) : (0,∞)→ [0, 1] is left-continuous at each point
t ∈ (0,∞);

(3) for any n ∈ N and a ∈ [0, 1], the inequality (∗a)n ≥ an holds true;

(4) for any fixed x, y ∈ X, t > 0 and constant k, the mapping

ρ(α) = M

(
x, y,

t

klog2 α

)
(5.3)

is differentiable on (0,∞) such that ρ′(α) 6= 0 for all α ∈ (0,∞).

Regarding the completeness and continuities, we consider the following conditions.

(a) (X,M) is (<, .)-complete, and f is simultaneously (., .)-continuous and (., /)-continuous with
respect to M ;

(a◦) (X,M) is (<, .)-complete, and f is simultaneously (., .)-continuous or (., /)-continuous with
respect to M ;

(b) (X,M) is (<, /)-complete, and f is simultaneously (/, .)-continuous and (/, /)-continuous with
respect to M ;

(b◦) (X,M) is (<, /)-complete, and f is simultaneously (/, .)-continuous or (/, /)-continuous with
respect to M ;

(c) (X,M) is (>, .)-complete, and f is simultaneously (., .)-continuous and (., /)-continuous with
respect to M ;

(c◦) (X,M) is (>, .)-complete, and f is simultaneously (., .)-continuous or (., /)-continuous with
respect to M ;

(d) (X,M) is (>, /)-complete, and f is simultaneously (/, .)-continuous and (/, /)-continuous with
respect to M ;

(d◦) (X,M) is (>, /)-complete, and f is simultaneously (/, .)-continuous or (/, /)-continuous with
respect to M ;

(e) (X,M) is (<, .)-complete or (>, .)-complete, and f is simultaneously (., .)-continuous and
(., /)-continuous with respect to M ;

(e◦) (X,M) is (<, .)-complete or (>, .)-complete, and f is (., .)-continuous or (., /)-continuous
with respect to M ;

(f) (X,M) is (<, /)-complete or (>, /)-complete, and f is simultaneously (/, .)-continuous and
(/, /)-continuous with respect to M .

(f◦) (X,M) is (<, /)-complete or (>, /)-complete, and f is (/, .)-continuous or (/, /)-continuous
with respect to M .

(g) (X,M) is (<, .)-complete or (>, .)-complete, and f is (., /)-continuous with respect to M ;

(h) (X,M) is (<, /)-complete or (>, /)-complete, and f is (/, /)-continuous with respect to M .

(i) (X,M) is (<, .)-complete or (>, .)-complete and f is (., .)-continuous with respect to M ;

(j) (X,M) is (<, /)-complete or (>, /)-complete and f is (/, .)-continuous with respect to M .

Theorem 5.1. (Satisfying the ./-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the ./-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1) and (2) are satisfied;
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� for any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t), (5.4)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Then we have the following results.

(i) Suppose that condition (a) is satisfied, and that condition (a) or condition (b) is satisfied. Then
the mappings {Tn}∞n=1 and f have a common coupled coincidence point (x◦, y◦). We further
assume that the assumptions (3) and (4) are satisfied. Then we have the following properties.
(A) If (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N, then f(x◦) =

f(x̄) and f(y◦) = f(ȳ).
(B) There exists (x◦, y◦) ∈ X × X such that (f(x◦), f(y◦)) ∈ X × X is the common coupled

fixed point of the mappings {Tn}∞n=1.
Moreover, the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (a) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the

limits f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (b) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the

limits f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X ×X according to (5.1).

(ii) Suppose that condition (b) is satisfied, and that condition (c) or condition (d) is satisfied. Then
we have the same result as part (i).

Proof . We can generate two sequences {xn}∞n=1 and {yn}∞n=1 from the initial element x0 = x∗ and
y0 = y∗ according to (5.1). Then we have

f(x∗) = f(x0) and f(y∗) = f(y0)

and
T1(x

∗, y∗) = T1(x0, y0) = f(x1) and T1(y
∗, x∗) = T1(y0, x0) = f(y1).

To prove part (i), from (5.1) and (5.4), we obtain

M (f(x1), f(x2), t) = M (T1(x0, y0), T2(x1, y1), t)

≥M

(
f(x0), f(x1),

t

k12

)
∗M

(
f(y0), f(y1),

t

k12

)
and

M (f(y1), f(y2), t) = M (T1(y0, x0), T2(y1, x1), t)

≥M

(
f(y0), f(y1),

t

k12

)
∗M

(
f(x0), f(x1),

t

k12

)
.

By induction, we can obtain

M (f(xn), f(xn+1), t) ≥
[
∗M

(
f(x0), f(x1),

t∏n
i=1 ki,i+1

)]2n−1

∗
[
∗M

(
f(y0), f(y1),

t∏n
i=1 ki,i+1

)]2n−1

(5.5)
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and

M (f(yn), f(yn+1), t) ≥
[
∗M

(
f(x0), f(x1),

t∏n
i=1 ki,i+1

)]2n−1

∗
[
∗M

(
f(y0), f(y1),

t∏n
i=1 ki,i+1

)]2n−1

. (5.6)

Since the mapping M(x, y, ·) is nondecreasing by part (i) of Proposition 2.7 and ki,i+1 ≤ k for each
i ∈ N, applying the increasing property of t-norm to (5.5) and (5.6), we also have

M (f(xn), f(xn+1), t) ≥
[
∗M

(
f(x0), f(x1),

t

kn

)]2n−1

∗
[
∗M

(
f(y0), f(y1),

t

kn

)]2n−1

=

[
∗η
(
f(x0), f(x1), f(y0), f(y1),

t

kn

)]2n−1

(5.7)

and

M (f(yn), f(yn+1), t) ≥
[
∗M

(
f(x0), f(x1),

t

kn

)]2n−1

∗
[
∗M

(
f(y0), f(y1),

t

kn

)]2n−1

=

[
∗η
(
f(x0), f(x1), f(y0), f(y1),

t

kn

)]2n−1

. (5.8)

Applying the increasing property of t-norm to (5.7) and (5.8), we have

η (f(xn), f(xn+1), f(yn), f(yn+1), t) = M (f(xn), f(xn+1), t) ∗M (f(yn), f(yn+1), t)

≥
[
∗η
(
f(x0), f(x1), f(y0), f(y1),

t

kn

)]2n
. (5.9)

From part (i) of Proposition 4.1, it follows that {f(xn)}∞n=1 and {f(yn)}∞n=1 are <-Cauchy sequences.
We consider the following cases

� Suppose that condition (a) is satisfied. Since (X,M) is (<, .)-complete, there exist x◦, y◦ ∈ X
such that

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦ as n→∞. (5.10)

Since f is simultaneously (., .)-continuous and (., /)-continuous with respect to M , we have

f(f(xn))
M.

−→ f(x◦) and f(f(yn))
M.

−→ f(y◦) as n→∞

and
f(f(xn))

M/

−→ f(x◦) and f(f(yn))
M/

−→ f(y◦) as n→∞,
which say that

lim
n→∞

M(f(f(xn)), f(x◦), t) = 1, i.e., M(f(f(xn)), f(x◦), t)→ 1− (5.11)

lim
n→∞

M(f(f(yn)), f(y◦), t) = 1, i.e., M(f(f(yn)), f(y◦), t)→ 1− (5.12)

lim
n→∞

M(f(x◦), f(f(xn)), t) = 1, i.e., M(f(x◦), f(f(xn)), t)→ 1− (5.13)

lim
n→∞

M(f(y◦), f(f(yn)), t) = 1, i.e., M(f(y◦), f(f(yn)), t)→ 1− (5.14)

for all t > 0.
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� Suppose that condition (b) is satisfied. Since (X,M) is (<, /)-complete, there exist x◦, y◦ ∈ X
such that

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦ as n→∞. (5.15)

Since f is simultaneously (/, .)-continuous and (/, /)-continuous with respect to M , we can
similarly obtain (5.11)-(5.14).

Using (5.1) and the commutativity of Tn and f , we obtain

f(f(xn+1)) = f(Tn+1(xn, yn)) = Tn+1(f(xn), f(yn))) (5.16)

and
f(f(yn+1)) = f(Tn+1(yn, xn)) = Tn+1(f(yn), f(xn))).

We shall show that f(x◦) = Tn(x◦, y◦) and f(y◦) = Tn(y◦, x◦) for all n ∈ N. Now we have

M (f(f(xn+1)), Tn(x◦, y◦), kt) ≥M (f(f(xn+1)), Tn(x◦, y◦), kn+1,n · t)
= M (Tn+1(f(xn), f(yn))), Tn(x◦, y◦), kn+1,n · t) (by (5.16))

≥M(f(f(xn)), f(x◦), t) ∗M(f(f(yn)), f(y◦), t) (by (5.4)). (5.17)

Using part (ii) of Proposition 2.2 and applying (5.11) and (5.12) to (5.17), we obtain

lim inf
n→∞

M (f(f(xn+1)), Tn(x◦, y◦), t)

≥ lim
n→∞

[
M

(
f(f(xn)), f(x◦),

t

k

)
∗M

(
f(f(yn)), f(y◦),

t

k

)]
= 1 ∗ 1 = 1,

which says that

1 ≥ lim sup
n→∞

M (f(f(xn+1)), Tn(x◦, y◦), t) ≥ lim inf
n→∞

M (f(f(xn+1)), Tn(x◦, y◦), t) ≥ 1.

Therefore we obtain

lim
n→∞

M (f(f(xn+1)), Tn(x◦, y◦), t) = 1, i.e., M (f(f(xn+1)), Tn(x◦, y◦), t)→ 1− . (5.18)

Using the ./-triangle inequality, we see that

M (f(x◦), Tn(x◦, y◦), 2t) ≥M (f(x◦), f(f(xn+1)), t) ∗M (f(f(xn+1)), Tn(x◦, y◦), t) .

Applying the left-continuity of t-norm ∗ to (5.13) and (5.18), we obtain M(f(x◦), Tn(x◦, y◦), 2t) = 1
for all t > 0. Therefore we must have f(x◦) = Tn(x◦, y◦) for all n ∈ N. We can similarly show that
f(y◦) = Tn(y◦, x◦) for all n ∈ N.

To prove property (A), let (x̄, ȳ) be another coupled coincidence point of f and Tn0 for some
n0 ∈ N, i.e., f(x̄) = Tn0(x̄, ȳ) and f(ȳ) = Tn0(ȳ, x̄). Since the mapping M(x, y, ·) is nondecreasing,
by (5.4), we have

M(f(x◦), f(x̄), t) = M(Tn0(x
◦, y◦), Tn0(x̄, ȳ), t)

≥M

(
f(x◦), f(x̄),

t

kn0,n0

)
∗M

(
f(y◦), f(ȳ),

t

kn0,n0

)
≥M

(
f(x◦), f(x̄),

t

k

)
∗M

(
f(y◦), f(ȳ),

t

k

)
(5.19)
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and

M(f(y◦), f(ȳ), t) = M(Tn0(y
◦, x◦), Tn0(ȳ, x̄), t)

≥M

(
f(y◦), f(ȳ),

t

kn0,n0

)
∗M

(
f(x◦), f(x̄),

t

kn0,n0

)
≥M

(
f(y◦), f(ȳ),

t

k

)
∗M

(
f(x◦), f(x̄),

t

k

)
. (5.20)

Therefore we obtain

1 ≥M(f(x◦), f(x̄), t)

≥M

(
f(x◦), f(x̄),

t

k

)
∗M

(
f(y◦), f(ȳ),

t

k

)
(by (5.19))

≥
[
M

(
f(x◦), f(x̄),

t

k2

)
∗M

(
f(y◦), f(ȳ),

t

k2

)]
∗
[
M

(
f(x◦), f(x̄),

t

k2

)
∗M

(
f(y◦), f(ȳ),

t

k2

)]
(by (5.19) and (5.20))

=

[
∗M

(
f(x◦), f(x̄),

t

k2

)]2
∗
[
∗M

(
f(y◦), f(ȳ),

t

k2

)]2
≥ · · · ≥

[
∗M

(
f(x◦), f(x̄),

t

kn

)]2n−1

∗
[
∗M

(
f(y◦), f(ȳ),

t

kn

)]2n−1

(by repeating to use (5.19) and (5.20))

≥
[
M

(
f(x◦), f(x̄),

t

kn

)]2n−1

∗
[
M

(
f(y◦), f(ȳ),

t

kn

)]2n−1

(by the assumption (∗a)2
n−1 ≥ a2

n−1
and the increasing property of t-norm)

≥
[
M

(
f(x◦), f(x̄),

t

kn

)]2n
∗
[
M

(
f(y◦), f(ȳ),

t

kn

)]2n
(since M(x, y, t) ≤ 1 for any x, y ∈ X and t > 0),

which is equivalent to

1 ≥M(f(x◦), f(x̄), t) ≥
[
M

(
f(x◦), f(x̄),

t

klog2 n

)]n
∗
[
M

(
f(y◦), f(ȳ),

t

klog2 n

)]n
. (5.21)

Since M satisfies the canonical condition, we have

lim
t→∞

M(x, y, t) = 1 (5.22)

for any fixed x, y ∈ X. Let

ρ(α) = M

(
f(x◦), f(x̄),

t

klog2 α

)
.
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Since 0 < k < 1, by (5.22), we have ρ(α)→ 1 as α→∞. Therefore we obtain

lim
n→∞

[
M

(
f(x◦), f(x̄),

t

klog2 n

)]n
= lim

n→∞
[ρ(n)]n = lim

n→∞
exp [n · ln ρ(n)] = exp

[
lim
n→∞

n
1

ln ρ(n)

]

= exp

[
lim
n→∞

(
− 1

1
(ln ρ(n))2

· 1
ρ(n)
· ρ′(n)

)]
(using the assumption ρ′(α) 6= 0 and the l’Hospital’s rule)

= 1 (5.23)

and

lim
n→∞

[
M

(
f(y◦), f(ȳ),

t

klog2 n

)]n
= 1. (5.24)

Since

M

(
f(x◦), f(x̄),

t

klog2 n

)
≤ 1 and M

(
f(y◦), f(ȳ),

t

klog2 n

)
≤ 1,

from (5.23) and (5.24), it follows that the sequences converge to 1 from the left. Using the left-
continuity of t-norm at 1 and part (ii) of Proposition 2.2, we obtain

lim
n→∞

[
M

(
f(x◦), f(x̄),

t

klog2 n

)]n
∗
[
M

(
f(y◦), f(ȳ),

t

klog2 n

)]n
= 1 ∗ 1 = 1.

From (5.21), we obtain M(f(x◦), f(x̄), t) = 1 for all t > 0, which implies f(x◦) = f(x̄). We can
similarly show that M(f(y◦), f(ȳ), t) = 1 for all t > 0, which also implies f(y◦) = f(ȳ).

To prove property (B), using the commutativity of Tn and f , we have

f(Tn(x◦, y◦)) = Tn(f(x◦), f(y◦)) = Tn(Tn(x◦, y◦), Tn(y◦, x◦)) (5.25)

and
f(Tn(y◦, x◦)) = Tn(f(y◦), f(x◦)) = Tn(Tn(y◦, x◦), Tn(x◦, y◦)). (5.26)

By regarding x̄ as Tn(x◦, y◦) and ȳ as Tn(y◦, x◦), the equalities (5.25) and (5.26) say that

f(x̄) = Tn(x̄, ȳ) and f(ȳ) = Tn(ȳ, x̄).

Therefore, using property (A), we must have

f (x◦) = f(x̄) = f (Tn(x◦, y◦)) = Tn (f(x◦), f(y◦))

and
f (y◦) = f(ȳ) = f (Tn(y◦, x◦)) = Tn (f(y◦), f(x◦)) ,

which says that (f(x◦), f(y◦)) ∈ X×X is the common coupled fixed point of the mappings {Tn}∞n=1.
To prove part (ii), we can similarly obtain

η (f(xn+1), f(xn), f(yn+1), f(yn), t) ≥
[
∗η
(
f(x1), f(x0), f(y1), f(y0),

t

kn

)]2n
. (5.27)

From part (i) of Proposition 4.1, it follows that {f(xn)}∞n=1 and {f(yn)}∞n=1 are >-Cauchy sequences.
We consider the following cases
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� Suppose that condition (c) is satisfied. Since (X,M) is (>, .)-complete, there exist x◦, y◦ ∈ X
such that

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦ as n→∞.

Since f is simultaneously (., .)-continuous and (., /)-continuous with respect to M , we can
similarly obtain (5.11)-(5.14).

� Suppose that condition (d) is satisfied. Since (X,M) is (>, /)-complete, there exist x◦, y◦ ∈ X
such that

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦ as n→∞.

Since f is simultaneously (/, .)-continuous and (/, /)-continuous with respect to M , we can
similarly obtain (5.11)-(5.14).

The remaining proof follows from the similar argument of part (i). This completes the proof. �

Remark 5.2. The inequality (5.4) is based on the t-norm. If the t-norm in (5.4) is replaced by the
arithmetic product as follows

M(T (x, y), T (u, v), kt) ≥M(f(x), f(u), t) ·M(f(y), f(v), t),

then we can simplify the sufficient conditions. We omit the detailed discussion.

In Theorem 5.1, since the fuzzy semi-metric M is not necessarily symmetric, if the contractive
inequality (5.4) is not satisfied and alternatively the following so-called converse-contractive inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t)

is satisfied, then we can also obtain the desired results by assuming the different conditions.

Theorem 5.3. (Satisfying the ./-Triangle Inequality: Converse-Contractive Inequality).
Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M satisfies the canonical
condition and the ./-triangle inequality. Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1) and (2) are satisfied;

� for any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Then we have the following results.

(i) Suppose that condition (a) is satisfied, and that condition (a◦) or condition (b◦) is satisfied.
Then the mappings {Tn}∞n=1 and f have a common coupled coincidence point (x◦, y◦). We
further assume that the assumptions (3) and (4) are satisfied. Then we have the following
properties.

(A) If (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N, then f(x◦) =
f(x̄) and f(y◦) = f(ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that (f(x◦), f(y◦)) ∈ X × X is the common coupled
fixed point of the mappings {Tn}∞n=1.
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Moreover, the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (a◦) is satisfied, then the point (x◦, y◦) ∈ X×X can be obtained by taking the

limit f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (b◦) is satisfied, then the point (x◦, y◦) ∈ X×X can be obtained by taking the

limit f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X ×X according to (5.1).

(ii) Suppose that condition (b) is satisfied, and that condition (c◦) or condition (d◦) is satisfied.
Then we have the same result as part (i).

Remark 5.4. The assumption for the continuity of function f in Theorems 5.1 and 5.3 are different.
More precisely, the assumption for the continuity of function f in Theorem 5.1 is stronger than that
of Theorem 5.3.

Theorem 5.5. (Satisfying the �-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the �-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1) and (2) are satisfied;

� for any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� condition (c) is satisfied, and that condition (e◦) or condition (f◦) is satisfied.

Then the mappings {Tn}∞n=1 and f have a common coupled coincidence point (x◦, y◦). We further
assume that the assumptions (3) and (4) are satisfied. Then we have the following properties.

(A) If (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N, then f(x◦) = f(x̄)
and f(y◦) = f(ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that (f(x◦), f(y◦)) ∈ X × X is the common coupled fixed
point of the mappings {Tn}∞n=1.

Moreover, the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (e◦) is satisfied, then the point (x◦, y◦) ∈ X×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (f◦) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).

Theorem 5.6. (Satisfying the �-Triangle Inequality: Converse-Contractive Inequality).
Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M satisfies the canonical
condition and the �-triangle inequality. Suppose that the following conditions are satisfied:
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� the assumptions (I),(II),(1) and (2) are satisfied;

� for any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� condition (c) is satisfied, and that condition (e) or condition (f) is satisfied.

Then the mappings {Tn}∞n=1 and f have a common coupled coincidence point (x◦, y◦). We further
assume that the assumptions (3) and (4) are satisfied. Then we have the following properties.

(A) If (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N, then f(x◦) = f(x̄)
and f(y◦) = f(ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that (f(x◦), f(y◦)) ∈ X × X is the common coupled fixed
point of the mappings {Tn}∞n=1.

Moreover, the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (e) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (f) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).

Theorem 5.7. (Satisfying the .-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the .-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1) and (2) are satisfied;

� the following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� condition (c) is satisfied, and that condition (g) or condition (h) is satisfied.

Then the mappings {Tn}∞n=1 and f have a common coupled coincidence point (x◦, y◦). We further
assume that the assumptions (3) and (4) are satisfied. Then we have the following properties.

(A) If (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N, then f(x◦) = f(x̄)
and f(y◦) = f(ȳ).
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(B) There exists (x◦, y◦) ∈ X × X such that (f(x◦), f(y◦)) ∈ X × X is the common coupled fixed
point of the mappings {Tn}∞n=1.

Moreover, the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (g) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (h) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).

Theorem 5.8. (Satisfying the /-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the /-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1) and (2) are satisfied;

� the following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� condition (c) is satisfied, and that condition (i) or condition (j) is satisfied.

Then the mappings {Tn}∞n=1 and f have a common coupled coincidence point (x◦, y◦). We further
assume that the assumptions (3) and (4) are satisfied. Then we have the following properties.

(A) If (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N, then f(x◦) = f(x̄)
and f(y◦) = f(ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that (f(x◦), f(y◦)) ∈ X × X is the common coupled fixed
point of the mappings {Tn}∞n=1.

Moreover, the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (i) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (j) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).

Remark 5.9. We remark that the only difference between Theorems 5.7 and 5.8 is the continuity
of function f .
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6. Common Coupled Fixed Points

Let X be a nonempty universal set. Recall that an element (x, y) ∈ X ×X is called a common
coupled fixed point of mappings T : X ×X → X and f : X → X when

x = f(x) = T (x, y) and y = f(y) = T (y, x).

It is clear that the common coupled fixed points are also the common coupled coincidence points.
Since the uniqueness of common coupled coincidence points was not guaranteed, in this section, we
shall provide the different arguments to prove the uniqueness of common coupled fixed points.

Theorem 6.1. (Satisfying the ./-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the ./-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1), (2), (3) and (4) are satisfied;

� for any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t), (6.1)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

(i) Suppose that condition (a) is satisfied, and that condition (a) or condition (b) is satisfied. Then
the mappings {Tn}∞n=1 and f have a unique common coupled fixed point (x◦, y◦). Moreover, the
point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (a) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the

limit f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (b) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the

limit f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X ×X according to (5.1).

(ii) Suppose that condition (b) is satisfied, and that condition (c) or condition (d) is satisfied. Then
we have the same result as part (i).

Proof . According to (5.1), we can generate two sequences {xn}∞n=1 and {yn}∞n=1 from the initial
element x0 = x∗ and y0 = y∗. Then we have

f(x∗) = f(x0) and f(y∗) = f(y0)

and
T1(x

∗, y∗) = T1(x0, y0) = f(x1) and T1(y
∗, x∗) = T1(y0, x0) = f(y1).

To prove part (i), from part (i) of Theorem 5.1, we have f(x◦) = Tn(x◦, y◦) and f(y◦) = Tn(y◦, x◦)
for all n ∈ N. We shall show that x◦ is a fixed point of f . Using (5.1), (6.1) and the nondecreasing
property of M(x, y, ·) by part (i) of Proposition 2.7, we have

M (f(xn+1), f(x◦), t) = M (Tn+1(xn, yn), Tn(x◦, y◦), t)

≥M

(
f(xn), f(x◦),

t

kn+1,n

)
∗M

(
f(yn), f(y◦),

t

kn+1,n

)
≥M

(
f(xn), f(x◦),

t

k

)
∗M

(
f(yn), f(y◦),

t

k

)
(6.2)
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and

M (f(yn+1), f(y◦), t) = M (Tn+1(yn, xn), Tn(y◦, x◦), t)

≥M

(
f(yn), f(y◦),

t

kn+1,n

)
∗M

(
f(xn), f(x◦),

t

kn+1,n

)
≥M

(
f(yn), f(y◦),

t

k

)
∗M

(
f(xn), f(x◦),

t

k

)
. (6.3)

Therefore we obtain

1 ≥M(f(xn+1), f(x◦), t)

≥M

(
f(xn), f(x◦),

t

k

)
∗M

(
f(yn), f(y◦),

t

k

)
(by (6.2))

≥
[
M

(
f(xn−1), f(x◦),

t

k2

)
∗M

(
f(yn−1), f(y◦),

t

k2

)]
∗
[
M

(
f(xn−1), f(x◦),

t

k2

)
∗M

(
f(yn−1), f(y◦),

t

k2

)]
(by (6.2) and (6.3))

=

[
∗M

(
f(xn−1), f(x◦),

t

k2

)]2
∗
[
∗M

(
f(yn−1), f(y◦),

t

k2

)]2
≥ · · · ≥

[
∗M

(
f(x1), f(x◦),

t

kn

)]2n−1

∗
[
∗M

(
f(y1), f(y◦),

t

kn

)]2n−1

(by repeating to use (6.2) and (6.3))

≥
[
M

(
f(x1), f(x◦),

t

kn

)]2n−1

∗
[
M

(
f(y1), f(y◦),

t

kn

)]2n−1

(by the assumption (∗a)2
n−1 ≥ a2

n−1
and the increasing property of t-norm)

≥
[
M

(
f(x1), f(x◦),

t

kn

)]2n
∗
[
M

(
f(y1), f(y◦),

t

kn

)]2n
(6.4)

(since M(x, y, t) ≤ 1 for any x, y ∈ X and t > 0),

which is equivalent to

1 ≥M(f(xn+1), f(x◦), t) ≥
[
M

(
f(x1), f(x◦),

t

klog2 n

)]n
∗
[
M

(
f(y1), f(y◦),

t

klog2 n

)]n
. (6.5)

Since M satisfies the canonical condition, we have

lim
t→∞

M(x, y, t) = 1 (6.6)

for any fixed x, y ∈ X. Let

ρ(α) = M

(
f(x1), f(x◦),

t

klog2 α

)
.
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Since 0 < k < 1, by (6.6), we have ρ(α)→ 1 as α→∞. Therefore we obtain

lim
n→∞

[
M

(
f(x1), f(x◦),

t

klog2 n

)]n
= lim

n→∞
[ρ(n)]n = lim

n→∞
exp [n · ln ρ(n)] = exp

[
lim
n→∞

n
1

ln ρ(n)

]

= exp

[
lim
n→∞

(
− 1

1
(ln ρ(n))2

· 1
ρ(n)
· ρ′(n)

)]
(using the assumption ρ′(α) 6= 0 and the l’Hospital’s rule)

= 1 (6.7)

and

lim
n→∞

[
M

(
f(y1), f(y◦),

t

klog2 n

)]n
= 1. (6.8)

Since

M

(
f(x1), f(x◦),

t

klog2 n

)
≤ 1 and M

(
f(y1), f(y◦),

t

klog2 n

)
≤ 1,

from (6.7) and (6.8), it follows that the sequences converge to 1 from the left. Using the left-continuity
of t-norm at 1 and part (ii) of Proposition 2.2, we obtain

lim
n→∞

[
M

(
f(x1), f(x◦),

t

klog2 n

)]n
∗
[
M

(
f(y1), f(y◦),

t

klog2 n

)]n
= 1 ∗ 1 = 1.

From (6.5), we obtain
lim
n→∞

M (f(xn+1), f(x◦), t) = 1. (6.9)

We can similarly obtain
lim
n→∞

M (f(x◦), f(xn+1), t) = 1. (6.10)

We consider the following cases.

� Suppose that condition (a) is satisfied. From (5.10), since f(xn)
M.

−→ x◦, i.e.,

lim
n→∞

M (f(xn+1), x
◦, t) = 1, (6.11)

the ./-triangle inequality says that

M (f(x◦), x◦, 2t) ≥M (f(x◦), f(xn+1), t) ∗M (f(xn+1), x
◦, t) .

Using the left-continuity of t-norm ∗ and (6.10) and (6.11), we obtain M (f(x◦), x◦, 2t) = 1 for
all t > 0 by taking n→∞.

� Suppose that condition (b) is satisfied. From (5.15), since f(xn)
M/

−→ x◦, i.e.,

lim
n→∞

M (x◦, f(xn+1), t) = 1. (6.12)

The triangle inequality says that

M (x◦, f(x◦), 2t) ≥M (x◦, f(xn+1), t) ∗M (f(xn+1), f(x◦), t) .

Using the left-continuity of t-norm ∗ and (6.9) and (6.12), we obtain M (x◦, f(x◦), 2t) = 1 for
all t > 0 by taking n→∞.
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The above two cases show that
x◦ = f(x◦) = Tn(x◦, y◦)

for all n ∈ N. We can similarly obtain

y◦ = f(y◦) = Tn(y◦, x◦)

for all n ∈ N.
To prove the uniqueness, let (x̄, ȳ) be another common coupled fixed point of f and {Tn}∞n=1, i.e.,

x̄ = f(x̄) = Tn(x̄, ȳ) and ȳ = f(ȳ) = Tn(ȳ, x̄) for all n ∈ N. Then, using the nondecreasing property
of M(x, y, ·), we have

M(x◦, x̄, t) = M(Tn(x◦, y◦), Tn(x̄, ȳ), t)

≥M

(
f(x◦), f(x̄),

t

knn

)
∗M

(
f(y◦), f(ȳ),

t

knn

)
(by (6.1))

≥M

(
f(x◦), f(x̄),

t

k

)
∗M

(
f(y◦), f(ȳ),

t

k

)
= M

(
x◦, x̄,

t

k

)
∗M

(
y◦, ȳ,

t

k

)
(6.13)

and

M(y◦, ȳ, t) = M(Tn(y◦, x◦), Tn(ȳ, x̄), t)

≥M

(
f(y◦), f(ȳ),

t

knn

)
∗M

(
f(x◦), f(x̄),

t

knn

)
≥M

(
f(y◦), f(ȳ),

t

k

)
∗M

(
f(x◦), f(x̄),

t

k

)
= M

(
y◦, ȳ,

t

k

)
∗M

(
x◦, x̄,

t

k

)
. (6.14)

Therefore we obtain

1 ≥M(x◦, x̄, t)

≥M

(
x◦, x̄,

t

k

)
∗M

(
y◦, ȳ,

t

k

)
(by (6.13))

≥
[
M

(
x◦, x̄,

t

k2

)
∗M

(
y◦, ȳ,

t

k2

)]
∗
[
M

(
x◦, x̄,

t

k2

)
∗M

(
y◦, ȳ,

t

k2

)]
(by (6.13) and (6.14))

=

[
∗M

(
x◦, x̄,

t

k2

)]2
∗
[
∗M

(
y◦, ȳ,

t

k2

)]2
≥ · · · ≥

[
∗M

(
x◦, x̄,

t

kn

)]2n−1

∗
[
∗M

(
y◦, ȳ,

t

kn

)]2n−1

(by repeating to use (6.13) and (6.14))

≥
[
M

(
x◦, x̄,

t

kn

)]2n−1

∗
[
M

(
y◦, ȳ,

t

kn

)]2n−1

(by the assumption (∗a)2
n−1 ≥ a2

n−1
and the increasing property of t-norm)

≥
[
M

(
x◦, x̄,

t

kn

)]2n
∗
[
M

(
y◦, ȳ,

t

kn

)]2n
(since M(x, y, t) ≤ 1 for any x, y ∈ X and t > 0),

(6.15)

which is equivalent to

1 ≥M(x◦, x̄, t) ≥
[
M

(
x◦, x̄,

t

klog2 n

)]n
∗
[
M

(
y◦, ȳ,

t

klog2 n

)]n
. (6.16)
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We can similarly obtain

lim
n→∞

[
M

(
x◦, x̄,

t

klog2 n

)]n
= 1 =

[
M

(
y◦, ȳ,

t

klog2 n

)]n
.

Therefore, from (6.16), we have M(x◦, x̄, t) = 1 for all t > 0, which implies x◦ = x̄. We can similarly
show that M(y◦, ȳ, t) = 1 for all t > 0, which also implies y◦ = ȳ. This proves the uniqueness.
Finally, part (ii) can be obtained by applying part (ii) of Theorem 5.1 to the above argument. This
completes the proof. �

Remark 6.2. The inequality (6.1) is based on the t-norm. If the t-norm in (6.1) is replaced by the
arithmetic product as follows

M(T (x, y), T (u, v), kt) ≥M(f(x), f(u), t) ·M(f(y), f(v), t),

then we can simplify the sufficient conditions. We omit the detailed discussion.

Theorem 6.3. (Satisfying the ./-Triangle Inequality: Converse-Contractive Inequality).
Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M satisfies the canonical
condition and the ./-triangle inequality. Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1), (2), (3) and (4) are satisfied;

� for any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

(i) Suppose that condition (a) is satisfied, and that condition (a◦) or condition (b◦) is satisfied.
Then the mappings {Tn}∞n=1 and f have a unique common coupled fixed point (x◦, y◦). Moreover,
the point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (a◦) is satisfied, then the point (x◦, y◦) ∈ X×X can be obtained by taking the

limit f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (b◦) is satisfied, then the point (x◦, y◦) ∈ X×X can be obtained by taking the

limit f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X ×X according to (5.1).

(ii) Suppose that condition (b) is satisfied, and that condition (c◦) or condition (d◦) is satisfied.
Then we have the same result as part (i).

Theorem 6.4. (Satisfying the .-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the .-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1), (2), (3) and (4) are satisfied;



Common coupled coincidence points in fuzzy semi-metric spaces 12 (2021) No. 12, 629-663 661

� the following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� Suppose that condition (c) is satisfied, and that condition (g) or condition (h) is satisfied.

Then the mappings {Tn}∞n=1 and f have a unique common coupled fixed point (x◦, y◦). Moreover, the
point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (g) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (h) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).

Theorem 6.5. (Satisfying the /-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the /-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1), (2), (3) and (4) are satisfied;

� the following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� Suppose that condition (c) is satisfied, and that condition (i) or condition (j) is satisfied.

Then the mappings {Tn}∞n=1 and f have a unique common coupled fixed point (x◦, y◦). Moreover, the
point (x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (i) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (j) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).
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Theorem 6.6. (Satisfying the �-Triangle Inequality). Let (X,M) be a fuzzy semi-metric space
along with a t-norm ∗ such that M satisfies the canonical condition and the �-triangle inequality.
Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1), (2), (3) and (4) are satisfied;

� for any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(x), f(u), t) ∗M(f(y), f(v), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

� Suppose that condition (c) is satisfied, and that condition (e◦) or condition (f◦) is satisfied.

Then the mappings T and f have a unique common coupled fixed point (x◦, y◦). Moreover, the point
(x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (e◦) is satisfied, then the point (x◦, y◦) ∈ X×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (f◦) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).

Theorem 6.7. (Satisfying the �-Triangle Inequality: Converse-Contractive Inequality).
Let (X,M) be a fuzzy semi-metric space along with a t-norm ∗ such that M satisfies the canonical
condition and the �-triangle inequality. Suppose that the following conditions are satisfied:

� the assumptions (I),(II),(1), (2), (3) and (4) are satisfied;

� the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥M(f(u), f(x), t) ∗M(f(v), f(y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k;

� Suppose that condition (c) is satisfied, and that condition (e) or condition (f) is satisfied.

Then the mappings T and f have a unique common coupled fixed point (x◦, y◦). Moreover, the point
(x◦, y◦) ∈ X ×X can be obtained as follows.

� If condition (e) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M.

−→ x◦ and f(yn)
M.

−→ y◦;

� If condition (f) is satisfied, then the point (x◦, y◦) ∈ X ×X can be obtained by taking the limit

f(xn)
M/

−→ x◦ and f(yn)
M/

−→ y◦,

where the sequences {xn}∞n=1 and {yn}∞n=1 are generated from the initial element (x0, y0) = (x∗, y∗) ∈
X ×X according to (5.1).
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