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Abstract

In this article, a new generalization of the Topp-Leone distribution with a unit interval, namely
Mixed Topp-Leone-Kumaraswamy distribution is defined and studied. The mathematical properties
of this mixing distribution are described. Moments, quantile function, R?nyi entropy, incomplete
moments and moments of residual are obtained for the new Mixed Topp-Leone - Kumaraswamy
distribution. The maximum likelihood (MLE), Crans (CM) , Percentile (PM) and Particle Swarm
Optimization(PSO) estimators of the parameters are derived. The percentile Method is more efficient
method as compred to the others. Two real data sets are used to illustrate an application and
superiority of the proposed distribution.
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1. Introduction

The Topp-Leone (T-L) distribution is introduced by Topp and Leone,[25] in (1955), with one param-
eter the T-L distribution has J–shaped density and U-shaped or bathtub failure function which is
capable to model high, constant and again high patterns failure times. The distribution has simple
closed form of cumulative distribution function and bounded support of (0, 1), so it is more attractive
as compared with beta distribution and useful in reliability and survival analysis. On the other hand,
the Kumaraswamy distribution is introduced by Kumaraswamy,[13] in (1980) as a better alternative
to the beta distribution, because the last does not accurately fit hydro-logical data such as daily

∗Corresponding author
Email address: dr.nashaat@mtu.edu.iq (Nashaat Jasim Al-Anber)

Received: March 2021 Accepted: April 2021

http://dx.doi.org/10.22075/ijnaa.2021.5122


700 Al-Anber

rainfall, daily stream flow, etc. and its distribution function is an incomplete beta function ratio and
its quantile function the inverse thereof,[15].
Over the last few years, many generalized distributions have been studied inspired by the increasing
demand of probability distributions in many applications, one of them are proposed by mixing of
two or more distributions in a mathematical based way to model a wide variety of data. In many
situations, observed data may be assumed to have come from a mixture population of two or more
distributions, so these generalized distributions are effective and flexible models to analyze and
interpret data that come from a possibly heterogeneous population. So many research works have
been done such as Alzaatreh et al.,[1], Haq et al.,[11], Hashmi et al.,[10], Elgarhy et al.,[8] and
ZeinEldin et al.,[26] for more see Cordeiroa and Castro (2010)[4], Aryal and Tsokos (2011)[2], Silva
et al.,[22] and Mohammed and Mohammed,[19].
James,[12] (1978) considered the problem of estimating the mixing proportion in a mixture of two nor-
mal distributions, the parameters of which were assumed known, he noticed that very large samples
were needed if reasonably precise estimates were to be obtained. Mohammed et al,[18] (2014) derived
a parametric mixture model of three different distributions, consisting of Exponential, Gamma and
Weibull distributions to model heterogeneous survival time data. Yilmaz and Buyum,[17] (2015) de-
rived different methods to estimate parameters for two component mixed exponential distributions.
Zhang,[28] (2015) applied expectation conditional maximization (ECM) algorithm to estimate three
exponential distributions.
Zhai et al,[27] (2018) used the Weibull-normal mixture distribution.They employed lowest Akaike
information criterion (AIC) value to determine the components number of the mixture where the
parameter estimation method based on maximizing the log likelihood function using an intelligent
optimization algorithm and genetic algorithm. Szulczewski1 and Jakubowski1,[24] (2018) applied a
mixture of a three-parameter generalized extreme values distribution and a two-parameter gamma
distribution in hydro-logical field.Hasan et al,[9] (2020) Employed The Log-normal, Gamma and
Weibull distributions, as well as their mixed to fitting non-zero six-minutes rainfall data.
The main aim of this paper is to mix the one parameter Topp-Leone distribution with one parame-
ter Kumaraswamy distribution called mixed Topp-Leone- Kumaraswamy distribution (MTLK) and
describe the properties and estimation methods of its parameters.
The probability density function of Kumaraswamy distribution k(α, β) is:

f1 = αβxα−1(1− xα)β−1; 0 < x < 1 , α, β > 0 (1.1)

where α, β are the shape parameters.[15] The distribution function is:

F1 = 1− (1− xα)β (1.2)

The probability density function of Topp-Leone distribution TL(θ) is:

f2 = 2θxθ−1 (1− x) (2− x)θ−1; 0 < x < 1 , θ > 0 (1.3)

where θ are the shape parameters.[25] The distribution function is:

F2 = xθ(2− x)θ (1.4)

By mixing k(1, β) with TL(θ), we get Mixed Topp-Leone-Kumaraswamy Distribution MTLK(β, θ)
as follow:

f (x) = wf1 (x) + (1− w) f2 (x)
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f (x) =
(1− x)

(β + θ)

[
β2(1− x)β−2 + 2θ2xθ−1(2− x)θ−1

]
; 0 < x < 1 , β, θ > 0 (1.5)

Where: w = β
β+θ

, β, θ are shape parameters.

The equation (1.5) is probability density function, where:∫ 1

0

f (x) dx =

∫ 1

0

(1− x)

(β + θ)

[
β2(1− x)β−2 + 2θ2xθ−1(2− x)θ−1

]
dx

=

∫ 1

0

β2

β + θ
(1− x)β−1dx+

∫ 1

0

2θ2

β + θ
xθ−1 (1− x) (2− x)θ−1dx

=
β

β + θ
+

θ2

β + θ

∫ 1

0

(2− 2x)
(
2x− x2

)θ−1
dx

=
β

β + θ
+

θ

β + θ
= 1

We observe from pdf curves for different values of parameters (see Fig.1) that as θ values are small the
MTKL distribution curve’s are concave and like bathtub shape as β values are small and decreasing
curves as θ values are large. As θ values are large the MTKL distribution curve’s are decreasing
curves as β values are small and convex in shape as θ values are large.

Figure 1: Probability Density Function Plot of MTKL Distribution

The cumulative distribution function will be:

F (x) = pr (X ≤ x) =

∫ x

0

f (u) du

=
1

β + θ

[
β − β(1− x)β + θxθ(2− x)θ

]
(1.6)

We observe from curves of cdf for different values of parameters (see Fig.2) that curves are near main
diagonal as β, θ are small , above it as β larger than θ and verse vice.



702 Al-Anber

Figure 2: Plot of Cumulative Distribution Function of MTKL Distribution

The reliability function will be:

R (t) = 1− F (t) = 1− 1

β + θ

[
β − β(1− x)β + θxθ(2− x)θ

]
(1.7)

We observe from curves of reliability function for different values of parameters (see Fig.3) that curves
are near diagonal as β, θ are small, above it as β smaller than θ and verse vice.

Figure 3: Reliability Function Plot of MTLK Distribution.

The hazard function will be:

h (x) =
f(x)

R(x)
=

(1−x)
(β+θ)

[
β2(1− x)β−2 + 2θ2xθ−1(2− x)θ−1

]
1− 1

β+θ

[
β − β(1− x)β + θxθ(2− x)θ

] (1.8)
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Figure 4: Hazard Function Plot of MTLK Distribution.

The hazard function’s curves (see Fig.4) increase heavily as the parameter values increase.

2. Main Properties of the MTLK Distribution

Here, we provide some main properties of the MTLK distribution including, quantile function, me-
dian, mode, moments, incomplete moments, residual life function and Renyi entropy.

2.1. Quantile Function and Median

The quantile function of EITL distribution say Q(u, β, θ) is derived from
equation (1.6), by solving F (x) = u for x , as follow:

u =
1

β + θ

[
β − β(1− x)β + θxθ(2− x)θ

]
(2.1)

By simple rearrangement , we get:

β(1− x)β − θ(x (2− x))θ − u (β + θ)− β = 0 (2.2)

Equation (2.2) is nonlinear, so we use numerical methods for solving this equation for x value that
represent the the uth quantile. Where 0 < u < 1 In particular, the median can be derived from (2.2)
by setting u = 0.5. Also, the first and third quartiles are computed by setting u= 0.25 and 0.75
respectively in (2.2).

2.2. Moments

The moments can be used in any statistical analysis especially in applied work. Some of the most
important features and shapes of a distribution , such as spread, dispersion, peakedness and symmetry
can be measured by mean ,variance, kurtosis and skewness respectively.
Let X be a random variable with density (1.5). The general rth moment about the origin of MTLK
distribution is obtained from pdf (1.5) as follows:

µr=E (xr) =

∫ 1

0

xrf (x) dx (2.3)
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Substituting (1.5) into (2.3), yields:

µr=
β

β + θ

∫ 1

0

xrβ(1− x)β−1dx+
θ

β + θ

∫ 1

0

xr2θxθ−1 (1− x)(2− x)θ−1dx

=
β2

β + θ
Beta (r + 1, β) +

2θ2

β + θ

∫ 1

0

xθ+r−1(1− x)2θ−1
(

1− x

2

)θ−1
dx (2.4)

The generalized binomial expansion, for θ > 0 is real non integer and |x| < 1 is

(1− |x|)θ =
∞∑
i=0

Cθ
i (−x)i (2.5)

Employing, the binomial theorem (2.5) in (2.4), where θ is real non integer, we have

µr=
β2

β + θ
B (r + 1, β) +

θ2

β + θ

∞∑
i=0

Cθ−1
i (−1)i2θ−iB(θ + r + i, 2) (2.6)

Where B(·, ·) is the beta function. Furthermore, the rth central moment of MTLK is given by:

µ′r = E(t− µ1)
r =

r∑
i=0

Cr
i (−µi)

iµr−i (2.7)

The measure of symmetry is the skewness which describes the symmetry of the distribution and
defined as:

Skewness =
µ3 − 3µ2µ1 + 2µ3

1(√
µ2 − µ2

1

)3 ;µ2 − µ2
1 > 0 (2.8)

The measure of peakedness is the kurtosis which describes the peakedness of the distribution and
defined as follows:

Kurtosis =
µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1

(µ2 − µ2
1)

2 ;µ2 − µ2
1 > 0 (2.9)

2.3. Incomplete Moments

They are mostly utilized to explain or measure inequality of the distribution. Particularly, the
main application of the first incomplete moment refers to the Bonferroni and Lorenz curves that
have applications not only in economics to study income and poverty, but also in other fields like
reliability, demography, insurance and medicine. The rth incomplete moment, say, µr(x) is obtained
as follows:

wr(t) =E (xr) =

∫ t

0

xrf (x) dx (2.10)

Substituting (1.5) into (2.10) yields

wr(t) =
β

β + θ

∫ t

0

xrβ(1− x)β−1dx+
θ

β + θ

∫ t

0

xr2θxθ−1 (1− x)(2− x)θ−1dx (2.11)

Employing, the binomial theorem (2.5) in (2.11), where θ is real non integer, we have

wr(t) =
β2

β + θ
IB (r + 1, β, t) +

θ2

β + θ

∞∑
i=0

Cθ−1
i (−1)i2θ−i

∫ t

0

xθ+r+i−1(1− x)dx
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wr(t) =
β2

β + θ
IB (r + 1, β, t) +

θ2

β + θ

∞∑
i=0

Cθ−1
i (−1)i2θ−iIB(θ + r + i, 2, t) (2.12)

Where IB(·, ·, ·) is the incomplete beta function.
In addition, for lifetime distributions, the rth conditional moment of the MTLK distribution is
obtained as follows:

E (xr|X > t) = µr −
β2

β + θ
IB (r + 1, β, t) +

θ2

β + θ

∞∑
i=0

Cθ−1
i

(−1)i2θ−iIB(θ + r + i, 2, t) (2.13)

2.4. Moments of Residual Life

The residual life of a unit with age t is the period beyond until the time of failure, and defined by
the conditional random variable X − t|X > t. Therefore, the rth moment of the residual lifetime, of
the MTLK distribution is given by:

Rr (t) =
1

s(t)

∫ ∞
t

(x− t)rf (x) dx (2.14)

Rr (t) =
1

s(t)

∫ ∞
t

(x− t)r (1− x)

(β + θ)

[
β2(1− x)β−2 + 2θ2xθ−1(2− x)θ−1

]
dx

By applying binomial expansion and binomial theorem (2.5), we have:

Rr (t) =
1

s(t)

(
β2

β + θ
I1 +

2θ2

β + θ
I2

)
(2.15)

Where:

I1 = 1−
r∑
i=0

Cr
i (−t)

r−iIB(i+ 1, β, t).

I2 = 1−
r∑
j=0

∞∑
k=0

Cθ−1
k Cr

j (−t)
r−j(−1)k(2)θ−1−kIB(θ + j + k, 2, t)

Where IB(·, ·, ·) is the incomplete beta function.

2.5. Renyi Entropy

Entropy is a measure of variation or uncertainty of a random variable and it has many application
in numerous fields like physics and communication. The Renyi entropy of order ρ, where ρ> 0 and
ρ6=1, for the MTLK distribution is derived as follows:

Rδ (x) = (1− δ)−1log
(∫ 1

0

f(x)δdx

)
(2.16)

= (1− δ)−1log

(∫ 1

0

(
(1− x)

(β + θ)

[
β2(1− x)β−2 + 2θ2xθ−1(2− x)θ−1

])δ
dx

)
By applying binomial expansion and binomial theorem (2.5), we have:

Rδ (x) = (1− δ)−1log(
1

(β + θ)δ

∫ 1

0

δ∑
i=0

Cδ
i 2

iθ2i[x (2− x)]i(θ−1)
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(1− x)(β−1)(δ−i)+iβ2(δ−i)dx)

Rδ (x) = (1− δ)−1log(
1

(β + θ)δ

δ∑
i=0

∞∑
j=0

(−1)jC
δ

iC
i(θ−1)
j 2i+i(θ−1)+jθ2iβ2(δ−i)

B (i (θ − 1) + j + 1, (β − 1) (δ − i) + i+ 1)) (2.17)

Where B(·, ·) is the complete beta function.

3. Estimation methods

3.1. Maximum Likelihood Estimator (MLE),[4]

Assume that t1,t2, . . . , tn be a complete random sample of MTLK distribution with parameters (β, θ)
then , the likelihood function of the sample can be obtained below:

L (β,θ) =
n∏
i=1

f (ti)

= (β + θ)−n
n∏
i=1

(1− xi)
n∏
i=1

[
β2(1− xi)β−2 + 2θ2xθ−1i (2− xi)θ−1

]
(3.1)

To obtain MLE, firstly we differentiate the log-likelihood equation w.r.t. the parameters and equate
it to zero. Thus, The logarithm of the likelihood function will be:

LogL = −nlog (β + θ) +
n∑
i=1

(1− xi) +

n∑
i=1

log
[
β2(1− xi)β−2 + 2θ2xθ−1i (2− xi)θ−1

]
(3.2)

the derivative of equation (3.2) for β, θ respectively will be:

∂LogL

∂β
=
−n
β̂ + θ̂

+
n∑
i=1

β̂2(1− xi)β̂−2log (1− xi) + 2β̂(1− xi)β̂−2

β̂2(1− xi)β̂−2 + 2θ̂2xθ̂−1i (2− xi)θ̂−1
= 0 (3.3)

∂LogL

∂θ
=
−n
β̂ + θ̂

+ 2θ̂

n∑
i=1

xθ̂−1i

[
θ̂(2− xi)θ̂−1log (2− xi) + (2− xi)θ̂−1

(
θ̂logxi + 2

)]
β̂2(1− xi)β̂−2 + 2θ̂2xθ̂−1i (2− xi)θ̂−1

= 0 (3.4)

The equations (3.3) and (3.4) are nonlinear equation in β̂ and θ̂ , so an analytical solution is not
possible ,so we will use of Newton-Raphson (N-R) algorithm to get the numerical solution that
represent the value of maximum likelihood estimator of β and θ.
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3.2. Cran’s method (CM)[5]

This method has derive by Cran,[5] in 1988 as an enhancement of the moment method, and used
to estimate the parameters of the 3- parameter Weibull distribution. It uses sample moments as a
functions of differences of the observations rather than powers and in some distributions the parame-
ter estimates are explicit formulas of low-order sample moments. It works through solving equations
that given by assume equality among sample and population moments.
Let x1≤x2≤. . .≤xn , be an ordered random sample from MTLK distribution. The cumulative dis-
tribution function C.D.F is estimated by:

Fn(x) =


0 x < x(1)
r
n

x(r) ≤ x < x(r+1) , r=1,...,n−1
1 x > x(n)

(3.5)

The population moment µ3
k is:

α (3.6)

The counterpart sample moment is:
α (3.7)

By equating equations (3.6) and (3.7) for k = 1, 2 , the Cran’s estimates of the parameters can be
obtained by solving the equations through Bi- variate Newton-Raphson Iterative method.

3.3. Percentile method(PM)[3],[6]

The principle of percentile method is based on equating nonparametric estimator of cumulative distri-
bution function with corresponding theoretical percentiles and then simultaneously solving resulting
equations for unknown parameters.
Let x1, x2, . . . ,xn be a random sample of size n from MTLK distribution. The cumulative distribution
function of MTLK distribution is:

F (xi) =
1

β+θ

[
β−β(1−xi)β+θxθi (2−xi)

θ
]

(3.8)

Thus, using nonparametric estimator of cdf as: F̂ (xi) = i
n+1

, the sum of square will be:

n∑
i=1

(
F̂ (xi)−

1

β+θ

[
β−β(1−xi)β+θxθi (2−xi)

θ
])2

= 0 (3.9)

The percentile estimate of the parameters are represent the values that minimize of equation (3.9).
Solving Equations by using derivative free optimization method for unknown parameters, we get the
percentile estimators for β and θ.

3.4. Particle Swarm Optimization Method (PSOM)[15]

Particle swarm optimization algorithm is a population based stochastic optimization technique dis-
covered by Kennedy and Eberhart in 1995.[15] It is inspired by biological specimen like birds, insects
and fish. It search for the best solution in a population of solutions for the given problem. In PSO
each particle has both position and velocity, the particle position represents the parameters to be es-
timated. The particle velocity and position vector are updated iteratively according to the following
equations:

Vi (t) =W (t)Vi (t−1) +c1r1 [Pbest,i−Xi(t−1)] +c2r2 [Gbest−Xi(t−1)] (3.10)
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Xi (t) =Xi (t−1) +Vi (t) , i= 1, 2, . . . ,N (3.11)

Where W is the inertia weight, c1, c2 are the congnitive and social learning rates respectively, it is
usually assumed to be 2, r1, r2 are the random numbers distributed uniformly in the range 0 and 1.
The value of inertia weight decreases linearly with the iteration number has been used:

W (t) =Wmax− (Wmax−Wmintmax) t (3.12)

Where Wmax and Wmin represented the initial and final values of the inertia weight and are usually
assumed to be 0.9 and 0.4 respectively, tmax is the maximum number of iterations.
The final part in this method is the fitness function that take the form according to MTLK distri-
bution:
Let x1≤x2≤. . .≤xn , be an ordered random sample from MTLK distribution. The nonparametric
estimator of cumulative distribution function C.D.F is :
F̂ (xi) = i

n+1
, the sum of square between them is represent the fitness function as follow:

n∑
i=1

[
F̂ (xi)−

1

(β+θ)

(
β−β(1−xi)β+θxi

θ(2−xi)θ
)]2

(3.13)

By applying the PSM algorithm in MatLab , that required the xi and F̂ (xi) values and the fitness
function ,we will get the estimate of the parameters.

4. Simulation Study

In this section, simulation experiments has been conducted, and the mean square error of the esti-
mated parameters are compared. The simulation process were done using sample sizes (10, 15, 25, 50 and 100)
that represented small, moderate and large sample sizes and different combinations for the param-
eters (β, θ= 0.5, 1, 2). A random samples for each sample size is generated by using the following
formula:

t=

(
β

β+θ

)(
1−(1−u)

1
β

)
+

(
θ

β+θ

)(
1+

√
1−u 1

θ

)
(4.1)

Where:
U: is a uniform random variate.
built on 1000 replications, The results are tabulated in tables 1 to 9.

Table 1: Mean Square Error of Parameters Estimates where (β = 0.5, θ = 0.5)

n Parameters MLE CM PM PSO BEST
10 β 0.829389 1.639992 1.957144 1.193573 MLE

θ 0.472296 4.606259 6.608298 12.0863 MLE
15 β 0.864341 1.612607 0.772712 0.443415 PSO

θ 0.178426 4.597595 2.800742 4.120755 MLE
25 β 0.836714 1.44578 1.406526 0.64206 PM

θ 0.271055 2.397363 2.015194 6.565719 PM
50 β 0.29436 1.014199 0.519944 0.281692 PSO

θ 0.25671 2.128235 1.373637 9.603016 PM
100 β 0.327086 0.585593 0.354065 0.273689 CM

θ 0.177721 1.679122 1.523505 11.45173 PM
Percentage of Cases 30% 10% 40% 20% PM
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Table 2: Mean Square Error of Parameters Estimates where (β = 1, θ = 0.5)

n Parameters MLE CM PM PSO BEST
10 β 0.511108 0.581375 0.668101 22.06049 MLE

θ 0.9692 1.557991 0.653070 43.52773 PM
15 β 0.710704 0.608579 0.371710 3.59338 PM

θ 2.430043 1.095174 0.63260 15.92369 PM
25 β 0.825954 1.01645 0.837654 0.836886 MLE

θ 0.687861 1.132319 0.592660 3.118761 PM
50 β 0.17151 0.077661 0.067231 0.803276 PM

θ 0.803808 0.571819 0.439413 6.414302 PM
100 β 0.290948 0.240631 0.26333 0.715743 CM

θ 1.575672 1.123346 0.821967 5.030755 PM
Percentage of Cases 20% 10% 70% 0% PM

Table 3: Mean Square Error of Parameters Estimates where (β = 2, θ = 0.5)

n Parameters MLE CM PM PSO BEST
10 β 0.735909 0.392414 0.392990 4.142019 PM

θ 1.142244 0.386828 0.057758 14.8575 PM
15 β 1.491485 1.380994 1.235211 3.169709 PM

θ 0.973588 1.046528 0.570849 1.925281 PM
25 β 0.551895 0.406538 0.256164 3.426928 PM

θ 0.728819 0.443252 0.188225 1.605154 PM
50 β 0.391326 0.1141 0.081533 6.363612 PM

θ 0.939086 0.380042 0.111260 1.8451 PM
100 β 0.519931 0.167257 0.157887 3.743454 PM

θ 0.650051 0.133263 0.063148 1.202645 PM
Percentage of Cases 0% 0% 100% 0% PM

Table 4: Mean Square Error of Parameters Estimates where (β = 0.5, θ = 1)

n Parameters MLE CM PM PSO BEST
10 β 1.250054 2.084563 1.684932 0.321904 Pso

θ 0.925311 1.145583 0.681376 20.44344 PM
15 β 2.316984 1.165103 1.678662 1.51605 CM

θ 3.798652 2.629498 3.763431 4.80588 CM
25 β 2.732695 1.355842 1.077498 2.48964 PM

θ 3.162426 0.982491 0.903345 3.581775 PM
50 β 0.944251 0.404551 0.188285 0.334595 PM

θ 1.889209 1.0344 0.675611 3.472001 PM
100 β 2.582081 0.853324 1.134473 2.974342 CM

θ 1.653908 0.900637 1.386903 2.658246 CM
Percentage of Cases 0% 40% 50% 10% PM

Table 5: Mean Square Error of Parameters Estimates where (β = 1, θ = 1)



710 Al-Anber

n Parameters MLE CM PM PSO BEST
10 β 1.292832 0.785593 0.549556 1.012763 CM

θ 1.902187 1.454232 1.126532 4.394473 MLE
15 β 0.731259 0.335356 0.898407 0.757952 CM

θ 1.962047 1.69314 1.107330 3.205082 PM
25 β 1.031416 0.692375 0.637705 0.703294 PM

θ 1.758544 0.698382 1.431964 3.223342 CM
50 β 0.895463 0.272567 0.190925 1.512228 PM

θ 1.49336 0.272104 0.18841 2.022032 PM
100 β 0.58534 0.112957 0.069165 1.044062 PM

θ 0.708144 0.236281 0.164842 1.507096 PM
Percentage of Cases 10% 30% 60% 0% PM

Table 6: Mean Square Error of Parameters Estimates where (β = 2, θ = 1)

n Parameters MLE CM PM PSO BEST
10 β 0.479359 0.663743 1.514083 9.366327 PM

θ 2.148881 1.073026 0.590327 25.69284 PM
15 β 0.910256 0.297134 0.284237 3.78382 PM

θ 0.93729 0.589129 0.656620 5.578449 CM
25 β 0.599774 0.450948 0.231546 2.960751 PM

θ 0.400932 0.245783 0.543280 1.467767 CM
50 β 0.465239 0.18023 0.032371 2.907101 PM

θ 0.858175 0.454208 0.954448 1.728961 CM
100 β 0.336362 0.122122 0.083644 3.002358 PM

θ 0.333518 0.206056 0.782904 1.740268 CM
Percentage of Cases 0% 40% 60% 0% PM

Table 7: Mean Square Error of Parameters Estimates where (β = 0.5, θ = 2)

n Parameters MLE CM PM PSO BEST
10 β 1.802542 0.278488 2.803906 8.798045 CM

θ 11.41464 3.118551 16.63739 16.26787 CM
15 β 0.913129 3.875323 0.526970 0.320021 PSO

θ 1.748418 31.90441 2.330522 14.35047 Mle
25 β 2.278332 0.522594 0.777128 2.110519 CM

θ 4.495001 0.321015 1.621317 11.1504 CM
50 β 1.721563 0.247079 0.685865 0.256425 CM

θ 2.941061 0.556773 2.194488 8.097175 CM
100 β 0.827968 0.257422 0.095409 0.563598 PM

θ 1.449151 0.37964 0.259698 4.617894 PM
Percentage of Cases 10% 60% 20% 10% CM

Table 8: Mean Square Error of Parameters Estimates where (β = 1, θ = 2)
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n Parameters MLE CM PM PSO BEST
10 β 1.937412 0.712162 1.155973 5.744878 PM

θ 2.682623 0.721456 5.466372 2.355666 CM
15 β 0.76394 0.584032 0.672066 0.755391 CM

θ 1.584391 1.102773 0.885995 0.872446 PSO
25 β 1.073134 0.403483 0.797122 0.862048 CM

θ 2.169483 0.712468 0.427195 1.041964 PM
50 β 0.521207 0.155121 0.386132 0.887935 CM

θ 1.790013 0.502671 0.193129 2.41493 PM
100 β 0.100889 0.234747 0.588339 0.891275 Mle

θ 0.157028 0.36141 0.062413 0.188215 PM
Percentage of Cases 10% 40% 40% 10% PM

Table 9: Mean Square Error of Parameters Estimates where (β = 2, θ = 2)

n Parameters MLE CM PM PSO BEST
10 β 1.431907 2.239681 0.659226 9.569032 PM

θ 0.555744 3.250244 1.324418 5.420397 MLE
15 β 0.634734 0.772007 0.753714 3.864217 MLE

θ 0.347974 0.57802 1.892665 0.744498 MLE
25 β 0.089786 0.199255 0.246017 2.827029 MLE

θ 1.001309 0.743746 1.359584 1.573664 CM
50 β 0.463547 0.494465 0.436928 2.86591 PM

θ 0.134588 0.214372 0.866618 0.564047 MLE
100 β 0.107857 0.020739 0.047485 2.822946 CM

θ 0.013621 0.052904 0.009183 0.217131 PM
Percentage of Cases 50% 20% 30% 0% MLE

It is observed that the mse of estimators decrease as the sample size increases and The PM method
is almost more efficient than the other methods for almost all cases used.

5. Application

In this section an analysis based on two real data sets are conducted. To show that the MTLK seems
to be a very competitive model for these data than the Two Parameters Kumaraswamy distribution
TPK, Two Parameters Topp-Leone distribution TPTL and Generalized Beta distribution GB. The
first data set, which have also been analyzed by Silva et al. (2013) [23] is related to the study of the
soil fertility in influence and the characterization of the biologic fixation of N2 for the Dimorphandra
wilsonii rizz growth. They made measures of the phosphorus concentration in the leaves for 128
plants. The data set is presented in table 10. The second data set used from Nigm et al. (2003)
[19] is about ordered failure of components, The data set is presented in table 12. The descriptive
statistics of the two sample data sets are shown in table 11 and 13, that indicates the data are
positively skewed or skewed right and a platykurtic distribution or flat-tailed distribution.

Table 10: Phosphorus concentration data.
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phosphorus concentration in the leaves
0.22 0.11 0.19 0.09 0.14 0.11 0.13 0.19
0.12 0.16 0.24 0.11 0.25 0.1 0.11 0.21
0.17 0.12 0.21 0.22 0.07 0.13 0.12 0.15
0.09 0.09 0.19 0.1 0.16 0.15 0.14 0.16
0.11 0.1 0.18 0.23 0.09 0.12 0.14 0.07
0.23 0.1 0.21 0.2 0.13 0.17 0.07 0.08
0.1 0.06 0.26 0.22 0.05 0.15 0.09 0.09
0.25 0.12 0.22 0.12 0.11 0.14 0.07 0.1
0.15 0.2 0.19 0.19 0.06 0.12 0.1 0.17
0.23 0.12 0.17 0.15 0.11 0.12 0.19 0.06
0.06 0.17 0.17 0.27 0.11 0.11 0.13 0.1
0.24 0.1 0.08 0.08 0.11 0.18 0.17 0.08
0.05 0.2 0.18 0.16 0.16 0.11 0.09 0.08
0.2 0.09 0.08 0.12 0.08 0.14 0.18 0.12
0.07 0.11 0.2 0.28 0.2 0.15 0.11 0.15
0.08 0.17 0.06 0.09 0.22 0.18 0.16 0.13

Table 11: Descriptive statistics of phosphorus concentration in the leaves.

N Min Max Mean Median Mode Standard Deviation Skewness Kurtosis Excess
128 0.05 0.28 0.1408 0.13 0.11 0.0544 0.4544 2.3552

Table 12: Ordered failure of components data.

Ordered failure of components
0.0009 0.004 0.0142 0.0221 0.0261 0.0418 0.0473 0.0834
0.1091 0.1252 0.1404 0.1498 0.175 0.2031 0.2099 0.2168
0.2918 0.3465 0.4035 0.6143

Table 13: Descriptive statistics of ordered failure of components data.

N Min Max Mean Median Standard Deviation Skewness Kurtosis Excess
20 0.0009 0.6143 0.1613 0.1328 0.1573 1.3302 4.5145

To verify that MTLK distribution is suitable model for the data set a minus two times of negative log-
likelihood value, Akaike information criteria (AIC), Bayesian information criteria (BIC), corrected
Akaike information criterion (AICC), Hannan-Quinn information criterion (HQIC), consistent akaike
information criterion (CAIC) and Kolmogorov - smirnov K-S distance with P values are used.
where:

AIC = 2k− 2logl (5.1)

BIC = klog(n)− 2logl (5.2)

AICC = AIC+
2k(k + 1)

n− k− 1
(5.3)

HQIC = −2logl + 2klog(log(n)) (5.4)

CAIC = −2logl+
2kn

n− k− 1
(5.5)
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where logl denotes the log-likelihood at MLEs, k is the number of parameters, and n is a sample
size. The table 14 and 15 shows that the MTLK has lower values for −2Logl ,(AIC), (BIC), (AICC),
(HQIC), (CAIC) and K-S distance and than TPK, TPTL and GB and higher P Values respectively.
So, which indicate that the MTLK could be chosen as the best model than TPK, TPTL and GB
distributions for both data sets. The empirical and estimated cdf of MTLK, TPK, TPTL and GB
are displayed in figure 5 and 6.

Table 14: Parameter estimates with different criteria of phosphorus concentration.

Model Parameter
estimate

−2Logl AIC BIC AICC HQIC CAIC K-S P Value

MTLKβ̂ = 6.86
θ̂ = 0.43

-
256.124

-
252.124

-
246.420

-
252.028

-
249.806

-
252.028

0.342 1.016e-13

TPK α̂ = 2.81
β̂ = 0.75

504.007 508.007 513.711 508.103 510.325 508.103 0.810 5.746e-75

TPTL α̂ = 0.17
β̂ = 71.59

-0.879 3.120 8.824 3.216 5.437 3.216 0.578 2.203e-38

GB α̂ = 0.45
β̂ = 49.37
λ̂ = 3e− 05
θ̂ = 0.59
γ̂ = 4.04

44.954 54.954 69.214 55.446 60.748 55.446 0.440 1.770e-22

Table 15: Parameter estimates with different criteria of ordered failure of components.

Model Parameter
estimate

−2Logl AIC BIC AICC HQIC CAIC K-S P Value

MTLK β̂ = 0.65
θ̂ = 0.59

-15.8 -11.8 -9.883 -11.16 -11.4 -11.1 0.451 3e-04

TPK α̂ = 0.764
β̂ = 0.75

-4.8 -0.8 1.175 -0.110 -0.427 -0.110 0.546 3.89e-06

TPTL α̂ = 0.14
β̂ = 158.84

-12.6 -8.6 -6.67 -7.958 -8.275 -7.958 0.504 3.14e-05

GB α̂ = 0.254
β̂ = 106.26
λ̂ = 6e−07
θ̂ = 0.60
γ̂ = 1.19

13.3 23.3 28.3 27.640 24.327 27.640 0.498 3.97e-05
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Figure 5: Empirical, fitted Mixed Topp-Leone-Kumaraswamy, Two Parameter Kumaraswamy ,
Two Parameter Topp-Leone and Generalized Beta cdf’s of Phosphorus Concentration data.

Figure 6: Empirical, fitted Mixed Topp-Leone-Kumaraswamy, Two Parameter Kumaraswamy ,
Two Parameter Topp-Leone and Generaliazed Beta cdf’s of ordered failure of components data.

6. Conclusion

We mixed the one parameter Topp-Leone distribution with one parameter Kumaraswamy distribu-
tion, the two parameter mixed Topp-Leone- Kumaraswamy distribution has nice properties. The
general moments formula and other important functions are derived. The percentile estimation
method is best one according to simulation experiments used. The Topp-Leone- Kumaraswamy dis-
tribution is applied to two real data and indicated that could be chosen as the best model than
the Two Parameters Kumaraswamy pistribution, two Parameters Topp - Leone distribution and
Generalized Beta distribution.
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