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Abstract

In this paper, the Linear support vector regression approach is proposed for solving the regression
problem with interval data, which is called interval support vector regression(ISVR). The ISVR
approach is equivalent to solving a linear constrained quadratic programming problem (QPP) with
an interval cost coefficient in which the value of the objective function is in an interval. Instead of
solving an interval QPP, we solve two QPPs and prove that the cost values of these two problems
are the lower bound and the upper bound of the target value of the interval QPP. We show these
the two mentioned QPPs are equivalent to two support vector regression problems, in which the
first problem uses from the lower bound of the data, and the second problem considers the upper
bound of the data to obtain the regression function. Some experiments are made to demonstrate the
performance of our method compared with the known algorithms on several artificial, benchmark
and real practical datasets.

Keywords: Quadratic Programming,Computing methodologies and applications, Linear
Regression.
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1. Introduction

Support vector machines (SVMs), as a new class of learning algorithms, have emerged for pattern
classification and regression. The structural risk minimization principle is implemented in SVMs
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by minimizing the upper bound of the generalization error [5]. Support vector regression (SVR)
has been applied to estimation data problems. SVR targets a linear regression through a data set,
where points may be in feature space or in a higher space([1],[13]). The kernel trick is often used for
obtaining nonlinear SVR, which maps the data to a higher dimensional space and applies a kernel
function. But, in the higher space for large-scale data, the volume of computing increases sharply
and the time-consuming has happened [6]. In the literature, the original form of SVR, namely ε-
SVR, has been widely used. ε-SVR finds a function f(x) such that more training samples set in the
ε-intensive tube between f(x) + ε and f(x)− ε.

Recently, some novel SVR algorithms have been proposed for data regression, consisting ε-
twin SVR (ε-TSVR) [14], twin parametric insensitive SVR (TPISVR) ([12], [15]) and parametric-
insensitive nonparallel SVR (PINSVR)[16]. These algorithms determine a pair of nonparallel proxi-
mal functions, f1(x) and f2(x), by solving two smaller sized QPPs instead of a function f(x) solved
of the larger QPP one in the ε-SVR, which make them have the faster learning speed than classical
ε-SVR. For ε -TSVR, it determines two ε -insensitive proximal functions by using the ε-insensitive
loss function, so it has better regression performance. These algorithms determine the regressor by
averaging of f1(x) and f2(x). In the real world, many training data cannot be accurately determined
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Figure 1: Sample of one-dimensional syntactic interval data points

due to the measurement error or the uncertainty of the information is existed. For noisy regression
problems, training-error minimization may over train the noise into the learning model, thereby it
leads to an unsatisfied test result. These problems motivate the use of SVR for the interval data that
is presented in this paper. An example of the interval data is shown in Figure 1. The horizontal axis
represents the interval data points and the vertical axis represents the label. ε-SVR and ε-TSVR
both assume that the noise level of training data is uniform throughout the domain or some infor-
mation about noise is given. In some problems that the noise is strongly dependent on the input,
TPISVR and PINSVR obtain the parametric insensitive down- and up-bound functions by using the
parametric-insensitive loss function. However, with newly added parameters, the size of problem is
larger and so, the computation time is increased. Some literature has been considered a linear re-
gression problem with interval-valued data. Billard et al. were one of the pioneers of research in this
field [3]. They proposed the center method(CM) for obtaining a regression line by using data centers.
Then, the regression function values in the lower bound and upper bound of a new interval data were
considered as the estimation interval for observation [3]. Later, the researchers extended this method
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and proposed the center and range methods (CRM). In these methods, two linear regressions are
obtained by using the center and range of data(CRM). Then, by using them, the range of observation
was estimated from a new interval value input ([9], [2], [10] and [8]). All of the mentioned methods
were based on least squares estimation, and mathematically it cannot be assured that the lower
bound is necessarily smaller than the upper bound. To overcome this problem, Neto et al. proposed
a regression approach, named constraint center and range method (CCRM), by adding nonnegative
constraints for coefficients in the CRM method[11]. In this paper, We extend the ε-SVR method
for interval data and display it with ISVR. The ISVR method solve two ε-SVR problems using the
lower bound and upper bound of the interval data. So that we can achieve two hyperplanes. In the
proposed method, it does not just use the averaging of these two hyperplanes as a decision-regressor,
but introduces different rules for estimating data. The rest of this paper is organized as follows:
Section 2 briefly introduces classical ε-SVR. Section 3 presents the proposed interval support vector
regression (ISVR) model. Experimental results on several benchmark datasets and real practical
Cardiological dataset are given in Section 4. Some conclusions are drawn in Section 5.

2. ε-SVR

Assume that S={(x 1, y1), (x 2, y2), . . . , (x l, yl)} be a set of l training samples, x i ∈ Rm is a m-
dimensional sample in the input space, yi ∈ R, and b is the bias that is a scalar. We are going to seek
a linear regression function in the form of y = w .x + b where the parameters w and b are determined
as the solution of the following quadratic optimization problem:

min
w ,b,ξ,ξ∗

1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

s.t. yi − (w .x i + b) ≤ ε+ ξi i = 1, 2, . . . , l (2.1)

w .x i + b− yi ≤ ε+ ξ∗i i = 1, 2, . . . , l

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , l.

where ξ = (ξ1, . . . , ξl)
T and ξ∗ = (ξ∗1 , . . . , ξ

∗
l )T are the vector of slack variables that represent upper

and lower constraints on the outputs of the model. C > 0 is a regulated positive parameter that
controls the trade-off between the error and margin, and ε is input parameters; y = (y1, . . . , yl)

t is a
vector of observed values. It is practice that rather than solving the primal problem (2.1), its dual
is solved. The Wolfe dual of (2.1) can be written as:

min
α,α∗∈Rl

1

2

l∑
i,j=1

(α∗i − αi)(α
∗
j − αj)x

T
i x j + ε

l∑
i=1

(α∗i + αi)−
l∑

i=1

yi(α
∗
i − αi) (2.2)

s.t.
l∑

i=1

(α∗i − αi) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, 2, . . . , l.

where α = (α1, α2 . . . , αl)
T and α∗ = (α∗1, α

∗
2 . . . , α

∗
l )

T are the vectors of Lagrange multipliers. The
main innovation of the proposed method is to model the noisy samples by using interval number in
SVR. For this purpose, the data points and penalty coefficient are considered as interval-valued. We
present ISVR and reformulate it into an interval quadratic optimization problem. Then, the opti-
mization problem is divided into two quadratic programming problems in a normal way (no interval).
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By solving these two quadratic programs, two hyperplanes are obtained which they construct the
solution range of the problem. Some classifier rules are given to establish the data points. The ex-
periments show that the proposed method is effective to use for all datasets such as interval-valued,
noisy, and normal (no interval).

3. ε-Interval Support vector Regression (ε-ISVR)

In this section, ε-ISVR is introduced. In fact, ε-SVR leads to ε-ISVR when the training data is
interval. A notation, “∼”, on a quantity indicates that the quantity has an interval value. Let
x̃ ,xL,xU ∈ Rn and Ã, AL, AU ∈ Rm×n, we say xL ≤ x̃ ≤ xU if xLi ≤ x̃i ≤ xUi , for all i = 1, 2, . . . , n,
and AL ≤ Ã ≤ AU , if aLij ≤ ãij ≤ aUij, for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n, respectively. So we
have the following ε-ISVR:

min
w ,b,ξ,ξ∗

1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

s.t. yi − (w .x̃ i + b) ≤ ε+ ξi i = 1, 2, . . . , l (3.1)

w .x̃ i + b− yi ≤ ε+ ξ∗i i = 1, 2, . . . , l

xL
i ≤ x̃ i ≤ xU

i

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , l.

According to the interval value of x̃ , we have an interval quadratic programming problem that the
objective function value sets within an interval. Our goal is to find the upper and lower bounds of
the range where the target function value is located. Thus, similar to (2.2), we consider the dual of
problem (3.1) as follows:

min
α,α∗∈Rl

1

2

l∑
i,j=1

(α∗i − αi)(α
∗
j − αj)x̃ i

T x̃ j + ε
l∑

i=1

(α∗i + αi)−
l∑

i=1

yi(α
∗
i − αi) (3.2)

s.t.
l∑

i=1

(α∗i − αi) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, 2, . . . , l.

where α = (α1, α2 . . . , αl)
T and α∗ = (α∗1, α

∗
2 . . . , α

∗
l )

T are the vectors of Lagrange multipliers. The
matrix form of the QPP (3.2) is follows:

Z̃ = min
α,α∗∈Rl

1

2
‖X̃(α−α∗)‖22 + εf T (α+α∗)− yT (α−α∗)

s.t. f T (α−α∗) = 0

XL ≤ X̃ ≤ XU (3.3)

0 ≤ α,α∗,

where, X̃ is a m× l matrix with columns x̃ i, f =[1, 1, . . . , 1]T is a l × 1 vector and ‖X̃(α−α∗)‖22 =
(X̃(α−α∗))T (X̃(α−α∗)). In the next section, we introduce the our approach for solving the interval
QPP (3.3).
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4. Description of the Solving Method

To obtain the interval bounding of objective values, it is sufficient to obtain the lower bound(ZL)
and the upper bound(ZU) of the objective values of the problem (3.3). The following lemma and
theorem help us to determine the values of ZL and ZU .

Lemma 4.1. Let X̃,XL, XU ∈ Rm×l such that XL ≤ X̃ ≤ XU and α ∈ Rl then

1√
m
‖XLα‖2 ≤ ‖X̃α‖2 ≤

√
m‖XUα‖2

Proof.

‖X̃α‖2 ≤ ‖X̃α‖1
≤ ‖XU‖1‖α‖1
= max

α
‖XUα‖1 ≤

√
m‖XUα‖2.

‖X̃α‖2 ≥ max
α
‖X̃α‖∞

= ‖X̃‖∞‖α‖∞
≥ ‖XL‖∞‖α‖∞
= max

α
‖XLα‖∞

≥ max
α

1√
m
‖XLα‖2

≥ 1√
m
‖XLα‖2.

�

Theorem 4.2. Let S = {α,α∗ ∈ Rl : ft(α − α∗) = 0, α,α∗ ≥ 0}. The optimal value of interval
quadratic programming problem (3.3) lies in the interval [ZL, ZU ] where ZL and ZU as follows:

ZL = min
α,α∗∈S

1

2
‖XL(α−α∗)‖22 + εfT (α+α∗)− yT (α−α∗)

(4.1)

and

ZU = min
α,α∗∈S

1

2
‖XU(α−α∗)‖22 + εfT (α+α∗)− yT (α−α∗)

(4.2)

Proof. Based on the Lemma 4.1 and the definition of S, the interval QPP (3.3) takes its lowest
value, which has the least objective function and takes its maximum value, which has the largest
objective function. Thus, the interval QPP (3.3) is transformed into two QPPs (4.1) and (4.2) to
obtain the ZL and the ZU . �

Finally, we summarize all the result of this section in the following corollary.
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Corollary 4.3. According to the above theorem, we can transform problems (4.1) and (4.2) into the
following standard QPPs:

ZL = min
α,α∗

1

2
(α−α∗)T (XL)TXL(α−α∗) + εfT (α+α∗)− yT (α−α∗)

s.t. α,α∗ ∈ S (4.3)

and

ZU = min
α,α∗

1

2
(α−α∗)T (XU)TXU(α−α∗) + εfT (α+α∗)− yT (α−α∗)

s.t. α,α∗ ∈ S (4.4)

As we have seen, we proved that to solve the regression problem (3.1) with bounded data, we need to
solve two problems of regression (4.3) and (4.4) where the problem (4.3) is considered lower bound of
data, and the upper bound of data is considered in the problem (4.4). To combine two solutions of the
problem (4.3) and (4.4), we conclude that the objective value of the interval quadratic programming
(3.1) lies in the range of [ZL, ZU ]. Now, by using the solutions αL,α∗L and αU ,α∗U , of the problems
(4.3) and (4.4), we can obtain two hyperplanes h1(x ) = wL.x + bL and h2(x ) = wU .x + bU where

wL =
l∑

i=1

(αL
i − α∗

L
i )x i

bL = yi −wLx i + ε, for some i: αL
i > 0

wU =
l∑

i=1

(αU
i − α∗

U
i )x i

bU = yi −wUx i + ε, for some i: αU
i > 0.

Note that, in the case XL = XU = X, two problems (4.3) and (4.4) are equivalent to the problem
(2.1).

5. Decision rules

In this section, some rules for the estimated regressors are given. In fact, we give some rules for
specifying the data to appropriate estimated. Once the problems (4.3) and (4.4), are solved, two
hyperplanes h1(x ) = wL.x + bL and h2(x ) = wU .x + bU are obtained. Then, the estimated regressor
of the presented method is denoted by h(x ) = w .x + b. For a better understanding, consider the
one-dimensional syntactic interval data with the small ε along with the two estimated regressors
h1(x ) and h2(x ) in Figure 2. In the test phase, let an arbitrary sample x t is given. This sample is
shown in the figure. We denote ŷ t as the predicted of x t and is obtained of the following decision
rules:

1. ISVR(Avg.)

ŷ
(Avg)
t = 1

2
(h1(x t) + h2(x t)).

2. ISVR(Min.)

ŷ
(Min)
t = hk(x t) where k = argmin1,2

{
|h1(x t)|
‖wL‖2

,
|h2(x t)|
‖wU‖2

}
.
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Figure 2: A simple example of ISVR on interval syntactic data

3. ISVR(Max.)

ŷ
(Max)
t = hk(x t) where k = argmax1,2

{
|h1(x t)|
‖wL‖2

,
|h2(x t)|
‖wU‖2

}
.

4. ISVR(Weighted1)

ŷ
(W1)
t =

d1h1(x t) + d2h2(x t)

d1 + d2
where d1 =

|h1(x t)|
‖wL‖2

and d2 =
|h2(x t)|
‖wU‖2

.

5. ISVR(Weighted2)

ŷ
(W2)
t =

d2h1(x t) + d1h2(x t)

d1 + d2
where d1 =

|h1(x t)|
‖wL‖2

and d2 =
|h2(x t)|
‖wU‖2

.

For sample x t, the distance d1 and d2 are represented in figure 2.

6. Numerical experiments

In this section, some experiments are constructed to illustrate the performance of ISVR compare with
the mentioned methods on benchmark and real practical interval datasets. All computations have
been performed with symbolic computation software MATLAB, and the calculations are implemented
on a machine with Intel Core 5 Duo processor 2 GHz and 4 GB RAM. Note that, all datasets are
normalized in the range [0,∞).

Evalution criteria

In order to measure the efficiency of the proposed algorithm, some evaluation criteria customarily
used should be stated firstly. we assume l be the number of testing samples. ŷi as the predict value
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of yi and ȳi = 1
l

∑l
i=1 yi. Then the definitions of metrics and their calculations are as fallow:

SSE =
l∑

i=1

(yi − ŷi)2 SST =
l∑

i=1

(yi − ȳi)2 SSR =
l∑

i=1

(ȳi − ŷi)2

MAPE =
1

l

l∑
i=1

|yi − ŷi
yi
| NMSE =

SSE

SST
R2 =

SSR

SST

Table 1: Properties of UCI benchmark datasets for Example 1.
Dataset No. samples Attribute
Energy efficiency 768 8
ISE 536 8
conc com str 1030 8
Bodyfat 252 14
Yacht H 308 6
eunite2001 367 16
AM 392 7
Housing 506 13
triazines 186 60
Servo 167 4
Cpusmall 8,192 12
Cadata 20,640 8
Abalone 4,177 8

Example 1: Standard Datasets

We use standard UCI datasets [4] that the properties of these datasets are summarized in Table
1. Also, we describe the attribute information for some datasets as follows:
Istanbul Stock Exchange(ISE): This dataset includes returns of Istanbul Stock Exchange with
seven other international index; SP, DAX, FTSE, NIKKEI, BOVESPA, MSCE EU, MSCI EM from
Jun 5, 2009 to Feb 22, 2011.
Auto MPG(AM): The data be about fuel consumption according to cylinders, displacement, horse-
power, weight, acceleration, model year and origin of the automobile.
Energy efficiency: This data regraded into assigning the heating load and cooling load require-
ments of buildings (that is, energy efficiency) as a function of Relative Compactness, Surface Area,
Wall Area, Roof Area, Overall Height, Orientation, Glazing Area and Glazing Area Distribution, as
building parameters.
Servo: It is about predicting for the rise time of a servomechanism subject to gain settings and
choices of mechanical connections.
Yacht Hydrodynamics(Yacht H): This data set used to predict the hydrodynamic performance
of sailing yachts from dimensions and velocity.
Abalone: Predicting the age of abalone from the measurement of physical parameters such as Shell
weight, Sex, Length, Diameter, Height, Whole weight, Shucked weight, and Viscera weight.
Concrete Compressive Strength(CCS): The evaluation of concrete compressive strength by
the measure of Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate,
Fine Aggregate, Age. In order to evaluate the results of ISVR, we compared it with some vari-
ants of LibLinear-SVR (LibSVR), L2LibSVR, L1LibSVR, L2PrimalLibSVR [7], PINSVR[16] and



Linear regression with interval data 12 (2021) No. 2, 857-868 865

Table 2: Comparative results for Example 2
Dataset Regressor NMSE R2 MAPE CPU Sec.
Bodyfat L2LibSVR 0.09930± 0.05672 0.92966± 0.14590 7.99165± 1.70334 0.0135± 0.00110

L1LibSVR 0.09930± 0.05672 0.92966± 0.14590 7.99165± 1.70334 0.0118± 0.00147
L2PrimalLibSVR 0.09930± 0.05672 0.92966± 0.14590 7.99165± 1.70334 0.0116± 0.00174
ISVR(max) 0.11491± 0.06700 0.93157± 0.20187 8.35196± 2.52253 0.0072± 0.00312
PINSVR-Linear 0.46586± 0.12625 0.30195± 0.13743 18.23003± 2.50091 3.8176± 0.30513
ETSVR-Linear 0.09765± 0.05700 0.95215± 0.14344 7.86052± 1.68094 0.0160± 0.00383

Yacht H L2LibSVR 0.04717± 0.01749 0.93429± 0.07644 19.39353± 6.89909 0.0125± 0.00089
L1LibSVR 0.04717± 0.01749 0.93429± 0.07644 19.39353± 6.89909 0.0095± 0.00050
L2PrimalLibSVR 0.04717± 0.01749 0.93429± 0.07644 19.39353± 6.89909 0.0095± 0.00061
ISVR(max) 0.04612± 0.01758 0.98215± 0.06637 21.57699± 7.86366 0.0075± 0.00220
PINSVR-Linear 0.11289± 0.02417 0.53704± 0.03947 64.70078± 47.87316 6.4480± 0.78911
ETSVR-Linear 0.05478± 0.02454 0.94569± 0.07541 23.87207± 16.17364 0.0262± 0.01283

Servo L2LibSVR 0.43676± 0.16746 0.64465± 0.20863 99.74835± 43.92444 0.0265± 0.06859
L1LibSVR 0.43676± 0.16746 0.64465± 0.20863 99.74835± 43.92444 0.0041± 0.00077
L2PrimalLibSVR 0.43676± 0.16746 0.64465± 0.20863 99.74835± 43.92444 0.0042± 0.00069
ISVR(max) 0.45329± 0.22762 0.75423± 0.25225 94.81609± 37.57911 0.0039± 0.00113
PINSVR-Linear 0.64992± 0.07863 0.18087± 0.09254 116.33048± 60.74280 0.8807± 0.51268
ETSVR-Linear 0.43823± 0.17011 0.65816± 0.20948 99.76264± 43.86762 0.0185± 0.02386

Cadata L2LibSVR 0.42264± 0.01946 0.57654± 0.02560 39.73711± 1.92486 1.5469± 0.38857
L1LibSVR 0.42264± 0.01946 0.57654± 0.02560 39.73711± 1.92486 1.5503± 0.23494
L2PrimalLibSVR 0.42264± 0.01946 0.57654± 0.02560 39.73711± 1.92486 1.9064± 0.57790
ISVR(max) 0.44690± 0.02216 0.73164± 0.03135 40.80747± 1.33781 1.6657± 0.69536
PINSVR-Linear - - - -
ETSVR-Linear - - - -

triazines L2LibSVR 1.33812± 0.48467 0.91103± 0.51637 109.86739± 251.92113 0.0194± 0.00192
L1LibSVR 1.33812± 0.48467 0.91103± 0.51637 109.86739± 251.92113 0.0181± 0.00200
L2PrimalLibSVR 1.33812± 0.48467 0.91103± 0.51637 109.86739± 251.92113 0.0190± 0.00310
ISVR(max) 1.14714± 0.42146 0.75809± 0.32253 118.02831± 285.11074 0.0186± 0.00516
PINSVR-Linear 1.19906± 0.70085 0.62107± 0.56471 83.60975± 167.11965 1.2541± 0.39534
ETSVR-Linear 2.03879± 1.55145 0.58868± 1.30276 113.05064± 253.08299 0.0117± 0.00192

CCS L2LibSVR 0.45114± 0.05373 0.55935± 0.05960 130.07296± 72.28089 0.0360± 0.00605
L1LibSVR 0.45114± 0.05373 0.55935± 0.05960 130.07296± 72.28089 0.0334± 0.01084
L2PrimalLibSVR 0.45114± 0.05373 0.55935± 0.05960 130.07296± 72.28089 0.0306± 0.00390
ISVR(min) 0.45641± 0.06492 0.62638± 0.06130 125.36786± 70.12245 0.0302± 0.00532
PINSVR-Linear 0.47915± 0.04889 0.34947± 0.03278 157.98167± 98.90301 550.6574± 676.76861
ETSVR-Linear 0.45209± 0.05309 0.56710± 0.05935 129.06776± 71.46800 0.4143± 0.24584

eunite2001 L2LibSVR 0.20663± 0.04264 0.84448± 0.17765 16.52018± 6.77425 0.0192± 0.00181
L1LibSVR 0.20663± 0.04264 0.84448± 0.17765 16.52018± 6.77425 0.0187± 0.00388
L2PrimalLibSVR 0.20663± 0.04264 0.84448± 0.17765 16.52018± 6.77425 0.0184± 0.00257
ISVR(max) 0.21403± 0.04592 0.90000± 0.17796 15.82318± 5.92828 0.0175± 0.00485
PINSVR-Linear 0.29799± 0.05995 0.46388± 0.09109 25.10015± 13.06550 12.3530± 1.31250
ETSVR-Linear 0.20613± 0.04389 0.84835± 0.17744 16.42712± 6.68658 0.0253± 0.00573

Housing L2LibSVR 0.32431± 0.07195 0.75273± 0.18406 32.53561± 14.02016 0.0387± 0.00652
L1LibSVR 0.32431± 0.07195 0.75273± 0.18406 32.53561± 14.02016 0.0347± 0.00415
L2PrimalLibSVR 0.32431± 0.07195 0.75273± 0.18406 32.53561± 14.02016 0.0370± 0.00335
ISVR(max) 0.32821± 0.07747 0.82283± 0.18607 32.55391± 13.08202 0.0380± 0.00868
ETWSVR 0.87079± 0.22073 0.44428± 0.11143 34.02766± 13.41165 0.2378± 0.03842
PINSVR-Linear 0.38714± 0.06232 0.45320± 0.10970 32.37592± 12.05503 40.8221± 3.84491

Abalone L2LibSVR 0.54117± 0.04314 0.47407± 0.06956 19.79701± 0.64086 0.1861± 0.02603
L1LibSVR 0.54117± 0.04314 0.47407± 0.06956 19.79701± 0.64086 0.1734± 0.01463
L2PrimalLibSVR 0.54117± 0.04314 0.47407± 0.06956 19.79701± 0.64086 0.1679± 0.02340
ISVR(max) 0.64559± 0.07809 0.72338± 0.12473 21.64475± 0.61536 0.1717± 0.01786
ETSVR-Linear 0.54064± 0.04388 0.47647± 0.06828 19.44753± 0.58144 4.3512± 0.16970
PINSVR-Linear - - - -

ISE L2LibSVR 0.32490± 0.06647 0.70168± 0.18690 106.26871± 111.04793 0.0466± 0.07059
L1LibSVR 0.32490± 0.06647 0.70168± 0.18690 106.26871± 111.04793 0.0202± 0.00322
L2PrimalLibSVR 0.32490± 0.06647 0.70168± 0.18690 106.26871± 111.04793 0.0209± 0.00243
ISVR(min) 0.38689± 0.10663 0.99824± 0.29673 129.35729± 149.74788 0.0220± 0.00727
PINSVR-Linear 0.47654± 0.05557 0.26617± 0.05977 112.40933± 46.38591 48.7498± 5.32858
ETSVR-Linear 0.32719± 0.06551 0.71475± 0.18752 106.64141± 113.34048 0.1382± 0.07375
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Table 3: Comparison of L2LibSVR, L1LibSVR and L2PrimalLibSVR methods to ISVR according to different criteria
on some datasets.

Dataset Regressor NMSE R2

AM L2LibSVR 0.00833± 0.00298 0.82422± 0.05669
L1LibSVR 0.00934± 0.00432 0.82041± 0.05758
L2PrimalLibSVR 0.01112± 0.00389 0.76601± 0.07834
ISVR(avg) 0.01281± 0.00406 0.72944± 0.07816
ISVR(min) 0.01372± 0.00394 0.71108± 0.08272
ISVR(max) 0.01244± 0.00415 0.74141± 0.07504
ISVR(weighted1) 0.01286± 0.00407 0.72699± 0.07849
ISVR(weighted2) 0.01281± 0.00402 0.73131± 0.07772

Energy efficiency L2LibSVR 0.14896± 0.03216 0.88900± 0.08438
L1LibSVR 0.14896± 0.03216 0.88900± 0.08438
L2PrimalLibSVR 0.14896± 0.03216 0.88900± 0.08438
ISVR(avg) 0.15493± 0.03211 0.92306± 0.07988
ISVR(min) 0.15426± 0.03208 0.89784± 0.07747
ISVR(max) 0.15600± 0.03218 0.94868± 0.08235
ISVR(weighted1) 0.15493± 0.03211 0.92235± 0.07984
ISVR(weighted2) 0.15492± 0.03211 0.92377± 0.07991

ISE L2LibSVR 0.32490± 0.06647 0.70168± 0.18690
L1LibSVR 0.32490± 0.06647 0.70168± 0.18690
L2PrimalLibSVR 0.32490± 0.06647 0.70168± 0.18690
ISVR(avg) 0.38064± 0.09468 0.96615± 0.28407
ISVR(min) 0.38689± 0.10663 0.99824± 0.29673
ISVR(max) 0.38076± 0.08384 0.93692± 0.27190
ISVR(weighted1) 0.38060± 0.09471 0.96586± 0.28385
ISVR(weighted2) 0.38069± 0.09464 0.96646± 0.28429

CPUsmall L2LibSVR 0.52156± 0.07547 0.70571± 0.17408
L1LibSVR 0.52156± 0.07547 0.70571± 0.17408
L2PrimalLibSVR 0.52156± 0.07547 0.70571± 0.17408
ISVR(avg) 0.66254± 0.08943 0.55077± 0.16938
ISVR(min) 0.66359± 0.08828 0.57282± 0.16985
ISVR(max) 0.66604± 0.09100 0.52416± 0.16931
ISVR(weighted1) 0.66258± 0.08942 0.55089± 0.16942
ISVR(weighted2) 0.66249± 0.08943 0.55065± 0.16935
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Table 4: Cardiological interval data set of example 2

n Pulse rate Systolic blood pressure Diastolic
1 [44-68] [90-100] [50-70]
2 [60-72] [90-130] [70-90]
3 [56-90] [140-180] [90-100]
4 [70-112] [110-142] [80-108]
5 [54-72] [90-100] [50-70]
6 [70-100] [130-160] [80-110]
7 [63-75] [60-100] [140-150]
8 [72-100] [130-160] [76-90]
9 [76-98] [110-190] [70-110]
10 [86-96] [138-180] [90-110]
11 [86-100] [110-150] [78-100]

ETSVR[15]. Among the these algorithms, PINSVR and ETSVR are determined a pair of nonparal-
lel proximal functions. Also, we apply the decision rules in Section 5, and in term of using decision
rules, the best result is reported in Table 2. In addition, the interval-valued data are constructed
as follows. The lower case is obtained as reducing α1 = 0.02% and the upper case is obtained as
increasing α2 = 0.03% from data (i.e., XL = X − α1X and XU = X + α2X). The Results of 10-fold
cross-validation includes mean, standard deviation (mean ± std) and the average of runtime (sec)
are reported in Table 2. PINSVR and ETSVR algorithms are not evaluated in some datasets with
sample size more than 1,500, since these algorithms is not scalable. The comparison results show
that ISVR achieves the best or closest to the best result for all of the datasets. To evaluate the
decision rules, for some dataset, the results is reported for all of the decision rules in Table 3. The
results in Tables 2 and 3 show that there is no significant difference between the use of these rules.

Example 2: Interval Data Points

For further evaluation, a real practical Cardiological dataset [9] is test in this example. The Cardio-
logical dataset concerns the record of the pulse rate, the systolic blood pressure and diastolic blood
pressure. In Table 4, information of the eleven patients is reported. The aim is to obtain a linear
regression model such as y = a0 + a1x1 + a2x2 to predict the interval values ŷ of y (The pulse rate)
where x1 (Systolic blood pressure) and x2 (Diastolic blood pressure) are interval values.

The CM([3]), CRM([2]), CCRM([11]), and ISVR methods were applied on the Cardiological
interval data set and the following linear regression equations were obtained as:

CM : yL = 21.17 + 0.33x1 + 0.17x2 and yU = 21.17 + 0.33x1 + 0.17x2,

CRM : yL = yc − yr and yU = yc + yr,

where yc = 21.17 + 0.33xc1 + 0.17xc2 and yr = 20.13− 0.15xr1 + 0.35xr2,

CCRM : yL = yc − yr and yU = yc + yr,

where yc = 21.17 + 0.33xc1 + 0.17xc2 and yr = 17.96 + 0.20xr2,

ISVR : yL = 0.12 + 0.21x1 + 0.60x2 and yU = 0.002 + 0.59x1 + 0.06x2.

where yc and yr are obtained as the prediction of y such that the center and the range of interval
value data are considered for the regression linear, respectively. We compare the proposed method
with CM, CRM and CCRM methods on this dataset. Table 5 show the prediction of the pulse rate
for the eleven patients. Also, the comparison of the mentioned methods using the following errors is
reported in Table 6.
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Table 5: The evaluation of ISVR compared to CM, CRM and CCRM through the calculation the interval values of
Pulse variable.

Pulse ISVR CM CRM CCRM
[46-68] [49 -63] [59 -66] [37- 88] [41-85]
[60 - 72] [61- 82] [ 63- 79] [50- 92] [49-93]
[56-90] [84-112] [83-98] [72-108] [70-110]
[70-112] [71-90] [71-86] [54-104] [55-102]
[54-72] [49-63] [59-66] [37-88] [41- 85]
[70 -100] [75-101] [78-93] [59-111] [61-109]
[63-75] [66-95] [78-88] [50-115] [57-109]
[72-100] [73-100] [77-89] [63-104] [62-104]
[76-98] [65-119] [69-103] [ 64-108] [60-112]
[86-96] [83-113] [82-99] [70-111] [69-113]
[86-100] [ 70-95] [71-88] [57-101] [57-102]

Table 6: The evaluation of ISVR compared to CM, CRM and CCRM through the calculation of RMSEL, RMSEU ,R2
L

and R2
U

Method RMSEL RMSEU R2
L R2

U

CM 11.09 10.41 0.5774 0.6932
CRM 9.81 8.94 12.8457 0.9329
CCRM 9.73 9.17 13.2450 0.9329
ISVR 9.63 7.29 0.8229 1.6326

RMSEL =

√∑n
i=1(y

(i)
L − ŷ

(i)
L )2

n
, R2

L =

∑n
i=1(ȳ
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(i)
L )2∑n
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(i)
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U − ȳ
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From Table 5 and 6, we deduce that the ISVR method performs better than the CM, CRM and
CCRM methods in this data set.

7. Conclusion

In this paper, we investigated SVR problem for interval dataset. The proposed method named
Interval Support Vector Regression (ISVR) and, ISVR reformulated the problem into two SVR
problems according to the lower and upper bound of data. We obtained two hyperplanes, each of
which was based on the lower and upper of data, respectively. To predict interval data, ISVR. To
predict the test data, several decision rules were introduced. In contrast to the existing methods,
ISVR did not just use the averaging of these two hyperplanes as a decision-regressor but it introduced
different decision rules for estimating data. The experimental results showed that the proposed
approach is effective on interval data and those achieve a better performance on real-world datasets
than the existing methods.
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