

Some types of fibrewise fuzzy topological spaces

M. A. Hussain^{a,*}, Y.Y.Yousif^a

^aDepartment of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), Baghdad University, Baghdad, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where $j = \{\delta, \theta, \alpha, p, s, b, \beta\}$.

Keywords: FWF j-TS's, FWCF j-TS's, FWOF j-TS's, FW-LSL-F j-TS's and FW-LSE-F jTS's. 2010 MSC: 55R70, 54A40, 54C08, 54C10.

1. Introduction and Preliminaries

To begin with our work in the type of fibrewise sets over a given set, named the base set. If the base set is denoted by B then a fibrewise set over B consists of a set M together with a function $p: M \to B$, named the projection. For all point b of B the fibre over b is the subset $M_b = p^{-1}(b)$ of M; fibres may be empty because we do not require p to be surjective, in addition for all subset B^* of B we consider $M_{B^*} = p^{-1}(B^*)$ as a fibrewise set over B^* with the projection determined by p. The concept of fuzzy sets was introduced by Zadeh [21]. The idea of fuzzy topological spaces was introduced by Chang [2]. Several types of fuzzy continuous functions. Different aspects of such spaces have been developed, by several investigators. We studied the connected between fibrewise topological spaces and fuzzy j-topological space also some related concepts such as fibrewise f. j-open, fibrewise locally sliceable and fibrewise locally sectionable fuzzy topological spaces. The purpose of this paper is introduced a new class of fibrewise topology called fibrewise fuzzy j-topological space are introduced and few of their properties are investigated, we built on some of the result in [15, 16, 17, 18, 19, 20, 21], where $j \in \{\delta, \theta, \alpha, p, s, b, \beta\}$.

*Corresponding author

Email addresses: hwe1ggh597@gmail.com (M. A. Hussain), yoyayousif@yahoo.com (Y.Y.Yousif)

Received: February 2021 Accepted: April 2021

Definition 1.1. [7] A mapping $\vartheta : M \to N$, where M and N are FW sets over B, with proj.'s $p_M : M \to B$ and $p_N : N \to B$, is said to be FW mapping (written as FW - M) if $p_N \circ \vartheta = p_M$, or $\vartheta (M_b) \subseteq N_b$, for all point $b \in B$.

Observe that a FW-M $\vartheta: M \to N$ over B limited by restriction, a FW-M $\vartheta: M_{B^*} \to N_{B^*}$ over B^* for all subset $B^* \subseteq B$.

Definition 1.2. [7] The fibrewise topology (written as FWT) on a FW set M over a topological space (B, σ) signify any topology on M for which the proj. p is continuous (written as FWTS).

Definition 1.3. [7] Let M and n be FWTS's over B, the FW-M $\vartheta : M \to N$ is said tobe:

- (a) continuous if $b \in B$ and for all point $m \in M_b$, the pre-image of all open set of $\vartheta(m)$ is an open set of m.
- (b) open if $b \in B$ and for all point $m \in M_b$, the image of all open set of m is an open set of $\vartheta(m)$.

Definition 1.4. [7] The FWTS (M, τ) over (B, σ) is said to be:

- (a) FW closed (written as FWC) if the proj. p is closed mapping.
- (b) FW open (written as FWO) if the proj. p is open mapping.

Definition 1.5. [22] Let X be a nonempty set, a fuzzy set A in X is characterized by a function $\mu_A: X \longrightarrow I$ where I is the closed unite interval [0, 1] which is written as:

$$A = \{(x, \mu_A(x)) : x \in X, 0 \le \mu_A(x) \le 1\}$$

The collection of all fuzzy subsets in X will be denoted by I^X that is $I^X = \{A : A \text{ is fuzzy subset} of X\}$ and μ_A is called the membership function.

Example 1.6. [10] We will suppose a possible membership function for the fuzzy set of real numbers close to zero as follows, $\mu_A : \mathbb{R} \longrightarrow [0, 1]$, where

$$\mu_A(x) = \frac{1}{1 + (x - 10^2)}, \forall x \in \mathbb{R}$$

Figure 1: Diagraph of Example 1.6.

Definition 1.7. [22] A fuzzy set in X is empty denoted by $\overline{0}_x$, if its membership function is identically the zero function, i.e.,

$$\overline{0}_X : X \to [0, 1]$$
 s.t $\overline{0}_X(x) = 0$ $\forall x \in X$

Definition 1.8. [22] A universal fuzzy set in X, denoted by $\overline{1}_X$, is a fuzzy set defined as

$$\overline{1}_X(x) = 1 \quad \forall x \in X$$

Definition 1.9. [22] Let $\mu, \lambda \in I^X$. A fuzzy set μ is a subset of a fuzzy set λ , denoted by $\mu \leq \lambda$ iff $\mu(x) \leq \lambda(x), \forall x \in X$.

Two fuzzy sets μ and λ are said to be equal $(\lambda = \mu)$ if $\lambda(x) = \mu(x), \forall x \in X$

Definition 1.10. [22] Let λ and μ be fuzzy sets in X. Then, for all $x \in X$,

$$\psi = \lambda \lor \mu \Leftrightarrow \psi(x) = \max\{\lambda(x), \mu(x)\}$$
$$\delta = \lambda \land \mu \Leftrightarrow \delta(x) = \min\{\lambda(x), \mu(x)\}$$
$$\eta = \lambda^c \Leftrightarrow \eta(x) = 1 - \lambda(x)$$

More generally, for a family $\Lambda = \{\lambda_i \mid i \in I\}$ of fuzzy sets in X, the union $\psi = V_i \lambda_i$ and intersection $\delta = \Lambda_i \lambda_i$ are defined by

$$\psi(x) = \sup_{i} \left\{ \lambda_i(x) \mid x \in X \right\},$$
$$\delta(x) = \inf_{i} \left\{ \delta_i(x) \mid x \in X \right\}$$

Definition 1.11. [3] A fuzzy topology is a family τ of fuzzy sets in X, which satisfies the following conditions:

- (a) $\overline{0}, \overline{1} \in \tau$
- (b) If $\lambda, \mu \in \tau$, then $\lambda \wedge \mu \in \tau$;
- (c) If $\lambda_i \in \tau$ for each $i \in I$, then $\bigcup_i \lambda_i \in \tau$.

 τ is called a fuzzy topology for X, and the pair (X, τ) is an fts. Every member of τ is called τ -open fuzzy set (or simply an open fuzzy set). A fuzzy set is τ -closed if and only if its complement is τ -open.

As in general topology, the indiscrete fuzzy topology contains only $\overline{0}$ and $\overline{1}$, while the discrete fuzzy topology contains all fuzzy sets.

Definition 1.12. [3] Let (X, τ) be a fuzzy topological space and $A \in F(X)$. The fuzzy closure (resp., fuzzy interior) of A is denoted by cl(A) (resp., int (A)) is defined by:

$$cl(A) = \land \{F^c \in \tau, A \le F\}$$

int(A) = V{O \in \tau; O \le A}

Evidently, cl(A) (resp., int (A)) is the smallest fuzzy closed (resp., largest f. open) subset of X which contains (resp., contained in) A. Note that A is f. closed (resp., f. open) if and only if A = Cl(A)(resp., int(A)).

Definition 1.13 (3). Let $f : X \to Y$ be a mapping. Let β be a fuzzy set in Y with membership function $\beta(y)$. Then the inverse of β , written as $f^{-1}(\beta)$, is a fuzzy set in X whose membership function is defined by $f^{-1}(\beta)(x) = \beta(f(x)), \forall x \in X.(1)$ Conversely, let λ be a fuzzy set in X with membership function $\lambda(x)$. The image of written as $f(\lambda)$, is a fuzzy set in Y whose membership function is given by

$$f(\lambda)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \{(\lambda(x))\}, & \text{if } f^{1}(y) \\ 0, & \text{otherwise,} \end{cases}$$

for all $y \in Y$.

Definition 1.14. [8] A fuzzy set in X is called a fuzzy point iff it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\lambda(0 < \lambda \leq 1)$ we denote this fuzzy point by x_{λ} , where the point x is called its support.

Definition 1.15. [8] A fuzzy point x_{λ} is said to be quasi-coincident with A denoted by $x_{\lambda}qA$ iff $\lambda + A(x) > 1$

Definition 1.16. [8] A fuzzy set A in (X, τ) is called a "Q-neighborhood of x_{λ} " iff $\exists B \in \tau$ such that $x_{\lambda}qB < A$ The family of all Q-nbhds of x_{λ} is called the system of Q-nbhd's of x_{λ} .

Definition 1.17. [9] A fuzzy set A is fuzzy θ -closed [5] if $A = cl_{\theta}(A) = \{p \text{ fuzzy point in } (X, \tau) : (cl(U))qA, U \text{ is fuzzy open } q \text{ -nbd. of } p\}$. The complement of fuzzy θ -closed called fuzzy θ -open set.

Definition 1.18. [13] A fuzzy set A is fuzzy δ -closed [4] if $A = cl_{\delta}(A) = \{p \text{ fuzzy point in}(X, \tau) : int (cl(U))qA, U is fuzzy open q -nbd. of p\}.$ The complement of fuzzy δ - closed called fuzzy δ -open set.

Definition 1.19. A fuzzy set of a fuzzy topological space (X, τ) is called :

- (a) f. α -open (f. α -closed) set if $A \leq int \ cl \ int \ A(A \geq cl \ int \ clA), [2].$
- (b) f. preopen (f. preclosed) set if $A \leq int \ clA \ (A \geq cl \ int \ A), [2].$
- (c) f. simeopen (f. simeclosed)set if $A \leq \text{cl}$ int $A(A \geq \text{int cl}A)[1]$
- (d) f. β -open (f. β -closed) set if $A \leq cl$ int clA ($A \geq int \ cl$ int A), [14].
- (e) f. b- open (f.b closed) set if $A \leq cl$ int $A \vee int cl A (A \geq cl int A \vee int clA), [5]$.

Definition 1.20. [3] A mapping $f : (X, \tau_x) \to (Y, \tau_y)$ is said to be

- (a) fuzzy continuous (briefly f. continuous) if the inverse image of every fuzzy open set of Y is a f. open set in X.
- (b) fuzzy open (briefly f. open) map if the image of every fuzzy open set of X is a f. open set in Y.
- (c) fuzzy close (briefly f. close) map if the image of every fuzzy close set of X is a f. close set in Y.

Definition 1.21. [11, 12] A function $f: (X, \tau) \to (Y, \sigma)$, is said to be

- (a) Fuzzy θ -continuous (f. θ .c, for short) if for each fuzzy point \tilde{p} in (X, τ) and each fuzzy open q-nbd. v of $f(\tilde{p})$, there exists fuzzy open q-nbd. u of \tilde{p} such that $f(cl(u)) \subseteq cl(v)$
- (b) Fuzzy δ -continuous (f. δ .c, for short) if for each fuzzy point \tilde{p} in (X, τ) and each fuzzy open q-nbd. v of $f(\tilde{p})$, there exists fuzzy open q-nbd. u of \tilde{p} such that $f(\operatorname{int}(cl(u))) \subseteq \operatorname{int}(cl(v))$

Definition 1.22. [1, 2, 5, 14] A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be f. j - continuous if the inverse image of every fuzzy open set of Y is a f. j-open set in X, where $j \in \{\alpha, P, S, b, \beta\}$.

2. Fibrewise Fuzzy j-topological spaces $j \in \{\delta, \theta, \alpha, p, s, b, \beta\}$

In this section, topology we give a definition of fibrewise fuzzy j-topology and its related properties, where $j = \{\delta, \theta, \alpha, p, s, b, \beta\}$.

Definition 2.1. The fibrewise fuzzy j-topology (briefly, FWF j-TS) on a FW set M over FTS (B, Λ) signify any fuzzy topology on M for which the proj. p is f. j -continuous (briefly, f. j-continuous), where $j = \{\delta, \theta, \alpha, P, S, b, \beta\}$.

For example, we can assume (B, Λ) like a FWF j -TS over itself by the identity as proj. Also, the fuzzy topological product (see [6]) $B \times T$, for all FTS T, can be regarded like a FWF j-TS's over B, by the first proj. and in the same way for every fuzzy subspace (see [4]) of $B \times T$

Remark 2.2. In FWF topological space we work over at fuzzy topological base space B, say. When B is a point-space the theory reduces to that of ordinary fuzzy topology. A FWF topological (resp., f. *j*-topological) spaces over B is just a fuzzy topological (resp., f. *j*-topological) space M together with a fuzzy continuous (resp., f. *j*-continuous) projection function $p : (M, \tau) \to (B, \sigma)$. So the implication between FWF topological spaces and the families of FWF *j*-topological spaces are given in the following diagram where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

Figure 2.1.1: Implication between fibrewise fuzzy topology and fibrewise fuzzy j -topology, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

The following examples show that these implications are not reversible.

Example 2.3. Let M = B = [0, 1]. Let $\tau = \{\overline{0}, \overline{1}, \mu\}$ and $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where

$$\mu(x) = \begin{cases} \frac{1}{3}, & x = 0\\ 0, & x \neq 0 \end{cases} \quad \lambda(x) = \begin{cases} \frac{1}{4}, & x = 0\\ 0, & x \neq 0 \end{cases}$$

Let (M, τ) be a FWF topological space over (B, σ) and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) is FWF θ - topological space but not FWF δ - topological space.

Example 2.4. Let M = B = [0, 1]. Let $\tau = \{\overline{0}, \overline{1}, \mu\}$ and $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where

$$\mu(x) = \begin{cases} \frac{1}{4}, & x = 0\\ 0, & x \neq 0 \end{cases} \quad \lambda(x) = \begin{cases} \frac{1}{5}, & x = 0\\ 0, & x \neq 0 \end{cases}$$

Let (M, τ) be a FWF topological space over (B, σ) . and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) is FWF θ topological space but not FWF topological space.

Example 2.5. Let = $\{a, b\}, B = \{x, y\}, \tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3\}$ where $\mu_1 = \{(a, 0.2), (b, 0.3)\}$ $\mu_2 = \{(a, 0.5), (b, 0.6)\}$ $\mu_3 = \{(a, 0.7), (b, 0.7)\}$ And let $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where $\lambda = \{(x, 0.6), (y, 0.7)\}$ be the fuzzy topologies on set M and B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) FWF α -topological space but not FWF topological space.

Example 2.6. Let $M = \{a, b\}, B = \{x, y\}, \tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.1), (b, 0.2)\}, \mu_2 = \{(a, 0.3), (b, 0.4)\}.$ And let $\sigma = \{\overline{0}, \overline{1}, \lambda\},$ where $\lambda = \{(x, 0.6), (y, 0.6)\}$ be the fuzzy topologies on set M and B respectively and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) FWF S-topological space but not FWF α - topological space.

Example 2.7. Let $M = \{a, b\}, B = \{x, y\}, \tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2\}$ where $\mu_1 = \{(a, 0.8), (b, 0.9)\}$ $\mu_2 = \{(a, 0.6), (b, 0.7)\}$ And let $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where $\lambda = \{(x, 0.5), (y, 0.5)\}$ be the fuzzy topologies on set M and B respectively and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) FWF P-topological space but not FWF α - topological space.

Example 2.8. Let $M = \{a, b, c\}, B = \{x, y, z\}, \tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3, \mu_4\}$ where $\mu_1 = \{(a, 0.5), (b, 0.2), (c, 0.6)\}$ $\mu_2 = \{(a, 0.3), (b, 0.4), (c, 0.3)\}$ $\mu_2 = \{(a, 0.3), (b, 0.2), (c, 0.3)\}$ $\mu_3 = \{(a, 0.5), (b, 0.4), (c, 0.6)\}$ And let $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where $\lambda = \{(x, 0.5), (y, 0.5), (z, 0.5)\}$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively and let the projection function $p : (M, \tau) \to (B, \sigma)$ be the fuzzy topolo B respectively B respectively

And let $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where $\lambda = \{(x, 0.5), (y, 0.5), (z, 0.5)\}$ be the fuzzy topologies on set M and B respectively and let the projection function $p : (M, \tau) \rightarrow (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) FWF b-topological space but not FWF P-topological space and not FWF S-topological space.

Example 2.9. Let $M = \{a, b, c\}, B = \{x, y, z\}, \tau = \{\overline{0}, \overline{1}, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5\}$ where $\mu_1 = \{(a, 0.7), (b, 0.8), (c, 0.9)\}$ $\mu_2 = \{(a, 0.5), (b, 0.3), (c, 0.6)\}$ $\mu_3 = \{(a, 0.3), (b, 0.4), (c, 0.3)\}$ $\mu_4 = \{(a, 0.3), (b, 0.3), (c, 0.3)\}$ $\mu_5 = \{(a, 0.5), (b, 0.4), (c, 0.6)\}$ And let $\sigma = \{\overline{0}, \overline{1}, \lambda\}$, where $\lambda = \{(x, 0.2), (y, 0.6), (z, 0.2)\}$ be the fuzzy topologies on set M and B

respectively and let the projection function $p: (M, \tau) \to (B, \sigma)$ be the fuzzy function as the identity maps. Then (M, τ) FWF β -topological space but not FWF b-topological space.

Proposition 2.10. A fibrewise fuzzy set is FWF α -topological space iff it is FWF S-topological space and FWF P-topological space.

Proof. (\Leftarrow) Let (M, τ) be a FWF S-topological space and FWF P-topological space over (B, σ) then the projection function $p: (M, \tau) \to (B, \sigma)$ exists. To show that p is f. α - continuous . Since (M, τ) is FWF S-topological space and FWF P-topological space over (B, σ) , then p is f. S-continuous and f. P-continuous then p is f. α -continuous by proposition (1.3.18). Thus, (M, τ) is FWF α -topological space over (B, σ) . (\Rightarrow) It obvious. \Box

- **Remark 2.11.** (a) In FWF j-TS we carry out over FTS (B, σ) as base space. If B is a point-space the theory changes to that of ordinary fuzzy topology, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.
 - (b) A FWF j-TS's over B is just a FTS (M, τ) with a f. j-continuous proj. mapping $p : (M, \tau) \rightarrow (B, \sigma)$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.
 - (c) The coarsest such fuzzy topology got by p, in which the f. j -open set of (M, τ) are the exactly the pre image of the fuzzy open set of (B, σ) , where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.
 - (d) The FWF j -TS over (B, σ) is defined to be a FW set over B with FWF j-TS.
 - (e) We consider the fuzzy topological product (written as FTP) $B \times T$, for every FTS T, like a FWF j-TS's over b by the first proj., where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Definition 2.12. The FW-M ϑ : $M \to N$ where (M, τ) and (N, Λ) are FWF j-TS's over (B, σ) is said to be:

- (a) f. j-continuous if $b \in B$ and for all point $m \in M_b$, the pre image of all fuzzy open set of $\vartheta(m)$ is a f. j-open set of m, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.
- (b) f. j-open if $b \in B$ and for all point $m \in M_b$, the image of all fuzzy open set of m is a f. j-open set of $\vartheta(m)$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.
- (c) f. j-closed if $b \in B$ and for all point $m \in M_b$, the image of all fuzzy closed set of m is a f. j-closed set of $\vartheta(m)$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

If $\vartheta : M \to N$ is a FW-M where M is a FW set and (N, Λ) is a FWF j-TS over (B, σ) . We can give M the induced fuzzy topology (see [4]), in the ordinary sense and this is necessarily a FWF-topology. We may refer to it, therefore, like the induced FWFtopology and note the next characterizations, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. **Theorem 2.13.** Let $\vartheta : M \to N$ be a FW-M, where (N, Λ) a FWF j -TS over (B, σ) and M has the induced FWF-topology. Then for all FWF j -TS (K, ϱ) a FW-M $\phi : K \to (M, \tau)$ f. j-continuous iff the composition $\vartheta \circ \phi : K \to N$ is f. j-continuous, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. (\Rightarrow) Suppose that ϕ is f. j-continuous. Let $\in K_b$; $b \in B$ and let v be fuzzy open set of $(\vartheta \circ \phi)(k) = n \in N_b$ in N. Since ϑ is f. continuous, then $\vartheta^{-1}(v)$ is fuzzy open set containing $\phi(k) = m \in M_b$ in M. Since ϕ is f. j-continuous, then $\phi^{-1}(\vartheta^{-1}(v))$ is a f. j-open set containing $k \in K_b$ in K and $\phi^{-1}(\vartheta^{-1}(v)) = (\vartheta \circ \phi)^{-1}(v)$ is a f. j-open set containing $k \in K_b$ in $K, j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. (\Leftarrow) Suppose that $\vartheta \circ \phi$ is f. j-continuous. Let $k \in K_b$; $b \in B$ and \mathcal{U} be a fuzzy open set of $\phi(k) = m \in$ M_b in M. Since ϑ is fuzzy open then, $\vartheta(\mathcal{U})$ is a fuzzy open set containing $\vartheta(m) = \vartheta(\phi(k)) = n \in N_b$ in N. Since $\vartheta \circ \phi$ is f. j-continuous, then $(\vartheta \circ \phi)^{-1}(\vartheta(\mathcal{U})) = \phi^{-1}(\mathcal{U})$ is a f. j-open set containing $k \in K_b$ in K, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 2.14. Let $\vartheta : M \to N$ be a FW-M where, (N, Λ) a FWFTS over (B, σ) and M has the induced FWF-topology. If for every FWF j-TS (K, ϱ) a subjective FW-M $\phi : K \to (M, \tau)$ is f. j-open iff the composition $\vartheta \circ \phi : K \to N$ is f. j-open, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. (\Rightarrow) Suppose that ϕ is f. j-open. Let $\in K_b$; $b \in B$ and let \mathcal{U} be fuzzy open set of k in K. Since ϕ is f. j-open, $\phi(\mathcal{U})$ is f. j-open set containing $\phi(k) = m \in M_b$ in M. Since ϑ is f. j-open, then $\vartheta(\phi(\mathcal{U}))$ is a f. j-open set containing $\vartheta(m) = \vartheta(\phi(q)) = (\vartheta \circ \phi)(q) = n \in N_b$ in N and $\vartheta(\phi(\mathcal{U})) = (\vartheta \circ \phi)(\mathcal{U})$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$ (\Leftarrow) Suppose that $\vartheta \circ \phi$ is f. j-open. Let $k \in K_b$; $b \in B$ and \mathcal{U} be a fuzzy open set of $k \in K_b$ in K. Since $\vartheta \circ \phi$ is f. j-open then, $(\vartheta \circ \phi)(\mathcal{U})$ is f. j-open set containing $(\vartheta \circ \phi(q)) = n \in N_b$ in N. Since M has the induced FWF-topology then $\vartheta^{-1}(\vartheta \circ \phi)(\mathcal{U}) = \phi(\mathcal{U})$ is f. j-open containing $\vartheta^{-1}(\vartheta \circ \phi)(q) = \phi(q) = m \in M_b$ in M, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Let us pass of general cases of Theorems (2.13) and (2.14) as follows: Similarly in case of families $\{\vartheta_r\}$ of FW-M's, where $\vartheta_r : M \to N_r$ with (N_r, Λ_r) FWF j-TS over B for every r. Specially, given a family $\{(M_r, \tau_r)\}$ of FWF j-TS over B, the FWF-topological product $\prod_n M_r$ is defined to be the FW-product with the FWFtopology generated by the family of proj's $\pi_r : \prod_n M_r \to M_r$. Then for every FWF j-TS (K, ϱ) over B a FW-M $\xi : K \to \prod_n M_r$ is f. j-continuous (resp. f. j-open). For example when $M_r = M$ for all index r we see that the diagonal $\Delta : M \to \prod_n M_r$ is f. j-continuous (resp. f. j-open), where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Again if $\{(M_r, \tau_r)\}$ is a family of FWF j -TS's over B and $\phi : \coprod_n M_r \to M$ is a FW-M where (M, τ) a FWF-topology over B and $\coprod_n M_r$ is FWF-topological coproduct at the set-theoretic level with the ordinary coproduct fuzzy topology, also for every FWF-topology (M_r, τ_r) with the family of FW insertions $\Lambda_r : M_r \to \coprod_n M_r$ is f. jcontinuous (resp. f. j-open) iff the composition $\phi_r = \phi \circ \Lambda_r : M_r \to M$ is f. jcontinuous (resp. f. j-open). For example when $M_r = M$ for every index r we see that the codiagonal $\nabla : \coprod_n M_r \to M$ is f. jcontinuous (resp. f. j-open), where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

3. Fibrewise j-closed and fibrewise j-open fuzzy topological spaces $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

We present the ideas of fibrewise j-closed and fibrewise j-open FTS's fuzzy topological spaces over B, several property on the obtained concepts are studies, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Definition 3.1. The FWF j -TS (M, τ) over (B, σ) is said to be fibrewise f. j-closed (written as FWCF j -TS) if the proj., p is f. j-closed, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

For example, trivial FWF j -TS with fuzzy compact fibre (see [4]) is FWCF j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Theorem 3.2. Let $\vartheta : M \to N$ be f. j-closed FW-M where (M, τ) and (N, Λ) are FWCF j-TS's over (B, σ) . Then M is FWCF j -TS if N is FWCF j -TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Assume that $\vartheta : M \to N$ is closed FW-M and N is FWCF j-TS i.e. the proj. $p_N : N \to B$ is f. j-closed. To prove that m is FWCF j-TS i.e. the proj. $p_M : M \to B$ is f. j-closed. Now, let $m \in M_b; b \in B$, and let \mathcal{F} be a fuzzy closed set of m. Since ϑ is f. j-closed so that $\vartheta(\mathcal{F})$ is f. j-closed set of $\vartheta(m) = n \in N_b$ in N. Since p_N is f. j-closed so $p_N(\vartheta(\mathcal{F}))$ f. j-closed set in B. But, $p_N(\vartheta(\mathcal{F})) = p_N \circ \vartheta(\mathcal{F}) = p_M(\mathcal{F})$ is f. j-closed set of B. Thus. p_M is f. j-closed and M is FWCF j-TS. where $j \in \{\delta, \theta, \alpha, P, S, b, B\}$. \Box

Theorem 3.3. If (M, τ) is a FWF j-TS over (B, σ) . Assume that M_i is FWCF j-TS for every member M_i of a finite covering of M. Then M is FWCF j -TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Assume that M is a FWF j -TS over B, then the proj. $p_M : M \to B$ exist. To prove that p is f. j-closed. Since M_i is FWCF j -TS, then the proj. $p_{M_i} : M_i \to B$ is f. j-closed for every member M_i of a finite covering of M. Let $\mathcal{F} \subseteq M$ be a fuzzy closed set. Then $p(\mathcal{F}) = \bigcup p_i (M_i \cap \mathcal{F})$ which is finite union of f. j-closed sets and so p is f. j -closed, so that M is FWCF j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 3.4. Let (M, τ) be a FWF j -TS over (B, σ) . Then (M, τ) is a FWCF j -TS iff for every fibre M_b of M and every fuzzy open set \mathcal{U} of $M_b \subseteq M$, there is a f. j -open set \mathcal{O} of b where $M_{\mathcal{O}} \subseteq \mathcal{U}$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. (\Rightarrow) Assume that M is FWF j -TS i.e. the proj. $p: M \to B$ is f.j -closed. Now, let $b \in B$ and \mathcal{U} be fuzzy open set of M_b , so we have $M - \mathcal{U}$ is fuzzy closed set and p(M - U) is f. j-closed set. Let $\mathcal{O} = B - p(M - \mathcal{U})$ is f.j -open set of b. Hence, $M_{\mathcal{O}} = p^{-1}(B - p(M - \mathcal{U}))$ which is a subset of \mathcal{U} . Thus $M_{\mathcal{O}} \subseteq \mathcal{U}$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

(\Leftarrow) Suppose that the assumption is hold, to show that M is FWCF j -TS. Let \mathcal{F} be fuzzy closed set in M. Let $b \in B - p(\mathcal{F})$ and every fuzzy open set \mathcal{U} of $M_b \subseteq M$. By assumption there is f. j-open set \mathcal{O} of b such that $M_{\mathcal{O}} \subseteq \mathcal{U}$. It's easy to show that $\mathcal{O} \subseteq B - p(\mathcal{F})$. So that $B - p(\mathcal{F})$ is f. j-open set in B. Hence $p(\mathcal{F})$ is a fuzzy j -closed in B, p is f. j-closed and M is FWCF j -TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Definition 3.5. The FWF j -TS (M, τ) over (B, σ) is said to be fibrewise f. j -open (written as FWOF j-TS) if the proj. p is f. j-open, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

For example, trivial FWF j-TS's are always FWOF j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Theorem 3.6. Let $\vartheta : M \to N$ be a f. j-open FW-M where $(M, \tau), (N, \Lambda)$ are FWF j-TS over (B, σ) . If N is FWOF j-TS, then M is FWOF j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Since N is FWOF j -TS, we have $p_N : N \to B$ is f.j -open. To prove that p_N is f. j-open, i.e. the proj. $p_M : M \to B$ is f. j-open. Let $m \in M_b; b \in B$, and let \mathcal{U} be a fuzzy open set of $m, \vartheta(\mathcal{U})$ is f.j -open set of $\vartheta(m) = n \in N_b \subseteq N$ since ϑ is f. j-open. Also, since N is FWOF j -TS, then the proj. $p_N : N \to B$ is f. j-open and $p_N(\vartheta(\mathcal{U}))$ is f. j -open set in B, but $p_N(\vartheta(\mathcal{U})) = p_N \circ \vartheta(\mathcal{U}) = p_M(\mathcal{U})$. So that p_M is f.j -open and M is FWOF j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 3.7. Let $\vartheta : M \to N$ be a FW-M, where $(M, \tau), (N, \Lambda)$ are FWF j -TS's over (B, σ) . Assume that the product:

$$id_M \times \vartheta : (M \times_B M, \tau \times \tau) \to (M \times_B N, \tau \times \sigma)$$

is f. j-open and M is FWOF j-TS. Then ϑ itself f. j-open, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof . Consider the following figure: \Box

Figure 2: Diagraph of Theorem 3.7.

The projection on the right is surjective. While the projection on the left is f. j-open since M is FWOF j-TS. Thus $\pi_2 \circ id_M \times \vartheta = \vartheta \circ \pi_2$ is f.j -open and so ϑ is f.j - open, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Our next three results apply equally to FWCF j-TS's and FWOF j-TS's.

Theorem 3.8. Let $\vartheta : M \to N$ be a surjection FW fuzzy continuous where $(M, \tau), (N, \Lambda)$ are FWF j -TS's over (B, σ) . Then N is FWCF j-TS (resp. FWOF j -TS) if M is FWCF j TS (resp. FWOF j-TS), where $j \in \{\delta, \theta, \alpha, S, P, b, \beta\}$.

Proof. Suppose that M is FWCF j-TS (resp. FWOF j -TS). Then the proj. $p_M : M \to B$ is f. j-closed (resp. f. j-open). To prove that N is FWCF j-TS (resp. FWOF j-TS) over B i.e. the proj. $p_N : (N, \Lambda) \to (B, \sigma)$ is f. j-closed (resp. f. j-open). Suppose that $n \in N_b$; $b \in B$. Let \mathcal{V} be fuzzy closed (resp. fuzzy open) set of n. Since ϑ is fuzzy continuous so $\vartheta^{-1}(\mathcal{V})$ is fuzzy closed (resp. fuzzy open) set of ϑ . Since p_M is f. j-closed (resp. f. j-open), then $p_M(\vartheta^{-1}(\mathcal{V}))$ is f. j-closed (resp. f. j-open) in B, but $p_M(\vartheta^{-1}(\mathcal{V})) = p_M \circ \vartheta^{-1}(\mathcal{V}) = p_N(\mathcal{V})$. Thus p_N is f. j-closed (resp. f. j-open), and N is FWCF j-TS (resp. FWOF j-TS), where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 3.9. If (M, τ) is a FWF j -TS over (B, σ) . Assume that M is FWCF j-TS (resp. FWOF j-TS) over B. Then M_{B^*} is a FWCF j-TS (resp. FWOF j-TS) over B^* for every fuzzy subspace $B^* \subseteq B$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Assume that M is FWCF j-TS (resp. FWOF j-TS), so that the proj. $p: M \to B$ is f. j-closed (resp. f. j-open). To prove that M_{B^*} is f. j-closed (resp. f. j-open), i.e. the proj. $p_{B^*}: M_{B^*} \to B^*$ is f. j-closed (resp. f. j-open). Let $m \in M|_{B^*}$, and (\mathfrak{G} be fuzzy closed (resp. fuzzy open) set of m, we have $(5 \cap M_{B^*})$ is fuzzy closed (resp. fuzzy open) set of $M_{B^*} \cdot p_{B^*}(\mathfrak{G} \cap M_{B^*}) = p(\mathfrak{G} \cap M_{B^*}) = p(\mathfrak{G}) \cap p(M_{B^*}) = p(\mathfrak{G}) \cap B^*$ which is f. j-closed (resp. f. j-open) set in B^* . p_{B^*} is f. j-closed (resp. f. j-open). So that M_{B^*} is FWCF j-TS (resp. FWOF j-TS), where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 3.10. Let (M, τ) be a FWF j -TS over (B, σ) . Assume that (M_{B_i}, τ) is a FWCF j-TS's (resp. FWOF j-TS's) over (B_i, σ_{B_i}) for every member of a σ_{B_i} – f.j -open covering of B. So M is FWCF j-TS (resp. FWOF j -TS) over B, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Assume that M is FWF j -TS over B so, the proj. $p: M \to B$ is exist .To prove that p is f. j-closed (resp. f. j-open). Since M_B is FWCF j-TS (resp. FWOF j -TS) over B_i for every member of a $\sigma_{B_i} - f$. j -open covering of B, then the proj. $p_{M_i}: M_{B_i} \to B_i$ is f.j closed (resp. f. j-open). Now, let \mathcal{F} be fuzzy closed (resp. fuzzy open) set of $M_b; b \in B, p(\mathcal{F}) = \bigcup_{B_i} (\mathcal{F} \cap M_{B_i})$ which is finite union of f. j -closed (resp. f. j -open) sets of B. Thus p is f. j-closed (resp. fuzzy j - open and M is FWCF j-TS (resp. FWOF j-TS), where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Actually, the past Theorem is true to locally finite closed covering and there are several subclasses of the class of FWOF j-TS's which induced many important examples and have interesting properties, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

4. Fibrewise locally sliceable and fibrewise locally sectionable fuzzy jtopological spaces $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

We present the ideas of fibrewise locally sliceable and fibrewise locally sectionable fuzzy j-topological spaces over (B, σ) , several properties on the obtained concepts are studied, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

Definition 4.1. The FWF j -TS (M, τ) over (B, σ) is said to be locally sliceable (written as FW-LSL-F j -TS) if for all point $m \in M_b$; $b \in B$, there is a f.j -open set \mathbb{W} of b and a section $s : \mathbb{W} \to M_{\mathbb{W}}$ and $\mathfrak{s}(b) = m$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

The condition lead to p is f. j -open for if \mathcal{U} is a fuzzy open set of $m \in M$, then $\mathfrak{s}^{-1}(M_w \cap \mathcal{U}) \subseteq p(\mathcal{U})$ is a f. j-open set of $b \in W$ and hence in B. The class of BFW- LSL-F j -TS is finitely multiplicative stated in, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Theorem 4.2. Let $\{(M_r, \tau_r)\}_{r=1}^k$ be a finite family of FW-LSL-F j-TS's over (B, σ) . Then the FWF j -topological product $(M = \prod_B M_r, \tau)$ is FW-LSL-F j -TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Let $m = (m_r)$ be a point of $M_b; b \in B$, so that $m_r = \pi_r(m)$ for every index r. Since M_r is FW-LSL-F j-TS, there is a f. j-open set \mathbb{W}_r of b and a section $\mathfrak{s}_r : \mathbb{W}_r \to M_r \mid \mathbb{W}_r$, where $\mathfrak{s}_r(b) = m_r$. Then the intersection $\mathbb{W} = \mathbb{W}_1 \cap \ldots \cap \mathbb{W}_n$ is a f. j-open set of b and a section $\mathfrak{s} : \mathbb{W} \to M_{\mathbb{W}}$ is given by $(\vartheta \circ \mathfrak{s})(w) = \mathfrak{s}_r(w)$ for every index r and every point $w \in \mathbb{W}$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 4.3. Let $\vartheta : M \to N$ fuzzy continuous, surjection FW-M, where (M, τ) and (N, Λ) are FWF j-TS's over (B, σ) . If M is FW-LSL-F j-TS, then N is so, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Let $n \in N_b$; $b \in B$. Then $n = \vartheta(m)$, for some $m \in M_b$. If M is FW-LSL-F j TS, then there is a f. j-open set \mathbb{W} of b and a section $\mathfrak{s} : \mathbb{W} \to M_{\mathbb{W}}$ where $\mathfrak{s}(b) = m$. Then $\vartheta \circ \mathfrak{s} : \mathbb{W} \to M_{\mathbb{W}}$ is a section such that $\mathfrak{s}(b) = n$ as required, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Definition 4.4. The FWF j -TS (M, τ) over (B, σ) is said to be fibrewise discrete (written as FW-D-F j-TS) if the proj. p is a local fuzzy j-homeomorphism (i.e. f. j-continuous, f. j-open, one to one, onto), where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

This means, we recall, that for every point $b \in B$ and every point $m \in M_b$; $b \in B$ there is a f. j-open set \mathcal{V} of m in M and a f. j-open set \mathbb{W} of b in B where p maps \mathcal{V} fuzzy j-homeomorphically onto \mathbb{W} , in that case we say that \mathbb{W} is evenly covered by \mathcal{V} . It is clear that FW-D-F j-TS's are FW-LSL-F j-TS there for FWOF j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

The class of FW-D-F j-TS's are finitely multiplicative, where $j \in \{\delta, \theta, \alpha, P, S, b \beta\}$.

Theorem 4.5. Let $\{(M_r, \tau_r)\}_{r=1}^k$ be a finite family of FW-D-F j -TS over (B, σ) . Then the FWF T-product $(M = \prod_B M_r, \tau)$ is FW-D-F j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Given a point $m \in M_b; b \in B$, there is for every index r a fuzzy open set \mathcal{U}_r of $\pi_r(m)$ in M_r , where the proj. $p_r = p \circ \pi_r^{-1}$ maps \mathcal{U}_r fuzzy j-homeomorphically onto the f. j-open $p_r(\mathcal{U}_r) = \mathbb{W}_r$ of b. Then the fuzzy open $\prod_B \mathcal{U}_r$ of m is mapped fuzzy j homeomorphically onto the intersection $\mathbb{W} = \cap \mathbb{W}_r$ which is a f. j -open of b, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

An attractive characterization of FW-D-F j-TS's are given by the following, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Theorem 4.6. If (M, τ) is FWF j-TS over (B, σ) . Then, M is FW-D-F j-TS iff

- (a) M is FWOF j -TS
- (b) The diagonal embedding $\Delta : M \to M \times_B M$ m is f. j-open, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. (\Leftarrow) Suppose that (a) and (b) are satisfied. Let $m \in M_b$; $b \in B$, then $\Delta(m) = (m, m)$ admits a f. j-open set in $M \times_B M$ which is entirely contained in $\Delta(m)$. Without real lacking in general we may suppose the f. j-open set is of the form $\mathcal{U} \times_B \mathcal{U}$, where U is a fuzzy open set of m in M. Then $p \mid \mathcal{U}$ is a fuzzy j-homeomorphism. Therefore, M is FW-D-F j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

(⇒) Assume that M is FW-D-F j-TS. We have already seen that M is FWOF j-TS. To prove that Δ is f. j-open it is sufficient to prove that $\Delta(M)$ is f. j-open in $M \times_B M$. So let $m \in M_b$; $b \in B$, and let \mathcal{U} be a fuzzy open set of m in M, where $\mathbb{W} = p(\mathcal{U})$ is a f. j open set of b in B and p maps \mathcal{U} fuzzy j-homeomorphically onto \mathbb{W} . Then $\mathcal{U} \times_B \mathcal{U}$ is contained in $\Delta(M)$ since if not then there exist distinct $\lambda, \lambda^* \in M_W$, where $w \in \mathbb{W}$ and $\lambda, \lambda^* \in \mathcal{U}$, which is absurd, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

F. j-open subset of FW-D-F j-TS's are also FW-D-F j-TS, Actually, we have, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Theorem 4.7. Let $\vartheta : M \to N$ be a f. j-continuous, injection FW-M, where (M, τ) and (N, Λ) are FWOF j-TS's over (B, σ) . If N is FW-D-F j-TS, then M is so, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

Proof . Consider the diagram shown below. \Box

Figure 3: Diagraph of Theorem 4.7.

Theorem 4.8. Assume that $\vartheta : M \to N$ is a f. j-open, surjection FW-M, where (M, τ) and (N, Λ) are FWOF j-TS's over (B, σ) . If M is FW-D-F j-TS, then N is so, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. In the above figure, with these fresh hypotheses on ϑ , if M is FW-D-F j-TS, then $\Delta(M)$ is f. j-open in $M \times_B M$, by Theorem (4.6), so $\Delta(N) = \Delta(\vartheta(M)) = (\Delta \times_B \Delta) (\Delta(M))$ is f. j-open in $N \times_B N$. Thus, Theorem (4.8) follows from Theorem (4.6) again, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Theorem 4.9. If $\vartheta, \phi : M \to N$ is a f. j-continuous FW-M, where (M, τ) is FWF j -TS and (N, Λ) is FW-D-F j-TS over (B, σ) . Then the coincidence set $L(\vartheta, \phi)$ of ϑ and ϕ is f. j-open in M, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. The coincidence set is precisely $\Delta^{-1}(\vartheta \times \phi)^{-1}(\Delta(N))$, where: \Box

Figure 4: Diagraph of Theorem 4.9.Fig. 4.2.

Hence Theorem (4.9) follows at once from Theorem (4.6). In particular take M = N, take $\vartheta = id_M$ and take $\phi = s \circ \mathcal{P}$ where s is a section, we conclude that s is a f. j open embedding when M is FW-D-F j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

Theorem 4.10. If $\vartheta : M \to N$ is a f. j-continuous FW-M, where (M, τ) is FWOF j-TS and (N, Λ) is FW – D – Fj – TS over (B, σ) . Then the FW-graph: $\Gamma : M \to M \times_B N$ of ϑ is a f. j-open embedding, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. The FW-graph is defined in the same way as the ordinary graph, but with values in the FWF j-T-product, therefore the diagram shown below is commutative. \Box

Figure 5: Diagraph of Theorem 4.10.

Since $\Delta(N)$ is f. j-open in $N \times_B N$, by Theorem (4.6), so $\Gamma(M) = (\vartheta \times id_N)^{-1} (\Delta(N))$ is f. j-open in $M \times_B N$ as asserted, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Remark 4.11. If (M, τ) is FW-D-F j -TS over (B, σ) then for every point $m \in M_b$; $b \in B$, there is a f. j-open set w of b a unique section $\mathfrak{s} : \mathbb{W} \to M_{\mathbb{W}}$ exist satisfying $\mathfrak{s}(b) = m$, we may refer to s as the section through m, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. **Definition 4.12.** The FWF j-TS (M, τ) over (B, σ) is said to be locally sectionable (written as FW-LSE-F j-TS) if for every point $b \in B$, admits a f. j-open set \mathbb{W} and a section $\mathfrak{s} : \mathbb{W} \to M_{\mathbb{W}}$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Remark 4.13. The non-empty FW-LSL-F j-TS's are FW-LSE-F j-TS's, but the converse is false. In fact, FW-LSE-F j-TS's are not necessarily FWOF j-TS, for example take $M = (-1, 1] \subseteq \mathbb{R}$ with (M, τ) , the natural projection onto $B = \mathbb{R} \mid \mathbb{Z}; (B, \sigma)$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. The class of FW-LSE-F j-TS's is finitely multiplicative, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$

Theorem 4.14. If $\{(M_r, \tau_r)\}_{r=1}^k$ is a finite family of FW-LSE-F j-TS's over (B, σ) . Then the FWFT-product $(M = \prod_B M_r, \tau)$ is FW-LSE-F j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Proof. Given a point *b* of *B*, there exist f. j-open set \mathbb{W}_r of *b* and a section $\mathfrak{s}_r : \mathbb{W}_r \to M_r \mid \mathbb{W}_r$ for every index *r*. Since there are finite number of indices the intersection \mathbb{W} of the f. j -open sets \mathbb{W}_r is also a f. j-open set of *b*, and a section $\mathfrak{s} : \mathbb{W} \to (\prod_n M_r)_{\mathbb{W}}$ is given by $(\pi_r \circ \mathfrak{s})(w) = \mathfrak{s}_r(w)$, for $w \in \mathbb{W}$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$. \Box

Our last two result apply equally well to every of the above three Theorems.

Theorem 4.15. If (M, τ) is a FW-D-F j -TS over (B, σ) . Suppose that (M, τ) is FW-LSLF j-TS, FW-D-F j-TS or FW-LSE-F j-TS's over (B, σ) . Then so is M_{B^*} over B^* for every f. j-open set $B^* \subseteq B$, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Theorem 4.16. Let (M, τ) be FWF j -TS over (B, σ) . Assume that M_{B_i} is FW-LSL-F j TS, FW-D-F j-TS or FW-LSE-F j-TS over B_i for every member B_i of a f. j-open covering of B. So is M over B, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

Remark 4.17. It is not difficult to give example of different FW-D-F j-TS's on the same FW-set which are in equivalent, as FWF j-TS's. For this reason we must be careful not to say the FW-D-F j-TS, where $j \in \{\delta, \theta, \alpha, P, S, b, \beta\}$.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [2] A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets Syst. 44 (1991) 303–308.
- [3] C. L. Chang, Fuzz topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- M. H. Ghanim, E. E. Kerre and A. S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl. 102 (1984) 189–202.
- [5] I.M. Hanafy, Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math. 7(2) (1999) 419–430.
- [6] B. Hutton, Products of fuzzy topological spaces, Top. Appl. 11 (1980) 59–67.
- [7] I. M. James, Fibrewise Ttopology, Cambridge University Press, London, 1989.
- [8] P. P. Ming and L. Y. Mong, Fuzzy topology I. neighborhood structure of a fuzzy point and Moor-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous function between fuzzy topological spaces, J. Math. Anal. Appl. 34 (1990) 245-254.
- [10] C. V. Negoita and D. A. Ralescu, Application of Fuzzy Sets to Systems Analysis, Basel, Stuttgart, 1975.
- [11] J. H. Park, B. Y. Lee and J. R. Choi, Fuzzy θ-connectedness, J. Fuzzy Set Syst. 59 (1993) 237-244.
- [12] A.D. Ray and P. Chettr, On Fuzzy Nearly Compact Regular Open Topology, Adv. Fuzzy Math. 4(1) (2009) 59-68,.
- [13] S. Saha, Fuzzy δ -continuous mappings, J. Math. Appl. 126 (1987) 130–142.
- [14] S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi-pre continuity, Fuzzy Sets Syst. 98(3) (1998) 383-391.

- [15] Y. Y. Yousif and L. A. Hussain, Fibrewise bitopological spaces, Int. J. Sci. Res. 6(2) (2017) 978–983.
- [16] Y. Y. Yousif and L. A. Hussain, *Fibrewise IJ-perfect bitopological spaces*, Ibn Al-Aaitham 1st. International Scientific Conference, IOP Conf. Series: Journal of Physics: Conf. Series 1003 (2018) 012063 doi:10.1088/1742-6596/1003/1/012063, 13-14 December (2017) pp. 1-12.
- [17] Y. Y.Yousif and L. A. Hussain, *Fibrewise pairwise bi-topological spaces*, 1st. Scientific International Conference, College of Science, Al-Nahrain University, [DOI. 10.22401/SIC.1.21], 21-22 November (2017) pp.157-165.
- [18] Y. Y. Yousif and M. A. Hussain, Fibrewise Soft Ideal Topological Spaces, Ibn Al-Aaitham 1st. International Scientific Conference, IOP Conf. Series: Journal of Physics: Conf. Series 1003 (2018) 012050 doi :10.1088/1742-6596/1003/1/012050, 13-14 December 2017, pp. 1-12.
- [19] Y. Y. Yousif and M. A. Hussain, *Fibrewise soft near separation axioms*, The 23th Science Conference of College of Education, Al-Mustansiriyah University, 26-27 April (2017), pp.400-414.
- [20] Y. Y. Yousif and M. A. Hussain, Fibrewise soft topological spaces, Int. J. Sci. Res. 6(2) (2017)) 1010–1019.
- [21] Y. Y. Yousif and B. Khalil, Feeble regular and feeble normal spaces in α-topological spaces using graph, Int. J. Nonlinear Anal. 12 (2021) 415–423.
- [22] L. A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965) 338–353.