Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 843-848 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.5141

A topology on a ring part of IS-algebra

Fatema F. Kareem^a, Reyadh. D. Ali^b

^aDepartment of Mathematics, College of Education for Pure Science,Ibn Al-Haithem, University of Baghdad, Baghdad, Iraq ^bDepartment of Mathematics, College of Education for Pure Science,University of Karbala, Karbala, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

We give a topology on a ring part of IS-algebra, by define prime ideals of a commutative ring part of IS-algebra and study some of its properties.

Keywords: IS-algebra; adjoin ring part; prime ideal. 2010 MSC: 54A05, 06F35, 03E72

1. Introduction

In1966 [2], the notion of BCI-algebra was introduced by Iseki and Imai. A new class of algebra related to BCI-algebra was introduced by Jun and Hong [4], called a BCI-semigroup. After that, Jun et al. [5] renamed the BCI-semigroup as the IS-algebra and studied further properties of this algebra. In [10] the authors gave the ring part and adjoin ring part of IS-algebra. The concept of the topology was applied to a lot of algebraic structures by several authors; see [1, 6, 8, 7, 9]. This paper is intended to implement the new notion of adjoin ring part of IS-algebra and discusses some of their properties to study a topology on this structure.

2. Preliminaries

Definition 2.1. [2, 3] Algebra (L, *, 0) of (2, 0) is a BCI-algebra, if, $\forall m, n, s \in L$

$$(BCI_1)((m*n)*(m*s)) \le (s*n)$$
$$(BCI_2)(m*(m*n)) \le n$$
$$(BCI_3)m \le m$$

 $(BCI_4) m \leq n \text{ and } n \leq m \text{ imply } m = n.$

*Corresponding author

Email addresses: fa_sa20072000@yahoo.com (Fatema F. Kareem), eyadhdelphi@gmail.com (Reyadh. D. Ali)

Received: March 2021 Accepted: May 2021

In a BCI -algebra (L, *, 0), the following properties are satisfied:

$$\begin{array}{l} (BCI_{1\backslash}):m*0=m\\ (BCI_{2\backslash}):(m*n)*s=(m*s)*n\\ (BCI_{3\backslash}):m*(m*(m*n))=m*n\\ (BCI_{4\backslash}):0*(0*m)=m\\ (BCI_{5\backslash}):0*(m*n)=(0*m)*(0*n). \end{array}$$

Definition 2.2. [3] Let (L, *, 0) be a BCI-algebra and $\emptyset = I \subseteq L$, I is called an ideal of L if it satisfies the following conditions:

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ (here $x, y \in L$).

Definition 2.3. [4] An IS-algebra $(L, *, \bullet, 0)$ is $L \neq \phi$ with two binary operations $*, \bullet$ and constant 0 such that, $\forall m, n, s \in L$

- (I) (L, *, 0) is a BCI-algebra,
- (II) (L, \bullet) is a semigroup,
- (III) $m \bullet (n * s) = (m \bullet n) * (m \bullet s)$ and $(m * n) \bullet s = (m \bullet s) * (n \bullet s)$.

Example 2.4. [4] If $L = \{0, e, f, g, h\}$ is a set with the two operations * and \circ given by :

*	0	e	f	$\mid g \mid$	h
0	0	e	0	0	h
e	e	0	e	e	0
f	f	f	0	0	0
g	g	g	g	0	0
h	h	h	h	h	0

Then $(L, *, \circ, 0)$ is an IS-algebra (by routine calculations). In $(L, *, \circ, 0)$, we have $v \circ 0 = 0 \circ v = 0$, for any $v \in L$.

Lemma 2.5. [4] Let $(L, *, \bullet, 0)$ be an IS-algebra. Then for any $v, w, r \in L$, we have: $v \leq w$ implies $v \bullet r \leq w \bullet r$ and $r \bullet v \leq r \bullet w$.

Definition 2.6. [5] If $I \neq \phi$ is a subset of an IS-algebra $(L, *, \bullet, 0)$. Then I is called an ideal of $(L, *, \bullet, 0)$, if

 $(I_1) \ v * w \in I \ and \ w \in I, then v \in I, \ \forall v, w \in L$

(I₂) for any $v \in Landr \in I$, we have $v \bullet r \in I$, $r \bullet v \in I$.

Definition 2.7. [10]If $(L, *, \bullet, 0)$ is an IS-algebra, then $K(L) = \{v \in L | 0 * v = v\}$ is said to be ring part of L.

Theorem 2.8. [10] In IS-algebra($L, *, \bullet, 0$):

- 1. K(L) is a subalgebra of (L, *, 0),
- 2. $(K(L), *, \bullet)$ is a maximal ring.
- 3. K(L) is an ideal of $(L, *, \bullet, 0) \Leftrightarrow K(L)$ is an ideal of BCI-algebra(L, *, 0).

3. A Topology on prime ideals of adjoin ring part

In this section, we study the prime spectrum spec(N) of a ring part of an IS-algebra $(L, *, \bullet, 0)$. It turns out spec(N) is T_0 and T_1 -space. Moreover $f : spec(N) \to spec(K)$ is a continuous map.

Definition 3.1. For every nonempty subset B of L, we define $N(L) = \{v \in L | b * (b * (b • v)) \le b • v, \forall b \in B\}$, which will be called adjoin ring part of L.N(L) in usual will be written N for short.

Theorem 3.2. In IS-algebra $(L, *, \bullet, 0)$:

(a) N is a subalgebra of $(L, *, \bullet, 0)$

(b) If m + n = m * (0 * n), then $(N, +, \bullet)$ is a ring and m + n = n + m, (m + n) + s = m + (n + s).

Proof.

- (a) Since $0 \in N$, so $N \neq \phi$. For any $v, w \in N$, we get $d*(d*(d\bullet(m*n))) = (d*0)*(d*(d\bullet(m*n))) \leq (d \bullet (m*n))*0 = d \bullet (m*n) \dots$ by $BCI_{1'}$, that is $m*n \in N$. In addition, we get $d*(d*(d\bullet(m\bullet n))) = (d*0)*(d*(d\bullet(m\bullet n))) \leq (d\bullet(m\bullet n))*0 = d\bullet(m\bullet n)$ by... $BCI_{1'}$, that is $m \bullet n \in N$. Similarly we get $n \bullet m \in N$.

Lemma 3.3. N is an ideal of an IS-algebra $(L, *, \bullet, 0) \Leftrightarrow N$ is an ideal of a BCI-algebra (L, *, 0) **Proof** .If N is an ideal of an IS-algebra $(L, *, \bullet, 0)$, then by definition above, N is an ideal of a BCI-algebra (L, *, 0). Conversely, suppose N is an ideal of a BCI-algebra (L, *, 0), $\forall v \in L, r \in N$ $d * (d * (d \bullet (r \bullet v))) = (d * 0) * (d * (d \bullet r) \bullet v)) \leq ((d \bullet r) \bullet v) * 0 = ((d \bullet r) \bullet v) \dots$ by BCI₁, Therefore $r \bullet v \in N$, in same reasoning $v \bullet r \in N$, hence N is an ideal of an IS-algebra $(L, *, \bullet, 0)$. \Box

Definition 3.4. Let N be a ring part of IS-algebra $(L, *, \bullet, 0)$. A proper ideal J of N is called a prime if $cd \in J$ for elements c and d of N, either $c \in J$ or $d \in J$.

Definition 3.5. Let N be a ring part of IS-algebra $(L, *, \bullet, 0)$ and spec(N) be the collection of all prime ideals of N. Now for each ideal Y of N, we define the variety of Y by $V(Y) = \{J \in spec(N) | Y \subseteq J\}$, Therefore $V(N) = \phi$ and $V(\{0\}) = spec(N)$.

Theorem 3.6. Let $(L, *, \bullet, 0)$ be an IS-algebra and N be a ring part of L. If Y and H are two ideals of N, then

$$H \subseteq Y \Rightarrow V(Y) \subseteq V(H). \tag{3.1}$$

$$V(Y) \cup V(H) \subseteq V(Y \cap H). \tag{3.2}$$

Proof .

- (3.1) If $O \in V(Y)$, then $Y \subseteq O$ and since $H \subseteq Y$, therefore $O \in V(H)$. It follows that $V(Y) \subseteq V(H)$.
- (3.2) Let $O \in V(Y) \cup V(H)$, then $Y \subseteq Oor H \subseteq O$. Hence $Y \cap H \subseteq O$, therefore $O \in V(Y \cap H)$. It follows that $V(Y) \cup V(H) \subseteq V(Y \cap H)$.

Lemma 3.7. Let $(N, +, \bullet)$ be a ring of IS-algebra $(L, *, \bullet, 0)$, For any $Y_i(i \in I)$ of an ideals of N. Then $\bigcap_{i \in I} V(Y_i) = V(\sum_{i \in I} Y_i)$. **Proof**. Let $J \in \bigcap_{i \in I} V(Y_i)$, then $Y_i \subseteq J, \forall i \in I$, hence $\sum Y_i \subseteq J$. So $J \in V(\sum Y_i)$, It follows that $\bigcap_{i \in I} V(Y_i) \subseteq V(\sum_{i \in I} Y_i)$. Now, if $J \in V(\sum Y_i).$ So $\sum Y_i \subseteq J$ and since $Y_i \subseteq \sum Y_i$, for $i \in I$, hence $Y_i \subseteq J$, then $J \in V(Y_i)$, for $i \in I$. It follows that $J \in \bigcap_{i \in I} V(Y_i)$. \Box

Definition 3.8. Let N be a ring part of an IS-algebra L. Then a prime ideal J of N is extraordinary if for any two ideals Y and H of $N, Y \cap H \subseteq J$ implies $Y \subseteq J$ or $H \subseteq J$.

Theorem 3.9. Let N be a ring part of an IS-algebra $(L, *, \bullet, 0)$. If every prime ideal of N is an extraordinary, then $V(Y) \cup V(H) = V(Y \cap H)$, for any two ideals Y and H of N. **Proof**. By Theorem 3.6, $V(Y) \cup V(H) \subseteq V(Y \cap H)$.Now, let $J \in V(Y \cap H)$, then $Y \cap H \subseteq J$ and since J is extraordinary. Then $Y \subseteq J$ or $H \subseteq J \Rightarrow J \in V(Y)$ or $J \in V(H) \Rightarrow J \in V(Y) \cup V(H) \Rightarrow V(Y \cap H) \subseteq V(Y) \cup V(H)$. Hence $V(Y) \cup V(H) = V(Y \cap H)$. \Box

By Definition 3.5, Lemma 3.7 and Theorem 3.9, it follows that the family $\{V(Y)\}_{Y\subseteq N}$ of subsets of spec(N) satisfies the axioms for closed sets in a topological space. The topological space spec(N) is called the prime spectrum of Nalso the resulting topology is called the Zariski topology.

Example 3.10. Let $(\mathbb{Z}_6, +, \bullet)$ be a ring part of IS-algebra $(\mathbb{Z}_6, -, \bullet, 0)$, then the set of all ideals of \mathbb{Z}_6 are $\{\{\overline{0}\}, \{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{2}, \overline{4}\}, \mathbb{Z}_6\}$. Now, the set $\{\{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{2}, \overline{4}\}\}$ is all prime ideals of \mathbb{Z}_6 and that is extraordinary, hence $Spec(\mathbb{Z}_6) = \{\{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{2}, \overline{4}\}\}$. Therefore the topology on spectrum is $\tau = \{\phi, spec(\mathbb{Z}_6)\}$.

Remark 3.11. For any $Y \subseteq N$, we're denoting the complement of V(Y) by W(Y). So $W(Y) = \{J \in spec(N) | Y \not\subset J\}$, so the collection $\{W(Y)\}_{Y \subseteq N}$ is the collection of open sets of a topological space Spec(N). By duality, we get the following:

Proposition 3.12. Let N be a ring part of IS-algebra($L, *, \bullet, 0$), then

(i) $W(N) = Spec(N), W(\{0\}) = \phi$,

- (ii) If $\{Y_i\}_{i\in I}$ is any family ideals of N, then $\bigcup_{i\in I} W(Y_i) = W(\bigcup_{i\in I} Y_i)$,
- (iii) $W(Y_1 \cap Y_2) = W(Y_1) \cap W(Y_2)$, for some ideals $Y_1, Y_2 \subseteq N$
- (iv) For any two ideals $Y, H \in N, Y \subseteq H \Rightarrow W(Y) \subseteq W(H)$.

Proof. Clear. \Box

Remark 3.13. For any $b \in N$, we denote $V(\{b\})$ by V(b) and $W(\{b\})$ by W(b). So $V(b) = \{J \in spec(N) | b \in J\}$ and $W(b) = \{J \in spec(N) | b \notin J\}$.

847

Theorem 3.14. If N is a ring part of IS-algebra $(L, *, \bullet, 0)$, the collection $\{W(b)\}_{b \in N}$ is a basis for the topology on Spec(N). **Proof** If $Y \subseteq N, W(Y)$ an open and $W(Y) \subseteq Spec(N)$, then by proposition 3.12, we get W(Y) = $W(\bigcup_{b \in Y} \{b\}) = \bigcup_{b \in Y} W(b)$. Hence, any open set of Spec(N) is the union of subsets from the collection $\{W(b)\}_{b\in N}$. \Box

Theorem 3.15. Spec(N) is a T_0 topological space. **Proof** .Let J and Q be any two distinct prime ideals in Spec(N). Then either $J \not\subset Qor Q \not\subset J$. If $J \not\subset Q \Rightarrow \exists b \in J \ni b \notin Q \Rightarrow Q \in W(b)$ and $J \notin W(b)$ $\Rightarrow \exists an open set W(b) containing Q, but not J.$ If $Q \not\subset J \Rightarrow \exists b \in Q \ni b \notin J \Rightarrow Q \notin W(b)$ and $J \in W(b)$. $\Rightarrow \exists an open set W(b) containing J, but not Q.$ Hence Spec(N) is a T_0 -space. \Box

Theorem 3.16. Spec(N) is a T_1 topological space. **Proof** If $Spec(N) = \phi \Rightarrow spec(N)$ is trivial space and so it is a T_1 -space. Now, if $Spec(N) \neq \phi$, then there exist J prime ideal of $Spec(N), V(J) = \{J\}$ and so $\{J\}$ is closed set in Spec(N), i.e. Spec(N) is a T_1 -space. \Box

Proposition 3.17. If $l: N \to K$ is a homomorphism of two ring parts N and K of IS-algebra($L, *, \bullet, 0$), then \forall prime ideal of K, $l^{-1}(J) = \{b \in N/l(b) \in J\}$ is also a prime ideal of S. **Proof**. For any $c, d \in J$ such that $c \bullet d \in l^{-1}(J) \Rightarrow l(c \bullet d) \in J \Rightarrow l(c) \bullet l(d) \in J$ (by homomorphism) $\Rightarrow l(c) \in Jor \ l(d) \in J \Rightarrow c \in l^{-1}(J) \ ord \in l^{-1}(J).$ Hence $l^{-1}(J)$ is prime ideal. \Box

Theorem 3.18. If $l : N \to K$ is a homomorphism of two ring parts N and K of IS-algebra $(L, *, \bullet, 0)$, then $f : SpecK \to SpecN$ define by $f(J) = l^{-1}(J), \forall J \in SpecK$ is continuous map. **Proof**. For any $b \in N$, LetW(b) be a basic open set in Spec(N), then

$$f^{-1}(W(b)) = \{J \in SpecK/f(J) \in W(b)\}$$
$$= \{J \in SpecK/l^{-1}(J) \in W(b)\}$$
$$= \{J \in SpecK/b \notin l^{-1}(J)\}$$
$$= \{J \in SpecK/l(b) \notin J\}$$

which is open in Spec(K). Hence f is a continuous map. \Box

Conclusion **4**.

We have studied the topology of a ring part of IS -algebra by using prime ideals of a commutative ring part of IS-algebra and discussed few results of this topology, for example, the prime spectrum spec(N) of a ring part of an IS-algebra and study some of its properties. Also, proved that spec(N)is T_0 and T_1 -space. Furthermore, $f: spec(N) \to spec(K)$ it is a continuous mapping.

5. Open problems

The following are some open problems for future works:

- 1. Studying the theory of soft topological space on IS-algebra.
- 2. Introducing a compact and simply compact of a ring part of an IS-algebra.
- 3. Studying of soft simply path connected spaces and soft simply compact spaces.
- 4. Studying the filter of this structure.

References

- [1] E. Eslami and F. Kh. Haghani, Pure filters and stable topology on BL-algebras, Kybernetika, 45 (2009) 491–506.
- [2] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. Ser A. Math. Sci. 42 (1966) 19–22.
- [3] K. Iseki, On BCI-algebras, Math. Sem. Notes, 8 (1980) 125–130.
- [4] Y. Jun and S. M. Hong, *BCI-semigroups*, Honam Math. J. 15(1) (1993) 59–64.
- [5] Y. Jun, Roh E. H. and X. L. Xin, *I-ideals generated by a set in IS-algebras*, Bull Korean Math. Soc. 35 (1998) 615–624.
- [6] F. Kareem, R. D. Ali and S. M. Mostafa, Fuzzy topological spectrum of a KU-algebra, Mater. Sci. Eng. (2019) 571 012015.
- [7] S. M. Mostafa and F. F. Kareem, A topology spectrum of a KU-algebra, J. New Theo. 5 (2015) 78-91.
- [8] T. Roudbari and N. Motahari, A topology on BCK-modules via prime sub-BCK-modules, J. Hyper Struct. 1 (2012) 24–30.
- [9] K. Venkateswarlu and B. V. N. Murthy, Spectrum of Boolean like semi ring, Int. J. Math. Sci. Appl. 1 (2011).
- [10] Y. Wenqi, Two rings in IS-algebras, Proc. Fifth Int. Conf. Number Theory and Smarandache Notions, (2009) 98–101.