A topology on a ring part of IS-algebra

Fatema F. Kareem ${ }^{\text {a }}$, Reyadh. D. Ali ${ }^{\text {b }}$
${ }^{\text {a Department of Mathematics, College of Education for Pure Science,Ibn Al-Haithem, University of Baghdad, Baghdad, Iraq }}$
${ }^{b}$ Department of Mathematics, College of Education for Pure Science, University of Karbala, Karbala, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

We give a topology on a ring part of IS-algebra, by define prime ideals of a commutative ring part of IS-algebra and study some of its properties.

Keywords: IS-algebra; adjoin ring part; prime ideal.
2010 MSC: 54A05, 06F35, 03E72

1. Introduction

In1966 [2], the notion of BCI-algebra was introduced by Iseki and Imai. A new class of algebra related to BCI-algebra was introduced by Jun and Hong [4, called a BCI-semigroup. After that, Jun et al. 5] renamed the BCI-semigroup as the IS-algebra and studied further properties of this algebra. In [10] the authors gave the ring part and adjoin ring part of IS-algebra. The concept of the topology was applied to a lot of algebraic structures by several authors; see [1, 6, 8, 7, 9]. This paper is intended to implement the new notion of adjoin ring part of IS-algebra and discusses some of their properties to study a topology on this structure.

2. Preliminaries

Definition 2.1. [2, 3] Algebra $(L, *, 0)$ of (2, 0) is a BCI-algebra, if, $\forall m, n, s \in L$

$$
\begin{gathered}
\left(B C I_{1}\right)((m * n) *(m * s)) \leq(s * n) \\
\left(B C I_{2}\right)(m *(m * n)) \leq n \\
\left(B C I_{3}\right) m \leq m
\end{gathered}
$$

($\left.B C I_{4}\right) m \leq n$ and $n \leq m$ imply $m=n$.

[^0]In a BCI -algebra $(L, *, 0)$, the following properties are satisfied:

$$
\begin{aligned}
& \left(B C I_{1 \backslash}\right): m * 0=m \\
& \left(B C I_{2 \backslash}\right):(m * n) * s=(m * s) * n \\
& \left(B C I_{3 \backslash}\right): m *(m *(m * n))=m * n \\
& \left(B C I_{4 \backslash}\right): 0 *(0 * m)=m \\
& \left(B C I_{5 \backslash}\right): 0 *(m * n)=(0 * m) *(0 * n) .
\end{aligned}
$$

Definition 2.2. [3] Let $(L, *, 0)$ be a BCI-algebra and $\emptyset=I \subseteq L$, I is called an ideal of L if it satisfies the following conditions:
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$ (here $x, y \in L$).

Definition 2.3. [4] An IS-algebra $(L, *, \bullet, 0)$ is $L \neq \phi$ with two binary operations $*$, \bullet and constant 0 such that, $\forall m, n, s \in L$
(I) $(L, *, 0)$ is a BCI-algebra,
(II) (L, \bullet) is a semigroup,
$(I I I) ~ m \bullet(n * s)=(m \bullet n) *(m \bullet s)$ and $(m * n) \bullet s=(m \bullet s) *(n \bullet s)$.
Example 2.4. 4] IfL $=\{0, e, f, g, h\}$ is a set with the two operations $*$ and \circ given by :

$*$	0	e	f	g	h
0	0	e	0	0	h
e	e	0	e	e	0
f	f	f	0	0	0
g	g	g	g	0	0
h	h	h	h	h	0

\circ	0	e	f	g	h
0	0	0	0	0	0
e	0	0	0	0	0
f	0	0	0	0	f
g	0	0	0	f	g
h	0	e	f	g	h

Then $(L, *, \circ, 0)$ is an IS-algebra (by routine calculations).
In ($L, *, \circ, 0$), we have $v \circ 0=0 \circ v=0$, for any $v \in L$.
Lemma 2.5. [4] Let $(L, *, \bullet, 0)$ be an IS-algebra. Then for any $v, w, r \in L$, we have: $v \leq w$ implies $v \bullet r \leq w \bullet r$ and $r \bullet v \leq r \bullet w$.

Definition 2.6. [5] If $I \neq \phi$ is a subset of an IS-algebra $(L, *, \bullet, 0)$. Then Iis called an ideal of $(L, *, \bullet, 0)$, if
(I_{1}) $v * w \in I$ and $w \in I$, then $v \in I, \forall v, w \in L$
(I_{2}) for any $v \in L$ Landr $\in I$, we have $v \bullet r \in I, r \bullet v \in I$.
Definition 2.7. [10]If $(L, *, \bullet, 0)$ is an IS-algebra, then $K(L)=\{v \in L \mid 0 * v=v\}$ is said to be ring part of L.

Theorem 2.8. [10] In IS-algebra $(L, *, \bullet, 0)$:

1. $K(L)$ is a subalgebra of $(L, *, 0)$,
2. $(K(L), *, \bullet)$ is a maximal ring .
3. $K(L)$ is an ideal of $(L, *, \bullet, 0) \Leftrightarrow K(L)$ is an ideal of BCI-algebra $(L, *, 0)$.

3. A Topology on prime ideals of adjoin ring part

In this section, we study the prime spectrumspec (N) of a ring part of an IS-algebra $(L, *, \bullet, 0)$. It turns out $\operatorname{spec}(N)$ is T_{0} and T_{1}-space. Moreover $f: \operatorname{spec}(N) \rightarrow \operatorname{spec}(K)$ is a continuous map.

Definition 3.1. For every nonempty subset B of L, we define $N(L)=\{v \in L \mid b *(b *(b \bullet v)) \leq$ $b \bullet v, \forall b \in B\}$, which will be called adjoin ring part of L.N(L) in usual will be written Nfor short.

Theorem 3.2. In IS-algebra $(L, *, \bullet, 0)$:
(a) Nis a subalgebra of $(L, *, \bullet, 0)$
(b) If $m+n=m *(0 * n)$, then $(N,+, \bullet)$ is a ring and $m+n=n+m,(m+n)+s=m+(n+s)$.

Proof .
(a) Since $0 \in N$, so $N \neq \phi$. For any $v, w \in N$, we get $d *(d *(d \bullet(m * n)))=(d * 0) *(d *(d \bullet(m * n)) \leq$ $(d \bullet(m * n)) * 0=d \bullet(m * n) \ldots$...by $B C I_{1^{\prime}}$, that is $m * n \in N$. In addition, we get
$d *(d *(d \bullet(m \bullet n)))=(d * 0) *\left(d *(d \bullet(m \bullet n)) \leq(d \bullet(m \bullet n)) * 0=d \bullet(m \bullet n) b y \ldots B C I_{1^{\prime}}\right.$, that is $m \bullet n \in N$. Similarly we get $n \bullet m \in N$.
(b) $(N, *, 0)$ is BCI-algebra by (a), $\forall m, n, s \in N$, we get $d *(d *(d \bullet(m+n)))=(d * 0) *(d *(d \bullet$ $(m *(0 * n)) \leq(d \bullet(m *(0 * n) * 0 \leq d \bullet(m *(0 * n))$, then $(m *(0 * n)) \in N$. So $m+n \in N$. In addition, since $m+n=m *(0 * n)=(0 *(0 * m)) *(0 * n)=(0 *(0 * n)) *(0 * m)=n *(0 * m)=$ $n+m$, andm $+(n+s)=m *(0 *(n+s))=m *(0 *(n *(0 * s)))=(n *(0 * s)) *(0 * m)=$ $(n *(0 * m)) *(0 * s)(m *(0 * n) *(0 * s))=(m+n)+s$.
Therefore " + " is associative and also commutative. Moreover,
$m+0=0+m=0 *(0 * m)=m a n d m+(0 * m)=(0 * m)+m=(0 * m) *(0 * m)=0$, hence $0 * m$ is the inverse of m. Thus $(N,+)$ is an abelian group.
Also, since N is closed about \bullet on IS-algebra $(L, *, \bullet, 0)$, so
$m \bullet(n+s)=m \bullet(n *(0 * s))=m \bullet n *(m \bullet(0 * s))=m \bullet n *(m \bullet 0 * m \bullet s)=m \bullet n *(0 * m \bullet s)=$ $m \bullet n+m \bullet s$ in same reason $(m+n) \bullet s=m \bullet s+n \bullet s$, hence $(N,+, \bullet)$ is a ring.

Lemma 3.3. N is an ideal of an IS-algebra $(L, *, \bullet, 0) \Leftrightarrow N$ is an ideal of a BCI-algebra $(L, *, 0)$ Proof .If N is an ideal of an IS-algebra $(L, *, \bullet, 0)$, then by definition above, N is an ideal of a BCI-algebra $(L, *, 0)$. Conversely, suppose N is an ideal of a BCI-algebra $(L, *, 0), \forall v \in L, r \in N$ $d *(d *(d \bullet(r \bullet v)))=(d * 0) *(d *(d \bullet r) \bullet v)) \leq((d \bullet r) \bullet v) * 0=((d \bullet r) \bullet v) \ldots$. by BCI I_{1}, Therefore $r \bullet v \in N$, in same reasoning $v \bullet r \in N$, hence N is an ideal of an IS-algebra $(L, *, \bullet, 0)$.

Definition 3.4. Let N be a ring part of IS-algebra $(L, *, \bullet, 0)$. A proper ideal J of N is called a prime if $c d \in J$ for elements c and d of N, either $c \in J$ or $d \in J$.

Definition 3.5. Let N be a ring part of IS-algebra $(L, *, \bullet, 0)$ and $\operatorname{spec}(N)$ be the collection of all prime ideals of N. Now for each ideal Y of N, we define the variety of Y by $V(Y)=\{J \in$ $\operatorname{spec}(N) \mid Y \subseteq J\}$, Therefore $V(N)=\phi$ and $V(\{0\})=\operatorname{spec}(N)$.

Theorem 3.6. Let $(L, *, \bullet, 0)$ be an IS-algebra and N be a ring part of L. If Y and H are two ideals of N, then

$$
\begin{gather*}
H \subseteq Y \Rightarrow V(Y) \subseteq V(H) \tag{3.1}\\
V(Y) \cup V(H) \subseteq V(Y \cap H) \tag{3.2}
\end{gather*}
$$

Proof .

(3.1) If $O \in V(Y)$, then $Y \subseteq O$ and since $H \subseteq Y$, therefore $O \in V(H)$. It follows that $V(Y) \subseteq$ $V(H)$.
(3.2) Let $O \in V(Y) \cup V(H)$, then $Y \subseteq O$ or $H \subseteq O$. Hence $Y \cap H \subseteq O$, therefore $O \in V(Y \cap H)$. It follows that $V(Y) \cup V(H) \subseteq V(Y \cap H)$.

Lemma 3.7. Let $(N,+, \bullet)$ be a ring of IS-algebra $(L, *, \bullet, 0)$, For any $Y_{i}(i \in I)$ of an ideals of N. Then $\cap_{i \in I} V\left(Y_{i}\right)=V\left(\sum_{i \in I} Y_{i}\right)$.
Proof . Let $J \in \cap_{i \in I} V\left(Y_{i}\right)$, then $Y_{i} \subseteq J, \forall i \in I$, hence $\sum Y_{i} \subseteq J$. So $J \in V\left(\sum Y_{i}\right)$, It follows that $\cap_{i \in I} V\left(Y_{i}\right) \subseteq V\left(\sum_{i \in I} Y_{i}\right)$.
Now, if $J \in V\left(\sum Y_{i}\right) \cdot S o \sum Y_{i} \subseteq J$ and since $Y_{i} \subseteq \sum Y_{i}$, for $i \in I$, hence $Y_{i} \subseteq J$, then $J \in V\left(Y_{i}\right)$, for $i \in I$. It follows that $J \in \cap_{i \in I} V\left(Y_{i}\right)$.

Definition 3.8. Let N be a ring part of an IS-algebraL. Then a prime idealJ of N is extraordinary if for any two ideals Y and H of $N, Y \cap H \subseteq J$ implies $Y \subseteq J$ or $H \subseteq J$.

Theorem 3.9. Let N be a ring part of an IS-algebra $(L, *, \bullet, 0)$. If every prime ideal of N is an extraordinary, then $V(Y) \cup V(H)=V(Y \cap H)$, for any two ideals Y and H of N.
Proof . By Theorem [3.6, $V(Y) \cup V(H) \subseteq V(Y \cap H)$. Now, let $J \in V(Y \cap H)$, then $Y \cap H \subseteq J$ and since J is extraordinary. Then $Y \subseteq J$ or $H \subseteq J \Rightarrow J \in V(Y)$ or $J \in V(H) \Rightarrow J \in V(Y) \cup V(H) \Rightarrow$ $V(Y \cap H) \subseteq V(Y) \cup V(H)$. Hence $V(Y) \cup V(H)=V(Y \cap H)$.

By Definition 3.5, Lemma 3.7 and Theorem 3.9, it follows that the family $\{V(Y)\}_{Y \subseteq N}$ of subsets of $\operatorname{spec}(N)$ satisfies the axioms for closed sets in a topological space. The topological space $\operatorname{spec}(N)$ is called the prime spectrum of N also the resulting topology is called the Zariski topology.

Example 3.10. Let $\left(\mathrm{Z}_{6},+, \bullet\right)$ be a ring part of IS-algebra $\left(\mathrm{Z}_{6},-, \bullet, 0\right)$, then the set of all ideals of Z_{6} are $\left\{\{\overline{0}\},\{\overline{0}, \overline{3}\},\{\overline{0}, \overline{2}, \overline{4}\}, \mathrm{Z}_{6}\right\}$. Now, the $\operatorname{set}\{\{\overline{0}, \overline{3}\},\{\overline{0}, \overline{2}, \overline{4}\}\}$ is all prime ideals of Z_{6} and that is extraordinary, hence $\operatorname{Spec}\left(\mathrm{Z}_{6}\right)=\{\{\overline{0}, \overline{3}\},\{\overline{0}, \overline{2}, \overline{4}\}\}$. Therefore the topology on spectrum is $\tau=$ $\left\{\phi, \operatorname{spec}\left(\mathrm{Z}_{6}\right)\right\}$.

Remark 3.11. For any $Y \subseteq N$, we're denoting the complement of $V(Y)$ by $W(Y)$. So $W(Y)=\{J \in \operatorname{spec}(N) \mid Y \not \subset J\}$, so the collection $\{W(Y)\}_{Y \subseteq N}$ is the collection of open sets of a topological space $\operatorname{Spec}(N)$. By duality, we get the following:

Proposition 3.12. Let N be a ring part of IS-algebra $(L, *, \bullet, 0)$, then
(i) $W(N)=\operatorname{Spec}(N), W(\{0\})=\phi$,
(ii) If $\left\{Y_{i}\right\}_{i \in I}$ is any family ideals of N, then $\cup_{i \in I} W\left(Y_{i}\right)=W\left(\cup_{i \in I} Y_{i}\right)$,
(iii) $W\left(Y_{1} \cap Y_{2}\right)=W\left(Y_{1}\right) \cap W\left(Y_{2}\right)$, for some ideals $Y_{1}, Y_{2} \subseteq N$
(iv) For any two ideals $Y, H \in N, Y \subseteq H \Rightarrow W(Y) \subseteq W(H)$.

Proof .Clear.
Remark 3.13. For any $b \in N$, we denote $V(\{b\})$ by $V(b)$ and $W(\{b\})$ by $W(b) . S o V(b)=\{J \in$ $\operatorname{spec}(N) \mid b \in J\}$ and $W(b)=\{J \in \operatorname{spec}(N) \mid b \notin J\}$.

Theorem 3.14. If N is a ring part of IS-algebra $(L, *, \bullet, 0)$, the collection $\{W(b)\}_{b \in N}$ is a basis for the topology on $\operatorname{Spec}(N)$.
Proof. If $Y \subseteq N, W(Y)$ an open and $W(Y) \subseteq \operatorname{Spec}(N)$, then by proposition 3.12, we get $W(Y)=$ $W\left(\cup_{b \in Y}\{b\}\right)=\cup_{b \in Y} W(b)$. Hence, any open set of $\operatorname{Spec}(N)$ is the union of subsets from the collection $\{W(b)\}_{b \in N}$.

Theorem 3.15. $\operatorname{Spec}(N)$ is a T_{0} topological space.
Proof .LetJ and Q be any two distinct prime ideals in $\operatorname{Spec}(N)$. Then either $J \not \subset Q o r Q \not \subset J$.
If $J \not \subset Q \Rightarrow \exists b \in J \ni b \notin Q \Rightarrow Q \in W(b)$ and $J \notin W(b)$
$\Rightarrow \exists$ an open set $W(b)$ containing Q, but not J.
If $Q \not \subset J \Rightarrow \exists b \in Q \ni b \notin J \Rightarrow Q \notin W(b)$ and $J \in W(b)$.
$\Rightarrow \exists$ an open set $W(b)$ containing J, but not Q.
Hence $\operatorname{Spec}(N)$ is a T_{0}-space.
Theorem 3.16. $\operatorname{Spec}(N)$ is a T_{1} topological space.
Proof .If $\operatorname{Spec}(N)=\phi \Rightarrow \operatorname{spec}(N)$ is trivial space and so it is a T_{1}-space. Now, if $\operatorname{Spec}(N) \neq \phi$, then there exist J prime ideal of $\operatorname{Spec}(N), V(J)=\{J\}$ and so $\{J\}$ is closed set in $\operatorname{Spec}(N)$,i.e. $\operatorname{Spec}(N)$ is a T_{1}-space.

Proposition 3.17. If $l: N \rightarrow K$ is a homomorphism of two ring parts N and K of IS-algebra $(L, *, \bullet, 0)$, then \forall prime ideal of $K, l^{-1}(J)=\{b \in N / l(b) \in J\}$ is also a prime ideal of S.
Proof .For any $c, d \in J$ such thatc $\bullet d \in l^{-1}(J) \Rightarrow l(c \bullet d) \in J \Rightarrow l(c) \bullet l(d) \in J$ (by homomorphism) $\Rightarrow l(c) \in J$ or $l(d) \in J \Rightarrow c \in l^{-1}(J)$ ord $\in l^{-1}(J)$.Hence $l^{-1}(J)$ is prime ideal.

Theorem 3.18. If $l: N \rightarrow K$ is a homomorphism of two ring parts N and K of IS-algebra $(L, *, \bullet, 0)$, then $f: S p e c K \rightarrow$ Spec N define by $f(J)=l^{-1}(J), \forall J \in S p e c K$ is continuous map.
Proof .For any $b \in N$, LetW (b) be a basic open set in $\operatorname{Spec}(N)$, then

$$
\begin{aligned}
f^{-1}(W(b)) & =\{J \in \operatorname{SpecK} / f(J) \in W(b)\} \\
& =\left\{J \in \operatorname{SpecK} / l^{-1}(J) \in W(b)\right\} \\
& =\left\{J \in \operatorname{SpecK} / b \notin l^{-1}(J)\right\} \\
& =\{J \in \operatorname{SpecK} / l(b) \notin J\}
\end{aligned}
$$

which is open in $\operatorname{Spec}(K)$. Hence fis a continuous map.

4. Conclusion

We have studied the topology of a ring part of IS -algebra by using prime ideals of a commutative ring part of IS-algebra and discussed few results of this topology, for example, the prime spectrum $\operatorname{spec}(N)$ of a ring part of an IS-algebra and study some of its properties. Also, proved that $\operatorname{spec}(N)$ is T_{0} and T_{1}-space. Furthermore, $f: \operatorname{spec}(N) \rightarrow \operatorname{spec}(K)$ it is a continuous mapping.

5. Open problems

The following are some open problems for future works:

1. Studying the theory of soft topological space on IS-algebra.
2. Introducing a compact and simply compact of a ring part of an IS-algebra.
3. Studying of soft simply path connected spaces and soft simply compact spaces.
4. Studying the filter of this structure.

References

[1] E. Eslami and F. Kh. Haghani, Pure filters and stable topology on BL-algebras, Kybernetika, 45 (2009) 491-506.
[2] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV,Proc. Japan Acad. Ser A. Math. Sci. 42 (1966) 19-22.
[3] K. Iseki, On BCI-algebras, Math. Sem. Notes, 8 (1980) 125-130.
[4] Y. Jun and S. M. Hong, BCI-semigroups, Honam Math. J. 15(1) (1993) 59-64.
[5] Y. Jun, Roh E. H. and X. L. Xin, I-ideals generated by a set in IS-algebras, Bull Korean Math. Soc. 35 (1998) 615-624.
[6] F. Kareem, R. D. Ali and S. M. Mostafa, Fuzzy topological spectrum of a KU-algebra, Mater. Sci. Eng. (2019) 571012015.
[7] S. M. Mostafa and F. F. Kareem, A topology spectrum of a KU-algebra, J. New Theo. 5 (2015) 78-91.
[8] T. Roudbari and N. Motahari, A topology on BCK-modules via prime sub-BCK-modules, J. Hyper Struct. 1 (2012) 24-30.
[9] K. Venkateswarlu and B. V. N. Murthy, Spectrum of Boolean like semi ring, Int. J. Math. Sci. Appl. 1 (2011).
[10] Y. Wenqi, Two rings in IS-algebras, Proc. Fifth Int. Conf. Number Theory and Smarandache Notions, (2009) 98-101.

[^0]: *Corresponding author
 Email addresses: fa_sa20072000@yahoo.com (Fatema F. Kareem), eyadhdelphi@gmail.com (Reyadh. D. Ali)

