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Abstract

This work is devoted to study of the stability analysis of generalized fractional nonlinear system
including the regularized Prabhakar derivative. We present several criteria for the generalized Mittag-
Leffler stability and the asymptotic stability of this system by using the Lyapunov direct method.
Further, we provide two test cases to illustrate the effectiveness of results. We apply the numerical
method to solve the generalized fractional system with the regularized Prabhakar fractional systems
and reveal asymptotic stability behavior of the presented systems by employing numerical simulation.
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1. Introduction

In the recent years, fractional nonlinear differential systems (FNDSs) and assessing their stability
have catched a great attention, for example, [12, 13, 14, 26, 27, 36, 41]. However, comparing to
that of the integer order systems, the stability analysis of FNDSs is much more complex and only
a few works are available. One of the available technique to examine the stability of FNDSs is the
Lyapunov direct method (also is called the second method of Lyapunov). The method provides a
very effective approach to analyze the stability of nonlinear systems without explicitly solving the
differential equations and generalizes the idea that the system is stable if there are some Lyapunov
function candidates for the system [4]. This method allows one to evaluate the asymptotic stability
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and the Mittag-Leffler stability for FNDSs. Some authors [27, 26, 40] investigated the asymptotic
stability of the following FNDS with the Caputo derivative by using the Lyapunov direct method

C
t0
Dα
t x(t) = f(t, x(t)), x(t0) = x0,

where 0 < α < 1, x(t), f(t, x) ∈ Rn and t represents the time.
In [16, 24, 34], authors generalized the fractional Riemann-Liouville (Caputo) integral and deriva-

tive to the fractional Prabhakar integral and derivative with the generalized Mittag-Leffler function
(Prabhakar function [34])

Eγ
ρ,µ(z) =

∞∑
k=0

Γ(γ + k)

Γ(γ)Γ(ρk + µ)

zk

k!
, γ, ρ, µ ∈ C,<(ρ) > 0,

in kernel. See more details of the generalized Mittag-Leffler function in [5, 7, 8, 9, 11, 14, 16, 23, 25,
29, 33, 35, 37, 38].

The Prabhakar derivative has fundamental applications in the applied mathematics [3, 8, 9, 10,
11, 12, 14, 16, 33], the time-evolution of polarization processes [16, 17, 21, 33], the fractional Poisson
process [16], the fractional Maxwell model in linear viscoelasticity [19], the generalized model of
particle deposition in porous media [39] and the generalized reaction-diffusion equations [1]. The
great importance for considering the Prabhakar derivative and integral is related to the description
of relaxation and response in the anomalous dielectrics of the Havriliak-Negami models [15, 30, 18, 31].

In the present paper, by using the Lyapunov function, we intend to investigate the stability of
the following generalized FNDS with the regularized Prabhakar derivative

CDγ
ρ,µ,ω,0+x(t) = Ax(t) + f(t, x(t)), x(t0) = x0, (1.1)

where γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ, x(t) ∈ Rn is a state vector, A ∈ Rn×n is a constant matrix
and f(t, x) ∈ Rn with f(t, 0) = 0. Our aim is to give several criteria for the generalized Mittag-Leffler
stability and the asymptotic stability.

The paper is organized as follows. In Section 2, some definitions and properties of the generalized
fractional calculus including the regularized Prabhakar derivative are given. In Section 3, we provide
several criteria for the generalized Mittag-Leffler stability and the asymptotic stability by using
the Lyapunov direct method in the sense of the regularized Prabhakar derivative. In Section 4, a
numerical method is presented for solving the differential equations with the generalized fractional
derivative. In order to illustrate the applications of our result, in Section 5, two examples are provided
and the numerical values of examples are depicted. In Section 6, the concluding remarks are given.

2. Preliminaries

2.1. The generalized fractional calculus

Definition 2.1. For f ∈ L1[0, b], the Prabhakar integral operator with generalized Mittag-Leffler
function in its kernel is defined as follows [16]

Eγ
ρ,µ,ω,0+f(x) =

∫ x

0

(x− u)µ−1Eγ
ρ,µ

(
ω(x− u)ρ

)
f(u)du, 0 < x < b ≤ ∞, (2.1)

where ρ, µ, ω, γ ∈ C,<(ρ),<(µ) > 0.
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Definition 2.2. For f ∈ L1[0, b], the Prabhakar derivative is defined by [16]

Dγ
ρ,µ,ω,0+f(x) =

dm

dxm
E−γρ,m−µ,ω,0+f(x), 0 < x < b ≤ ∞, (2.2)

where ρ, µ, ω, γ ∈ C,<(ρ),<(µ) > 0. Also, the regularized Caputo counterpart for f ∈ ACm[0, b], is
presented by

CDγ
ρ,µ,ω,0+f(x) = E−γρ,m−µ,ω,0+

dm

dxm
f(x)

= Dγ
ρ,µ,ω,0+f(x)−

m−1∑
k=0

xk−µE−γρ,k−µ+1(ωx
ρ)f (k)(0+). (2.3)

Remark 2.3. In case γ = 0, the Prabhakar integral operator (2.1) coincides with the Riemann-
Liouville fractional integral of order µ. Thus, the Prabhakar derivative and the regularized Prabhakar
derivative (2.2) and (2.3) generalize the Riemann-Liouville and the Caputo fractional derivatives of
order µ, respectively.

2.2. Properties of the regularized Prabhakar derivative

We now establish several important lemmas and theorems of the regularized Prabhakar derivative
which will be used for our main results.

Lemma 2.4. Let CDγ
ρ,µ,ω,0+x(t) ≥ CDγ

ρ,µ,ω,0+y(t) and x(0) = y(0), where γ, µ, ω ∈ (0, 1), 0 < ρ < 2,
ργ < µ. Then, x(t) ≥ y(t) for t > 0.

Proof . It is a straightforward result from CDγ
ρ,µ,ω,0+x(t) ≥ CDγ

ρ,µ,ω,0+y(t) that there exists a non-
negative function n(t) satisfying

CDγ
ρ,µ,ω,0+x(t) = n(t) + CDγ

ρ,µ,ω,0+y(t). (2.4)

Applying the Laplace transform on the both sides of (2.4) and using the Laplace transform of
regularized Prabhakar derivative [10], we obtain

s−ργ+µ

(sρ − ω)−γ
X(s)− s−ργ+µ−1

(sρ − ω)−γ
x(0) = N(s) +

s−ργ+µ

(sρ − ω)−γ
Y (s)− s−ργ+µ−1

(sρ − ω)−γ
y(0).

We take into account x(0) = y(0) and use the inverse Laplace transform to get

x(t) = Eγ
ρ,−µ,ω,0+n(t) + y(t).

Since n(t) ≥ 0, x(t) ≥ y(t). �

Lemma 2.5. Assume that γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ and x(t) ∈ Rn is a vector of
differentiable functions. If a continuous function V : [t0,∞)× Rn → R satisfies

CDγ
ρ,µ,ω,t0+V (t, x(t)) ≤ −βV (t, x(t)), β ∈ R+ − {0}, (2.5)

then

V (t, x(t)) ≤ V (t0, x(t0))
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−βω(t− t0)ρ).
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Proof . It is a straightforward result from (2.5) that there exists a nonnegative function N(t)
satisfying

CDγ
ρ,µ,ω,t0+V (t, x(t)) + βV (t, x(t)) +N(t) = 0.

By applying the Laplace transform on the above equation, we have

sµ(1− ωs−ρ)γV (s)− sµ−1(1− ωs−ρ)γV (t0, x(t0)) + βV (s) +N(s) = 0,

where V (s) and N(s) are the Laplace transforms of V (t, x(t)) and N(t), respectively. One can easily
obtain

V (s) =
s−ργ+µ−1(sρ − ω)γV (t0, x(t0))−N(s)

s−ργ+µ(sρ − ω)γ + β

=
s−1V (t0, x(t0))

1 + βsργ−µ(sρ − ω)−γ
− N(s)sργ−µ(sρ − ω)−γ

1 + βsργ−µ(sρ − ω)−γ

= V (t0, x(t0))
∞∑
k=0

(−β)k
s(ργ−µ)k−1

(sρ − ω)γk
−N(s)

∞∑
k=0

(−β)k
sργ(k+1)−µ(k+1)

(sρ − ω)γ(k+1)
. (2.6)

Taking the inverse Laplace transform of (2.6), we get

V (t, x(t)) = V (t0, x(t0))
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−βω(t− t0)ρ)

−N(t) ∗
∞∑
k=0

(t− t0)µ(k+1)−1E
γ(k+1)
ρ,µ(k+1)(−βω(t− t0)ρ),

where ∗ indicates the Laplace convolution integral given by

(f ∗ g)(t) =

∫ t

0

f(t− ξ)g(ξ)dξ.

Since both (t− t0)µ(k+1)−1 and E
γ(k+1)
ρ,µ(k+1)(−βω(t− t0)ρ) are nonnegative functions, we deduce

V (t, x(t)) ≤ V (t0, x(t0))
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−βω(t− t0)ρ),

and the proof is completed. �

Lemma 2.6. Let γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ and x(t) ∈ R be a differentiable function.
Then, for any time instant t > t0, the following inequality holds

1

2
CDγ

ρ,µ,ω,t0+x
2(t) ≤ x(t)CDγ

ρ,µ,ω,t0+x(t). (2.7)

Proof . According to the relation (2.3), the inequality (2.7) is equivalent to∫ t

t0

(t− u)−µE−γρ,1−µ
(
ω(t− u)ρ

)
[x(t)− x(u)]x′(u)du ≥ 0. (2.8)
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Therefore, it is sufficient to show that the inequality (2.8) is true. By letting z(u) = x(t)− x(u), the
left-hand side of (2.8) can be written as∫ t

t0

(t− u)−µE−γρ,1−µ
(
ω(t− u)ρ

)
[x(t)− x(u)]x′(u)du

= −
∫ t

t0

(t− u)−µE−γρ,1−µ
(
ω(t− u)ρ

)
z(u)z′(u)du. (2.9)

Integrating by parts from (2.9), and then using( d
dx

)n[
xµ−1Eγ

ρ,µ(ωxρ)
]

= xµ−n−1Eγ
ρ,µ−n(ωxρ), n ∈ N,

we get ∫ t

t0

(t− u)−µE−γρ,1−µ
(
ω(t− u)ρ

)
z(u)z′(u)du

= −1

2

[
z2(u)(t− u)−µE−γρ,1−µ

(
ω(t− u)ρ

)]
|u=t +

1

2

[
z0

2(t− t0)−µE−γρ,1−µ
(
ω(t− t0)ρ

)]
+

1

2

∫ t

t0

z2(u)(t− u)−µ−1E−γρ,1−µ
(
ω(t− u)ρ

)
du. (2.10)

Now, we consider the following limit for the first term of right-hand side of (2.10) and present

lim
u→t

1

2

[
z2(u)(t− u)−µE−γρ,1−µ

(
ω(t− u)ρ

)]
=

1

2
lim
u→t

[
(x(t)2 − 2x(t)x(u) + x(t)2)(t− u)−µE−γρ,1−µ

(
ω(t− u)ρ

)]
.

By employing the L’Hopital rule, we conclude

1

2
lim
u→t

[
(x(t)2 − 2x(t)x(u) + x(t)2)(t− u)−µE−γρ,1−µ

(
ω(t− u)ρ

)]
= lim

u→t

[
(x(t)x′(u)− x(u)x′(u))(t− u)−µ−1E−γρ,−µ

(
ω(t− u)ρ

)]
= 0.

Hence,

1

2

[
z0

2(t− t0)−µE−γρ,1−µ
(
ω(t− t0)ρ

)]
+

1

2

∫ t

t0

z2(u)(t− u)−µ−1E−γρ,1−µ
(
ω(t− u)ρ

)
du ≥ 0,

and this confirms the inequality (2.8). �

Remark 2.7. It is clear that if x(t) ∈ Rn is a vector of differentiable functions, then for any time
instant t > t0

1

2
CDγ

ρ,µ,ω,t0+x
T (t)x(t) ≤ xT (t)CDγ

ρ,µ,ω,t0+x(t). (2.11)

This can be deduced by employing Lemma 2.6 and decomposing (2.11) into a sum of scalar products.

Theorem 2.8. [2]. Let P ∈ Rn×n be a real symmetric matrix. Then, there exists an orthogonal
matrix B ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n such that

P = BΛBT .
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Lemma 2.9. Let x(t) ∈ Rn be a vector of differentiable functions and P ∈ Rn×n be a constant,
square, symmetric and positive definite matrix. Then, for any time instant t ≥ t0, the following
relationship holds

1

2
CDγ

ρ,µ,ω,t0+(xT (t)Px(t)) ≤ xT (t)PCDγ
ρ,µ,ω,t0+x(t),

where γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ.

Proof . The proof is similar to that of Lemma 4 in [6] by employing Theorem 2.8 and Remark 2.7.
�

Remark 2.10. Lemma 2.9 also holds if P is a symmetric and positive semi-definite matrix.

3. Lyapunov direct method for the stability analysis of generalized FNDS with the
regularized Prabhakar derivative

We now present several criteria for the generalized Mittag-Leffler and the asymptotic stability by
using the Lyapunov direct method.

Definition 3.1. x0 is an equilibrium point of the regularized Prabhakar FNDS (1.1), if and only if
A(x0) + f(t, x0) = 0.

Definition 3.2. The regularized Prabhakar FNDS (1.1) is stable for any initial value x0 and t > 0,
if there exists ε > 0 such that ‖ x(t) ‖< ε. The system is asymptotically stable if it is stable and
limt→∞ ‖ x(t) ‖= 0.

Remark 3.3. Without loss of generality, we suppose the equilibrium point is x0 = 0. Otherwise,
an equilibrium point x̃ 6= 0 can be transformed to the origin by the change of variables y = x − x̃.
Therefore, the regularized Prabhakar derivative of y is given by

CDγ
ρ,µ,ω,0+y = CDγ

ρ,µ,ω,0+(x− x̃) = Ax+ f(t, x) = A(y + x̃) + f(t, y + x̃) = By + g(t, y),

where B(0) + g(t, 0) = 0. For the new variable y, the system has equilibrium at the origin.

Definition 3.4. The function f : Rn → Rm is the Lipschitz continuous if there exists a constant L
such that

‖ f(t, x)− f(t, y) ‖≤ L ‖ x− y ‖,

for all x, y ∈ Rn.

Lemma 3.5. ((S-procedure)[28]). Let Ω0(z) and Ω1(z) be two arbitrary quadratic forms over Rs.
Then Ω0(z) < 0 if and only if there exists a scalar ζ ≥ 0 such that

Ω0(z)− ζΩ1(z) < 0, ∀z ∈ Rs − {0},

for Ω1(z) ≤ 0.

Definition 3.6. [22] A continuous function α : [0, t) → [0,∞) belongs to class-K if it is strictly
increasing and α(0) = 0.
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Definition 3.7. The trivial solution of (1.1) is the generalized Mittag-Leffler stable if

‖ x(t) ‖≤
[
m(x(t0))

∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−σω(t− t0)ρ)

]α
,

where t0 is the initial time, σ ≥ 0, γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ, α > 0. The function m(x) ≥ 0
with m(0) = 0 is the locally Lipschitz with the Lipschitz constant m0.

Corollary 3.8. According to the following asymptotic behaviors [30, 32]

tµ−1Eγ
ρ,µ(−λtρ) ∼ λ−γ

tµ−ργ−1

Γ(µ− ργ)
, 0 < ρ < 2, 0 < ργ < µ ≤ 1, λ > 0, t→∞, (3.1)

Eρ(z) = −
q∑

k=1

z−k

Γ(1− ρk)
+O(|z−1−q|), 0 < ρ < 2,

ρπ

2
< θ < min{π, ρπ}, θ ≤ | arg(z)| ≤ π, z →∞,

(3.2)
the term

∑∞
k=0(t− t0)µkE

γk
ρ,µk+1(−σω(t− t0)ρ) tends to zero as t→∞. Thus, the generalized Mittag-

Leffler stability implies the asymptotic stability.

Theorem 3.9. Let x = 0 be an equilibrium point for the system (1.1) and D ⊂ Rn be a domain
containing the origin. Also, let V (t, x(t)) : [0,∞)× D→ R be a continuously differentiable function
and locally Lipschitz with respect to x such that

α1 ‖ x ‖a≤ V (t, x(t)) ≤ α2 ‖ x ‖ab, (3.3)
CDγ

ρ,µ,ω,0+V (t, x(t)) ≤ −α3 ‖ x ‖ab, t ≥ 0, x ∈ D, (3.4)

where γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ and α1, α2, α3, a, b are arbitrary positive constants. Then
x = 0 is stable in the sense of the generalized Mittag-Leffler function. If the assumptions hold globally
on Rn, then x = 0 is globally stable in the sense of the generalized Mittag-Leffler function.

Proof . Using (3.3) and (3.4), one gets

CDγ
ρ,µ,ω,0+V (t, x(t)) ≤ −α3

α2

V (t, x(t)). (3.5)

Evidently, (3.5) implies that there exists a non-negative function N(t) such that

CDγ
ρ,µ,ω,0+V (t, x(t)) +N(t) +

α3

α2

V (t, x(t)) = 0. (3.6)

By applying the Laplace transform operator on the equation (3.6) and taking into account V (s) =
L{V (t, x(t))} and N(s) = L{N(t)}, we get

V (s) =
s−ργ+µ−1(sρ − ω)γV (0, x(0))−N(s)

s−ργ+µ(sρ − ω)γ + α3

α2

. (3.7)

Obviously, if x(0) = 0 then V (0, x(0)) = 0 and x = 0 is a solution of (1.1). If x(0) 6= 0 then
V (0, x(0)) > 0. By applying the inverse Laplace transform on (3.7), we obtain

V (t, x(t)) = V (0, x(0))
∞∑
k=0

tµkEγk
ρ,µk+1(−

α3

α2

ωtρ)

−N(t) ∗
∞∑
k=0

tµ(k+1)−1E
γ(k+1)
ρ,µ(k+1)(−

α3

α2

ωtρ).
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Since both functions tµ(k+1)−1 and E
γ(k+1)
ρ,µ(k+1)(−βωtρ) are nonnegative, we have

V (t, x(t)) ≤ V (0, x(0))
∞∑
k=0

tµkEγk
ρ,µk+1(−βωt

ρ). (3.8)

Accordingly, the relations (3.3) and (3.8) yield

‖ x(t) ‖≤ [
V (0, x(0))

α1

∞∑
k=0

tµkEγk
ρ,µk+1(−

α3

α2

ωtρ)]
1
a ,

for x(0) 6= 0, V (0,x(0))
α1

> 0. So, V (0,x(0))
α1

= 0 holds if and only if x(0) = 0 and α3

α2
ω ≥ 0. Hence, from

Definition 3.7 we conclude the generalized Mittag-Leffler stability of regularized Prabhakar FNDS
(1.1). �

Theorem 3.10. Let x = 0 be an equilibrium point for the regularized Prabhakar FNDS (1.1) and
suppose that there exists a Lyapunov function V (t, x(t)) and class-K functions αi(i = 1, 2, 3) satisfying

α1(‖ x ‖) ≤ V (t, x(t)) ≤ α2(‖ x ‖),
CDγ

ρ,µ,ω,0+V (t, x(t)) ≤ −α3(‖ x ‖), t ≥ 0, x ∈ D,

where γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ. Then, the system (1.1) is asymptotically stable.

Proof . The proof is similar to that of Theorem 6.2 in [26]. In this sense, we consider Definition
3.1, Lemma 2.4 and Theorem 3.9. �
Now, by using the Lyapunov function, we consider the generalized Mittag-Leffler stability and the
asymptotic stability of system (1.1).

For a real matrix A, ‖ A ‖=
√
λmax(ATA) denotes the spectral norm of matrix A. In addition,

λmax(A) and λmin(A) denote the maximal and the minimal eigenvalue of A, respectively. Also, A > 0
(or A < 0) means the symmetric matrix A is positive definite (or negative definite).

Theorem 3.11. Let f be the Lipschitz continuous. Then, the trivial solution of regularized Prab-
hakar FNDS (1.1) is generalized Mittag-Leffler stable if there exists a positive definite matrix P such
that for all (t, x) ∈ R× (Rn − {0}), the following linear matrix inequality holds

[Ax+ f(t, x)]TPx+ xTP [Ax+ f(t, x)] < 0. (3.9)

Proof . We choose V (t) = xT (t)Px(t) as a Lyapunov function candidate. By using Lemma 2.9 and
the relation (3.9), we get

CDγ
ρ,µ,ω,t0+V (t) ≤ 2xT (t)PCDγ

ρ,µ,ω,t0+x(t)

= [Ax(t) + f(t, x(t))]TPx(t) + xT (t)P [Ax(t) + f(t, x(t))] < 0. (3.10)

Since f is the Lipschitz continuous, we have fTf−L2xTx ≤ 0. According to Lemma 3.5, there exists
a constant ζ > 0 such that

[Ax(t) + f(t, x(t))]TPx(t) + xT (t)P [Ax(t) + f(t, x(t))]− ζ[fTf − L2xTx] < 0,

or equivalently (xT , fT )Ψζ(x
T , fT )T < 0, where

Ψζ =

(
ATP + PA+ ζL2A P

P −ζI

)
.
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It is clear that Ψζ < 0. Setting λmin(−Ψζ) = λ0 > 0, we get

[Ax(t) + f(t, x(t))]TPx(t) + xT (t)P [Ax(t) + f(t, x(t))]− ζ[fTf − L2xTx]

≤ −λ0(‖ x ‖2 + ‖ f(t, x) ‖2) < 0. (3.11)

Since P > 0, we have
V (t) = xT (t)Px(t) ≤ λmaxP ‖ x ‖2 . (3.12)

Accordingly, the relations (3.10), (3.11) and (3.12) yield

CDγ
ρ,µ,ω,t0+V (t) ≤ −λ0λmax(P )−1V (t).

Hence from Lemma 2.5, we obtain

V (t) ≤ V (t0, x(t0))
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−λ0λmax(P )−1ω(t− t0)ρ)

≤ λmax(P ) ‖ x0 ‖2
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−λ0λmax(P )−1ω(t− t0)ρ).

Subsequently, we have

λmin(P ) ‖ x ‖2≤ V (t) ≤ λmax(P ) ‖ x0 ‖2
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−λ0λmax(P )−1ω(t− t0)ρ).

Finally

‖ x ‖≤
√
λmin(P )−1λmax(P ) ‖ x0 ‖

(
∞∑
k=0

(t− t0)µkEγk
ρ,µk+1(−λ0λmax(P )−1ω(t− t0)ρ)

) 1
2

.

Therefore, according to Definition 3.7, the trivial solution of Prabhakar FNDS (1.1) is stable in the
sense of the generalized Mittag-Leffler function. �

Theorem 3.12. Let f be the Lipschitz continuous. If there exists a positive definite matrix P such
that

ATP + PA+ (L2+ ‖ P ‖2)I < 0,

where L is the Lipschitz constant, then the trivial solution of regularized Prabhakar FNDS (1.1) is
asymptotically stable.

Proof . We set V (t) = xT (t)Px(t) as a Lyapunov function candidate. Employing regularized
Prabhakar fractional derivative operator CDγ

ρ,µ,ω,t0+ on the Lyapunov function V (t) = xT (t)Px(t)
and using Lemma 2.9, we get

CDγ
ρ,µ,ω,t0+V (t) ≤ 2xT (t)PCDγ

ρ,µ,ω,t0+x(t)

= [Ax(t) + f(t, x(t))]TPx(t) + xT (t)P [Ax(t) + f(t, x(t))]

= xT (t)
(
ATP + PA

)
x(t) + 2xTPf(t, x(t)).



674 Eshaghi, Ansari, Khoshsiar Ghaziani

Since f is the Lipschitz continuous, we have

CDγ
ρ,µ,ω,t0+V (t) ≤ xT (t)

(
ATP + PA

)
x(t) + 2xTPf(t, x(t))

≤ xT (t)
(
ATP + PA

)
x(t) + xT (t)P 2x(t) + fT (t, x(t))f(t, x(t))

≤ xT (t)
(
ATP + PA

)
x(t) + (L2+ ‖ P ‖2) ‖ x(t) ‖2

≤ xT (t)
[
ATP + PA+ (L2+ ‖ P ‖2)I

]
x(t) < 0.

Therefore, according to Theorem 3.10, the system (1.1) is asymptotically stable and the proof is
completed. �

4. Numerical simulation

In [12], Eshaghi et al. proposed a numerical method to solve the regularized Prabhakar FNDS
by transforming the original system into a system of ordinary differential equations of first order as
follows

x′(t) =
1

Ω

[
Ax(t) + f(t, x(t))− Φx(t) +Q2t

−µx(0)

+
M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

V̂p(x)(t)

tp+µ−1

]
,

where

Ω = (Q1 +R1)t
1−µ, Φ = (Q2 −R2)t

−µ,

Q1 =
M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!
, R1 =

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!
,

Q2 =
M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 1)k!
, R2 =

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!
,

V̂p(x)(t) = −(p− 1)

∫ t

0

ξp−2x(ξ)dξ, p = 2, 3, · · · ,

with the initial condition x(t0) = x0.
We now apply this numerical method to solve the following systems and find numerical solutions by
using the well known fourth order Runge-Kutta method. In these systems, we consider the generalized
Mittag-Leffler stability and the asymptotic stability of some regularized Prabhakar FNDSs and depict
numerical values of these systems for the different parameters.

Example 4.1. Let us consider the following regularized Prabhakar FNDS{
CDγ

ρ,µ,ω,t0+x(t) = −3x(t) + y(t) + sin x(t),
CDγ

ρ,µ,ω,t0+y(t) = x(t)− 2y(t) + sin y(t),
(4.1)

with the initial conditions x(t0) = x0, y(t0) = y0 and γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ. We choose
P = I2, V (t) = xT (t)x(t) and ζ = 1. The function f is clearly a Lipschitz continuous function with
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the Lipschitz constant L = 1 and

CDγ
ρ,µ,ω,t0+V (t) ≤ 2xT (t)CDγ

ρ,µ,ω,t0+x(t)

= [Ax(t) + f(t, x(t))]Tx(t) + xT (t)[Ax(t) + f(t, x(t))]

= −6x2 + 4xy − 4x2 + 2x sinx+ 2y sin y ≤ −4
(
x− 1

2
y
)2
− y2.

Thus, CDγ
ρ,µ,ω,t0+V (t) is negative definite and the conditions of Theorem 3.11 hold. Therefore, the

trivial solution of system (4.1) is stable in the sense of the generalized Mittag-Leffler function. Fur-
ther, the following fact

ATP + PA+ (L2+ ‖ P ‖2)I =

(
−4 2
2 −2

)
< 0,

implies that the trivial solution of system (4.1) is also asymptotically stable according to Theorem
3.12.
The numerical values of system (4.1) are presented in Figures. 1 and 2. We consider the fixed
parameters γ = 0.1, ρ = 1, µ = 0.75, ω = 0.02, h = 0.01. Figure 1 is depicted for x0 = −0.02 and
y0 = 0.04. Figure 2 is depicted for different initial conditions.

Example 4.2. Consider the following regularized Prabhakar FNDS{
CDγ

ρ,µ,ω,t0+x(t) = −5x− 10y + log(log(10 + x2)),
CDγ

ρ,µ,ω,t0+y(t) = −10x− 5y + log(log(10 + y2)),
(4.2)

with the initial conditions x(t0) = x0, y(t0) = y0 and γ, µ, ω ∈ (0, 1), 0 < ρ < 2, ργ < µ. We choose
P = I2, V (t) = xT (t)x(t) and ζ = 1. The function f is clearly the Lipschitz continuous with the
Lipschitz constant L = 1√

10
and similar to the previous example the conditions of Theorem 3.11 and

Theorem 3.12 hold. Therefore, the trivial solution of system (4.2) is the generalized Mittag-Leffler
stable and hence is asymptotically stable.
The numerical values of system (4.2) are given in Figures 3 and 4. We consider the fix set of
parameters γ = 0.6, ρ = 1, µ = 0.8, ω = 0.05, h = 0.01. Figure 3 is presented for (x0, y0) =
(−0.01, 0.06). Figure 4 is presented for the different initial conditions.

5. Concluding remarks

In this paper, we studied the stability of regularized Prabhakar FNDS (1.1) with respect to the
generalized Mittag-Leffler by means of the Lyapunov direct method. In this sense, the asymptotic
stability of regularized Prabhakar FNDS was also discussed. Further, we presented two examples
for the regularized Prabhakar FNDS to examine the analytical results. The numerical simulations
showed the asymptotical stability behaviors of the proposed systems for their equilibrium points along
with the convergence behaviors. We should mention that the proposed concept can be extended for
many dynamical systems in the applied mathematics and Engineering.

References

[1] R. Agarwal, S. Jain and RP. Agarwal, Analytic solution of generalized space time fractional reaction diffusion
equation, Fractional Differ. Calc. 7 (2017) 169–184.

[2] R. Bellman, Introduction to matrix analysis, Society for Industrial and Applied Mathematics (SIAM), USA, 1997.



676 Eshaghi, Ansari, Khoshsiar Ghaziani

Figure 1: The numerical values of system (4.1) for γ = 0.1, ρ = 1,
µ = 0.75, ω = 0.02, h = 0.01 and (x0, y0) = (−0.02, 0.04).

Figure 2: The numerical values of system (4.1)
for γ = 0.1, ρ = 1, µ = 0.75, ω = 0.02, h = 0.01
and different initial conditions.

Figure 3: The numerical values of system (4.2) for γ = 0.6, ρ = 1,
µ = 0.8, ω = 0.05, h = 0.01 and (x0, y0) = (−0.01, 0.06).

Figure 4: The numerical values of system (4.2)
for γ = 0.6, ρ = 1, µ = 0.8, ω = 0.05, h = 0.01
and different initial conditions.



Generalized Mittag-Leffler stability... 12 (2021) No. 2, 665-678 677

[3] VM. Bulavatsky, Mathematical modeling of fractional differential filtration dynamics based on models of Hilfer-
Prabhakar derivatives, Cybern. Syst. Anal. 53(2) (2017) 204–216.

[4] J. Devi, F. Mc Rae and Z. Drici, Variational Lyapunov method for fractional differential equations, Appl. Math.
Comput. 64(298) (2012) 2–9.

[5] M. D’Ovidio and F. Polito, Fractional diffusion-telegraph equations and their associated stochastic solutions,
Theory Probab. its Appl. 62(4) (2018) 552–574.

[6] MA. Duarte-Mermoud, N. Aguila-Camacho, JA. Gallegos and R. Castro-Linares, Using general quadratic Lya-
punov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer.
Simulat. 22 (2015) 650–659.

[7] S. Eshaghi and A. Ansari, Autoconvolution equations and generalized Mittag-Leffler functions, Int. J. Ind. Math.
7(4) (2015) 335–341.

[8] S. Eshaghi and A. Ansari, Lyapunov inequality for fractional differential equations with Prabhakar derivative,
Math. Inequal. Appl. 19(1) (2016) 349–358.

[9] S. Eshaghi and A. Ansari, Finite fractional Storm-Liouville transforms for generalized fractional derivatives, Iran.
J. Sci. Technol. Trans. A Sci. 41(4) (2017) 931–937.

[10] S. Eshaghi, A. Ansari, R. Khoshsiar Ghaziani and M. Ahmadi Darani, Fractional Black-Scholes model with
regularized Prabhakar derivative, Publ. de l’Institut Math. 102(116) (2017) 121–132.

[11] S. Eshaghi, A. Ansari and R. Khoshsiar Ghaziani, Lyapunov-type inequality for nonlinear systems with Riemann-
Liouville fractional derivatives, Novi Sad J. Math. 49(2) (2019) 17–34.

[12] S. Eshaghi, R. Khoshsiar Ghaziani and A. Ansari, Stability and chaos control of regularized Prabhakar fractional
dynamical systems without and with delay, Math. Methods Appl. Sci. 42(7) (2019) 2302–2323.

[13] S. Eshaghi, R. Khoshsiar Ghaziani and A. Ansari, Hopf bifurcation, chaos control and synchronization of a chaotic
fractional-order system with chaos entanglement function, Math. Comput. Simul. 172(C) (2020) 321–340.

[14] S. Eshaghi, R. Khoshsiar Ghaziani and A. Ansari, Stability and dynamics of neutral and integro-differential
regularized Prabhakar fractional differential systems, Comput. Appl. Math. 39(4) (2020) 1–21.

[15] R. Garra and R. Garrappa, The Prabhakar or three parameter Mittag-Leffler function: Theory and application,
Commun. Nonlinear Sci. Numer. Simulat. 56 (2018) 314–329.

[16] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl.
Math. Comput. 242 (2014) 576–589.

[17] R. Garrappa, Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Non-
linear Sci. Numer. Simul. 38 (2016) 178–191.

[18] R. Garrappa, F. Mainardi and G. Maione, Models of dielectric relaxation based on completely monotone functions,
Fract. Calc. Appl. Anal. 19(5) (2016) 1105–1160.

[19] A. Giusti and I. Colombaro, Prabhakar-like fractional viscoelasticity, Commun. Nonlinear Sci. Numer. Simulat.
56 (2018) 138–143.

[20] R. Gorenflo, AA. Kilbas, F. Mainardi and SV. Rogosin, Mittag-Leffler Functions: Related Topics and Applications,
Springer Monographs in Mathematics, New York, 2014.

[21] RK. Gupta, BS. Shaktawat and D. Kumar, Certain relation of generalized fractional calculus associated with the
generalized Mittag-Leffler function, J. Rajasthan Acad. Phys. Sci. 15(3) (2016) 117–126.

[22] HK. Khalil, Nonlinear Systems, third edition, Prentice Hall, Upper Saddle River, 2002.
[23] R. Hilfer and H. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex

plane, Integral Transforms Spec. Funct. 17 (2006) 637–652.
[24] AA. Kilbas, M. Saigo and RK. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus

operators, Integral Transforms Spec. Funct. 15(1) (2004) 31–49.
[25] AA. Kilbas, HM. Srivastava and JJ. Trujillo, Theory and Applications of Fractional Differential Equations, North-

Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.
[26] Y. Li, YQ. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct

method and generalized Mittag-Leffler stability, Appl. Math. Comput. 59 (2010) 1810–1821.
[27] S. Liu, W. Jiang, X. Li and XF Zhou, Lyapunov stability analysis of fractional nonlinear systems, Appl. Math.

Lett. 51 (2016) 13–19.
[28] GP. Lu and DWC. Ho, Generalized quadratic stability for continuous-time singular systems with nonlinear per-

turbation, Trans. Automat. Contr. 51 (2006) 818–823.
[29] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press, 2010.
[30] F. Mainardi and R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in

dielectrics, J. Comput. Phys. 293 (2015) 70–80.
[31] SC. Pandey, The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional



678 Eshaghi, Ansari, Khoshsiar Ghaziani

order modelling of anomalous relaxation in dielectrics, Comput. Appl. Math. 37(3) (2017) 2648–2666.
[32] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[33] F. Polito and Z. Tomovski, Some properties of Prabhakar-type fractional calculus operators, Fractional Differ.

Calc. 6(1) (2016) 73–94.
[34] TR. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama

Math. J. 19 (1971) 7–15.
[35] HJ. Seybold and R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal.

8 (2005) 127–139.
[36] S. Momani and S. Hadid, Lyapunov stability solutions of fractional integrodifferential equations, Int. J. Math.

Math. Sci. 47 (2004) 2503–2507.
[37] HM. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-

Leffler function in the kernel, Appl. Math. Comput. 211 (2009) 198–210.
[38] Z. Tomovski, R. Hilfer and HM. Srivastava, Fractional and operational calculus with generalized fractional deriva-

tive operators and Mittag-Leffler type functions, Fract. Calc. Appl. Anal. 21 (2010) 797–814.
[39] J. Xu, Time-fractional particle deposition in porous media, J. Phys. A Math. Theor. 50(19) (2017) 195002.
[40] F. Zhang, Ch. Li and YQ. Chen, Asymptotical stability of nonlinear differential systems with Caputo derivative,

Int. J. Differ. Equ. 2011 (2011) 12 pages.
[41] L. Zhang, J. Li and G. Chen, Extension of Lyapunov second method by fractional calculus, Pure Appl. Math. 3

(2005) 1008–5513.


	Introduction
	Preliminaries
	The generalized fractional calculus
	Properties of the regularized Prabhakar derivative

	Lyapunov direct method for the stability analysis of generalized FNDS with the regularized Prabhakar derivative
	Numerical simulation
	Concluding remarks

