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Abstract

Considering prolongation of a Lie algebroid equipped with a spray, defining some classical tensors,
we show that a Lie symmetry of a spray is a curvature collineation for these tensors.
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1. Introduction

The notion of a Lie algebroid structure as generalization of the notion of Lie algebra of a Lie group,
introduced by Pradines in 1967. The method of extracting a Lie algebroid from a differentiable
groupoid, is completely analogous of extracting a Lie algebra from a Lie group[10]. A Lie algebroid
is a vector bundle that each of its sections is mapped to a vector field by a linear bundle map together
with a bracket on the sections of the vector bundle that is R-bilinear, alternating and satisfies the
Jacobi identity. This map must be a homomorphism of Lie algebras and is called the anchor map of
the vector bundle. More attributes on the anchor map, may induce special properties on the vector
bundle. For example, if the anchor map is a submersion, then all of its right inverses are connections
in the vector bundle (see [6]). When anchor map is the identity, the Lie algebroid reduces to the
tangent bundle. Thus Lie algebroids are extensions of the tangent bundle that make possible to study
more generic geometric objects. There are many studies on Lie algebroid structures (e.g., [2, 3, 4, 6])
and their relation to physics and mechanics (e.g. [7, 13, 14, 15]).

Curvature collineations as symmetries of space-time, are powerful tools in general relativity [1, 5].
It has been shown in [11] that if the complete lift of a vector field is a Lie symmetry of a spray, then
it is a curvature collineation for some classical tensors. The aim of this paper is to obtain the similar
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results on the prolongation of a Lie algebroid. In section 2 we recall the definition of prolongation
of a Lie algebroid and review some basic concepts such as the vertical and complete lifts on the
prolongation of a Lie algebroid. In section 3 we introduce a kind of derivation along projectable
sections and in the last section we show that in a prolongation of a Lie algebroid the complete lift of
a Lie symmetry of a spray, is a curvature collineation for some classical tensor fields.

2. Preliminaries

Let π : E → M be a vector bundle of rank m over an n-dimensional base manifold M . Denote by
Γ(E) the C∞(M)-module of smooth sections of π. A Lie algebroid structure ([·, ·]E, ρ) on E is a Lie
bracket [·, ·]E on the module Γ(E) together with a bundle map ρ : E → TM , called the anchor map,
such that we also denote by ρ : Γ(E) → χ(M) the homomorphism of C∞(M)-modules induced by
the anchor map and for being algebroid, the following role must be hold.

[ξ, fη]E = f [ξ, η]E + ρ(ξ)(f)η,

for all ξ, η ∈ Γ(E), f ∈ C∞(M). Here we regard the anchor map as a homomorphism Γ(E)→ χ(M)
of C∞(M)-modules, denoted by the same symbol. Then we also have

[ρ(ξ), ρ(η)] = ρ[ξ, η]E,

so the anchor map ρ : Γ(E)→ χ(M) is a Lie algebra homomorphism at the same time [7].
On Lie algebroids (E, [·, ·]E, ρ) the differential of E, dE : Γ(∧kE∗)→ Γ(∧k+1E∗), is defined by

dEθ(ξ0, . . . , ξk) =
k∑
i=0

(−1)iρ(ξi)(µ(ξ0, . . . , ιξi, . . . , ξk))

+
∑
i<j

(−1)i+jθ([ξi, ξj]E, X0, . . . , ιξi, . . . , ιξj, . . . , ξk),

for θ ∈ Γ(∧kE∗) and ξ0, . . . , ξk ∈ Γ(E), where the ι side an argument means the absence of that
argument. In particular, if f ∈ Γ(∧0E∗) = C∞(M) we have dEf(ξ) = ρ(ξ)f . By using the above
equation one can deduce (dE)2 = 0. Moreover, for ξ ∈ Γ(E), the contraction iξ : Γ(∧pE∗)→ Γ(∧pE∗)
is defined in the standard way and the Lie differential operator £E

ξ : Γ(∧pE∗)→ Γ(∧pE∗) is defined
by £E

ξ = iξ ◦ dE + dE ◦ iξ [3].
If we take a local coordinate system (xi)ni=1 on M and a local basis (eα)mα=1 of sections of E, then

we have the corresponding local coordinate (xi,yα) on E, where xi := xi ◦ π and yα(u) is the α-th
coordinate of u ∈ E in the given basis. Such coordinates determine local functions ρiα, Lγαβ on M
which contain the local information of the Lie algebroid structure, and accordingly they are called
the structure functions of the Lie algebroid [7]. These functions are given by

ρ(eα) = ρiα
∂

∂xi
and [eα, eβ]E = Lγαβeγ.

An easy calculation leads to the structure equations

(i) ρjα
∂ρiβ
∂xj
− ρjβ

∂ρiα
∂xj

= ρiγL
γ
αβ, (ii)

∑
(α,β,γ)

[ρiα
∂Lνβγ
∂xi

+ LναµL
µ
βγ] = 0, (2.1)



Curvature collineations on Lie algebroid structure 8 (2017) No. 2, 47-63 49

The vertical lift of a function f ∈ C∞(M) is f∨ := f ◦ π ∈ C∞(E). The vertical lift ξ∨ of a section
ξ ∈ Γ(E) is given by

u ∈ E 7−→ ξ∨(u) := ξ(π(u))∨u ∈ TE,
where ∨u : Eπ(u) → Tu(Eπ(u)) is the canonical isomorphism between the vector spaces Eπ(u) and
TuEπ(u)(see, e.g., [12], 2.4.(5)). Then ξ∨ is a vertical vector field on E. Thus it follows that if
ξ = ξαeα ∈ Γ(E), then the vertical lift ξ∨ has the locally expression ξ∨ = (ξα ◦ π) ∂

∂yα
. If ξ, η are

sections of E and f ∈ C∞(M), then using the local expressions of them, we obtain [9]

(ξ + η)∨ = ξ∨ + η∨, (fξ)∨ = f∨ξ∨, ξ∨f∨ = 0.

The complete lift of a smooth function f ∈ C∞(M) into C∞(E) is the smooth function

f c : E −→ R, u 7−→ f c(u) := ρ(u)f.

Then
(fg)c = f cg∨ + f∨gc,

because for every u ∈ E,

(fg)c(u) = ρ(u)(fg) = (ρ(u)f)(g ◦ π)(u) + (f ◦ π)(u)(ρ(u)g)

= f c(u)g∨(u) + f∨(u)gc(u).

Locally we have

f c(u) = f c(uαeα) = ρ(uαeα)(f) = uαρ(eα)(f) = uαρiα
∂f

∂xi
= (yα((ρiα

∂f

∂xi
) ◦ π))(u),

i.e., f c|π−1(U) = yα((ρiα
∂f
∂xi

) ◦ π).

Lemma 2.1. [9] If ξ is a section of E and f, g ∈ C∞(M), then

(f + g)c = f c + gc, (fg)c = f cg∨ + f∨gc, ξ∨f c = (ρ(ξ)f)∨.

We refer that every smooth section ω of the dual bundle of π : E −→ M determines a smooth
function ω̂ −→M given by

ω̂(u) := ωπ(u)(u).

Now let ξ be a smooth section of E. There exist a unique vector field ξc, called the complete lift of
ξ, such that

i) ξc is π-projectable on ρ(ξ),

ii) ξc(θ̂) = £̂E
ξ θ,

where θ ∈ Γ(E∗).
It is known that ξc has the following coordinate expression([3], [4]):

ξc = {(ξαρiα) ◦ π} ∂
∂xi

+ yβ{(ρjβ
∂ξα

∂xj
− ηγLαγβ) ◦ π} ∂

∂yα
. (2.2)

Lemma 2.2. [9] If ξ and η are sections of E and f ∈ C∞(M), then

(i) ξcf c = (ρ(ξ)f)c, for all f ∈ C∞(M),

(ii) ξcf∨ = (ρ(ξ)f)∨,

(iii) [ξc, ηc] = [ξ, η]cE, [ξc, η∨] = [ξ, η]∨E, [ξ∨, η∨] = 0.
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2.1. The prolongation of a Lie algebroid

In this section we recall the notion of prolongation of a Lie algebroid and we consider a Lie algebroid
structure on it. We also study the vertical and complete lifts on the prolongation of a Lie algebroid.

Let £πE be the subset of E × TE defined by £πE = {(u, z) ∈ E × TE|ρ(u) = π∗(z)} and let
π£ : £πE → E be the mapping given by π£(u, z) = τE(z), where τE : TE → E is the natural
projection. Then (£πE, π£, E) is a vector bundle over E of rank 2n. If we define an anchor map
ρ£ : £πE → TE on £πE, then this vector bundle becomes a Lie algebroid with structure (J ·, · K, ρ£),
where the Lie bracket J ·, · K is given by formula (17) in [9].

We introduce the vertical subbundle

v£πE = ker τ£ = {(u, z) ∈ £πE|τ£(u, z) = 0},

of £πE where τ£ : £πE → E is the projection onto the first factor, i.e., τ£(u, z) = u. Then the
elements of v£πE are of the form (0, z) ∈ E × TE such that π∗(z) = 0, these elements are called
vertical. Since π∗(z) = 0 and kerπ∗ = vE (π∗ : TE → TM), then we deduce that if (0, z) is vertical
then z is a vertical vector on E [9].

If we consider a local base {eα} of sections of E and coordinates (xi,yα) on E, then we have local
coordinates (xi,yα, kα, zα) on £πE given as follows. If (u, z) is an element of £πE, then by using
ρ(u) = π∗(z), z has the form

z = ((ρiαu
α) ◦ π)

∂

∂xi
|v + zα

∂

∂yα
|v, z ∈ TvE.

The local base {Xα,Vα} of sections of £πE associated to the coordinate system is given by

Xα(v) = (eα(π(v)), (ρiα ◦ π)
∂

∂xi
|v), Vα(v) = (0,

∂

∂yα
|v).

If η̃ is a section of £πE by coordinate expression

η̃(x, y) = (xi, yα, Zα(x, y), V α(x, y)),

then the expression of η̃ in terms of base {Xα,Vα} is

η̃ = ZαXα + V αVα.

Lemma 2.3. [9] The followings are hold.

JXα,Xβ K = (Lγαβ ◦ π)Xγ, JXα,Vβ K = 0, JVα,Vβ K = 0.

2.1.1. Vertical and complete lifts on £πE

The vertical lift ηV and the complete lift ηC of a section η ∈ Γ(E) as the sections of £πE → E are
defined by

ηV (u) = (0, ηv(u)), ηC(u) = (η(π(u)), ηc(u)), u ∈ E.

It is shown that vertical and complete lifts has the coordinate expression

ηV = (ηα ◦ π)Vα, ηC = (ηα ◦ π)Xα + yβ[(ρjβ
∂ηα

∂xj
− ηγLαγβ) ◦ π]Vα, (2.3)
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where η = ηαeα ∈ Γ(E) [9]. Note that the first components of ηV and ηC are free of indeterminacy.
Setting η = eα, we have

ηC = Xα − yβ(Lγαβ ◦ π)Vγ. (2.4)

Here we consider the pullback bundle (π∗E, pr1, E) of the vector bundle (E, π,M), where

π∗E := E ×M E = {(u, v) ∈ E × E|π(u) = π(v)},

and pr1 is the projection map onto the first component. We also consider the sequence

0 −→ E ×M E
i→ £πE

j→ E ×M E −→ 0, (2.5)

with j(u, z) = (πE(z), Id(u)) = (v, u), z ∈ TvE, and i(u, v) = (0, v∨u ) where v∨u : C∞(E) → R is
defined by v∨u (F ) = d

dt
|t=0F (u+ tv). Indeed we have v∨u = d

dt
|t=0(u+ tv). Function J = i ◦ j : £πE →

£πE is called the vertical endomorphism (almost tangent structure) of £πE. For any section η on E,
the map

η̂ : E → π∗E,

defined by η̂(u) = (u, η ◦π(u)) is a section of π∗π, called the lift of η into Γ(π∗π). η̂ may be identified
with the map η ◦π : E → E. It is easy to see that {η̂|η ∈ Γ(E)} generates locally the C∞(E)-module
Γ(π∗π). It is obvious that i(η̂) = ηV , j(ηV ) = 0 and j(ηC) = η̂. Moreover, i is injective and j is
surjective. Therefore the sequence given by (2.5) is an exact sequence. Moreover, if {X α,Vα} be the
corresponding dual basis of {Xα,Vα}, then J = Vα ⊗ X α (see [9]). One can derive from the above
exact sequence that

ImJ = Imi = v£πE, ker J = ker j = v£πE, J ◦ J = 0.

The section C : E −→ £πE given by C := i ◦ δ, is called Liouville or Euler section, where δ : u ∈
E → δ(u) = (u, u) ∈ E ×M E. The Liouville section C has the coordinate expression C = yαVα,
with respect to {Xα,Vα}. Section η̃ of vector bundle (£πE, π£, E) is said to be homogenous of degree
r, where r is an integer, if JC, η̃ K = (r − 1)η̃. A function h : £πE → £πE is called a horizontal
endomorphism if h◦h = h and kerh = v£πE. Also, v := Id−h is called vertical projector associated
to h. Setting h£πE := Imh and using the fact that £πE = kerh+ Imh = v£πE ⊕ h£πE, it will be
deduced that

£πE = v£πE ⊕ h£πE. (2.6)

Thus one can check the following equations.

(i) hJ = hv = Jv = 0, (ii) v ◦ v = v, (iii) vh = 0, (iv) Jh = J = vJ. (2.7)

Moreover, h has the locally expression h = (Xβ + BαβVα) ⊗ X β (see [9]). Let η be a section on E.

The horizontal lift of η by h is a section of £πE defined by ηh = h(ηC). If we set δα = ehα, then we
have δα = Xα + BβαVβ = h(Xα). It is easy to see that hδα = δα, vδα = 0 and

ρ£(δα) = (ρiα ◦ π)
∂

∂xi
+ Bγα

∂

∂yγ
. (2.8)

Moreover, {δα} generate a basis of h£πE and the frame {δα,Vα} is a local basis of £πE adapted to
splitting (2.6) which is called adapted basis. The dual adapted basis is {X α, δVα}, where

δVα = Vα − BαβX β.
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Lemma 2.4. [9] The Lie brackets of the adapted basis {δα,Vα} are

J δα, δβ K = (Lγαβ ◦ π)δγ +Rγ
αβVγ, J δα,Vβ K = −∂B

γ
α

∂yβ
Vγ, JVα,Vβ K = 0, (2.9)

where

Rγ
αβ = (ρiα ◦ π)

∂Bγβ
∂xi
− (ρiβ ◦ π)

∂Bγα
∂xi

+ Bλα
∂Bγ

β

∂yλ
− Bλβ

∂Bγα
∂yλ

+ (Lλβα ◦ π)Bγλ. (2.10)

Thus, one can immediately check that h has the following coordinate expression with respect to
the adapted basis

h = δα ⊗X α. (2.11)

Lemma 2.5. [9] The followings are hold.

vVα = Vα, vXα = −BβαVβ.

3. Derivative along projectable sections

In this section considering projectable sections, a derivative along them is introduced.
A section S of the vector bundle (£πE, π£, E) is said to be a semispray if it satisfies the condition

J(S) = C. It is easy to see that local form of a semispray S is

S = yαXα + SαVα. (3.1)

Moreover if S is homogeneous of degree 2, i.e., JC, S K = S, then we call it spray. It is also easy to

see that S is spray if and only if 2Sβ = yα
∂Sβ

∂yα
.

We can deduce the following exact sequence from the exact sequence (2.5)

0 −→ Γ(π∗π)
i→ Γ(£πE)

j→ Γ(π∗π) −→ 0. (3.2)

A right splitting of the exact sequence (3.2), is an Ehresmann connection. In other words any smooth
C∞(E)-linear mapping H such that j ◦ H = 1Γ(£πE)), is an Ehresmann connection.

The vertical mapping V associated toH is a left splitting of (3.2) that satisfies in ker(V) = Im(H).
Moreover, we have V(Vα) = êα and V(Xα) = −Bβαêβ.

It is easy to see that h = H ◦ j and v = i ◦ V = 1Γ(£πE) − h are the horizontal endomorphism
and the vertival projection on £πE, respectively. Moreover, we have H(η̂) = h(ηC) = ηh. The
Ehresmann connection H is said to be homogeneous if JC, ηh K = 0 for all η ∈ Γ(E).

We can derive a homogeneous Ehresmann connection H in E from a spray S on E such that for
any η ∈ Γ(E)

ηh = Hη̂ =
1

2
(ηC + J ηV , S K).

This Ehresmann connection is called the Berwald connection. In this manner, it will bee seen the
following (see [9])

2Bγα =
∂Sγ

∂yα
− yβ(Lγαβ ◦ π). (3.3)
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We define the vertical differential of a function F ∈ C∞(E) and a section η̄ ∈ E ×M E as the
1-form ∇vF and (1, 1)-tensor ∇vη̄ as follows

∇vF ξ̄ := ρ£(iξ̄)F, ξ̄ ∈ E ×M E,

and
∇vη̄(ξ̄) := ∇v

ξ̄ η̄ := j J iξ̄, σ̃ K; ξ̄ ∈ E ×M E, σ̃ ∈ £πE, jσ̃ = η̄. (3.4)

It is easy to see that

∇vF êα =
∂F

∂yα
.

For an η ∈ Γ(E), we define a (1, 1)-tensor field by

[J, η]F−Nξ := J Jξ, η K−J J ξ, η K, ξ ∈ Γ(E). (3.5)

In particular with acting on ηC and ηV we have the following

[J, ηC ]F−N = [J, ηV ]F−N = 0. (3.6)

In terms of Ehresmann connection, we can rewrite

∇v
ξ̄ η̄ = j J iξ̄,Hη̄ K . (3.7)

Setting ξ̄ = ξ̄αêα and η̄ = η̄β êβ, one can see that

∇v
ξ̄ η̄ = ξ̄α

∂η̄β

∂yα
j(δβ) = ξ̄α

∂η̄β

∂yα
êβ. (3.8)

Using this equation, one can deduce the following

∇v
ξ̄ η̂ = 0. (3.9)

For any Ehresmann connection H, similar to the vertical defferential we can define the h-Berwald
defferential ∇h as follows

∇hF (ξ̄) := ρ£(Hξ̄)F, (3.10)

and
∇hη̄(ξ̄) := ∇h

ξ̄ η̄ := V JHξ̄, iη̄ K . (3.11)

Using expression of ρ(δα), we can compute

∇hF (êα) = ρiα
∂F

∂xi
+ Bγα

∂F

∂yγ
. (3.12)

Moreover setting ξ̄ = ξ̄αêα and η̄ = η̄αêα, we have

∇h
ξ̄ η̄ = V JH(ξ̄αêα), i(η̄β êβ) K = V J ξ̄αδα, η̄βVβ K

= V{ξ̄αη̄β J δα,Vβ K +ξ̄α(ρ(δα)η̄β)Vβ − η̄β(ρ(Vβ)ξ̄α)δα}

= −ξ̄αη̄β ∂B
γ
α

∂yβ
Vγ + ξ̄α(ρiα ◦ π)

∂η̄β

∂xi
Vβ + ξ̄αBγα

∂η̄β

∂yγ
Vβ

= {−ξ̄αη̄β ∂B
γ
α

∂yβ
+ ξ̄α(ρiα ◦ π)

∂η̄γ

∂xi
+ ξ̄αBβα

∂η̄γ

∂yβ
}Vγ. (3.13)
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An R-linear mapping D : T(π∗π) −→ T(π∗π) preserving type and commutes with contraction and
satisfied the

D(A⊗B) = (DA)⊗B + A⊗ (DB); A,B ∈ T(π£),

where T(π∗π) denotes the family of all tensor fields of the bundle π∗π, is called a derivation along
π£. If we have enough data on C∞(E) and Γ(E), then we can build a tensor derivation[8].

Lemma 3.1. Any derivation of T(π∗π) is completely determined by its action on C∞(E) under the
anchor map and its action on Γ(π∗π). Converesly, given a section η̃ ∈ Γ(£πE) and an R-linear
mapping D0 : Γ(π∗π) −→ Γ(π∗π) such that

D0(F ξ̄) = (ρ£(η̃)(F ))ξ̄ + FD0ξ̄, ξ̄ ∈ Γ(π∗π), F ∈ C∞(E),

there exist a unique derivation D along π£ such that D � C∞(E) = ρ£(η̃) and D � Γ(π∗π) = D0.

A section ξ̃ : E −→ £π(E) is said to be projectable if there is a section X : M −→ E such that

τ£ ◦ ξ̃ = X ◦ π. It is easy to see that both ξV and ξC are projectable when ξ ∈ Γ(E).

Lemma 3.2. If ξ̃ : £πE −→ E be projectable, then there exist a unique derivation L̃ξ̃ along π£ such
that

L̃ξ̃F := ρ£(ξ̃)F, F ∈ C∞(E), (3.14)

L̃ξ̃η̄ := i−1 J ξ̃, iη̄ K, η̄ ∈ Γ(π∗π). (3.15)

Proof . Since ξ̃ is projectable and iη̄ is vertical, then J ξ̃, iη̄ K is vertical too. Therefore (3.15) is a
well defined equivalency. Now if F ∈ C∞(E), then

L̃ξ̃F η̄ := i−1 J ξ̃, i(F η̄) K = i−1 J ξ̃, F iη̄ K = i−1(F J ξ̃, iη̄ K +ρ£(ξ̃)(F )(iη̄))

= F L̃ξ̃η̄ + ρ£(ξ̃)(F )η̄.

Now using lemma (3.1), we prove the assertion. �

We call the L̃ξ̃ as Lie derivation along π with respect to ξ̃. Note that if ξ̃ be projectable, then

J ξ̃, iη̄ K = v J ξ̃, iη̄ K = i ◦ V J ξ̃, iη̄ K. Thus we can write (3.15) as

L̃ξ̃η̄ = V J ξ̃, iη̄ K . (3.16)

Setting ξ̃ = ξ̃αδα + η̃αVα and σ̄ = σ̄αêα, we can express (3.14) and (3.16) as follow

L̃ξ̃F = ξ̃α(ρiα ◦ π)
∂F

∂xi
+ (ξ̃αBγα + η̃γ)

∂F

∂yγ
; (3.17)

L̃ξ̃σ̄ = V J ξ̃αδα + η̃αVα, σ̄βi(êβ) K (3.18)

= {ξ̃α(ρiα ◦ π)
∂σ̄γ

∂xi
− ξ̃ασ̄β ∂B

γ
α

∂yβ

+ ξ̃αBβα
∂σ̄γ

∂yβ
+ η̃α

∂σ̄γ

∂yα
− σ̄β ∂η̃

γ

∂yβ
}êγ.

For future computations, we need the following lemma.
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Lemma 3.3. If η be a section of E, then

L̃ηC ξ̂ = Ĵ η, ξ K = L̂ηξ; (3.19)

L̃ηV ξ̄ = ∇v
η̂ ξ̄. (3.20)

Moreover, if H is an Ehresmann connection on £πE, then

L̃ηh ξ̄ = ∇h
η̂ ξ̄. (3.21)

Proof . Let η = ηαeα and ξ = ξβeβ. Then using the second equation of (2.3) and (3.18), we obtain

L̃ηC ξ̂ = {(ηβρiβ
∂ξα

∂xi
− ξβρiβ

∂ηα

∂xi
+ ηγξβLαγβ) ◦ π}êα = Ĵ η, ξ K.

To proof (3.20), we let ξ̄ = ξ̄αêα. Then using the first equation of (2.3) and (3.18) yield

L̃ηV ξ̄ = (ηβ ◦ π)
∂ξ̄α

∂yβ
êα = ∇v

η̂ ξ̄.

Now, we prove (3.21). (3.13) and (3.18) imply that

L̃ηh ξ̄ = {((ηβρiβ) ◦ π)
∂ξ̄α

∂xi
− (ηγ ◦ π)ξ̄β

∂Bα
γ

∂yβ
+ (ηγ ◦ π)Bβ

γ

∂ξ̄α

∂yβ
}êα = ∇h

η̂ ξ̄.

�

Thus we can write
L̃ηV = ∇v

η̂, L̃ηh = ∇h
η̂ .

Corollary 3.4. If η be a section of E, Then

L̃ηC ◦ j = j ◦ L[ηC , (3.22)

L̃ηC ◦ ∇v
ξ̂
−∇v

ξ̂
◦ L̃ηC = L̃[η,ξ]V , (3.23)

Further if H be an Ehresmann connection, then

L̃ηC ◦ ∇h
ξ̂
−∇h

ξ̂
◦ L̃ηC = L̃J ηC ,ξh K, (3.24)

where L[
ξ̃
η̃ denotes the J ξ̃, η̃ K.

Proof . For any η̃ ∈ £π(E) we have

J J ηC , η̃ K = J ηC , Jη̃ K . (3.25)

Thus
L̃ηC ◦ jη̃ = V J ηC , Jη̃ K = VJ J ηC , η̃ K = j J ηC , η̃ K = jL[ηC η̃,

proving (3.22). For any F ∈ C∞(E) and σ̄ ∈ Γ(£πE),

(L̃ηC ◦ ∇v
ξ̂
−∇v

ξ̂
◦ L̃ηC )F = L̃ηC (ρ£(ξV )F )−∇v

ξ̂
(ρ£(ηC)F )

= ρ£(ηC)(ρ£(ξV )F )− ρ£(ξV )(ρ£(ηC)F )

= ρ£(J ηC , ξV K)F = ρ£([η, ξ]V )F = L̃[η,ξ]V F.
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Using local coordinates and straightforward computations, yield the following

J ηV , iξ̄ K = J J ηV ,Hξ̄ K . (3.26)

Also from (3.4), (3.22), (3.25),(3.26) and Jacobi identity, we conclude

i ◦ (L̃ηC ◦ ∇v
ξ̂
−∇v

ξ̂
◦ L̃ηC )(σ̄) = i(L̃ηCj J ξV ,Hσ̄ K)− i(∇v

ξ̂
i−1 J ηC , iσ̄ K)

= J J ηC , J ξV ,Hσ̄ K K−J J ξV ,H ◦ i−1 J ηC , iσ̄ K K
= J ηC , J ξV , iσ̄ K K− J ξV , J ηC , iσ̄ K K
= J ηC , J ξV , iσ̄ K K + J ξV , J iσ̄, ηC K K
= − J iσ̄, J ηC , ξV K K = J[η, ξ]V , iσ̄ K .

Hence
(L̃ηC ◦ ∇v

ξ̂
−∇v

ξ̂
◦ L̃ηC )(σ̄) = i−1 J[η, ξ]V , iσ̄ K = L̃J ηC ,ξh Kσ̄,

proving (3.23). To proving (3.24), first take a F ∈ C∞(E). Then we have L̃J ηC ,ξh KF = ρ£(J ηC , ξh K)F
and

(L̃ηC ◦ ∇h
ξ̂
−∇h

ξ̂
◦ L̃ηC )F = L̃ηC (ρ£(ξh)F )−∇h

ξ̂
(ρ£(ηC)F )

= ρ£(ηC)ρ£(ξh)F − ρ£(ξh)ρ£(ηC)F

= [ρ£(ηC), ρ£(ξh)]F

= ρ£(J ηC , ξh K)F.

Hence both sides of (3.24), act on the functions in the same way. On the other hand

i ◦ (L̃ηC ◦ ∇h
ξ̂
−∇h

ξ̂
◦ L̃ηC )(σ̄) = i(L̃ηCV J ξh, iσ̄ K)− i∇h

ξ̂
i−1 J ηC , iσ̄ K

= J ηC , iV J ξh, iσ̄ K K−iV J ξh, J ηC , iσ̄ K K
= J ηC , v J ξh, iσ̄ K K−v J ξh, J ηC , iσ̄ K K .

But J ξh, iσ̄ K and J ξh, J ηC , iσ̄ K K are vertical. Thus

i ◦ (L̃ηC ◦ ∇h
ξ̂
−∇h

ξ̂
◦ L̃ηC )(σ̄) = J ηC , J ξh, iσ̄ K K− J ξh, J ηC , iσ̄ K K

= J J ηC , ξh K, iσ̄ K .

The assertion will be proved with acting i−1 on both sides of the above equality. �

Acting the equality (3.23) on σ̂, yields the following.

Corollary 3.5. Let η, ξ, σ ∈ Γ(E), then ∇v
ξ̂
◦ L̃ηC (σ̂) = 0.

4. Curvature collineation

In this section, we introduce some tensors that are important in studying the configurations of the
bundle maps and yield some results on them in view of collineation.

The Jacobi endomorphism K : T1(π∗π) → T 1
1 (π∗π) whrere for example T1 denoted the (1, 0)

tensors of bundle π∗π; is defined as

K (η̄) := V JS,H(η̄) K . (4.1)
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Corollary 4.1. The Jacobi endomorphism K has the following locally expression.

K (êγ) = {−yβ(Lθβγ ◦ π)Bαθ + BβγBαβ + yβ(ρiβ ◦ π)
∂Bαγ
∂xi

− (ρiγ ◦ π)
∂Sα

∂xi
+ Sβ

∂Bαγ
∂yβ

− Bβγ
∂Sα

∂yβ
}êα.

Proof . In [9], it is shown that

H(η̄) = η̄αXα + η̄αBβαVβ, η̄ = η̄γ êγ. (4.2)

Therefore, choosing σ̄ = σ̄γ êγ yields

JS,H(σ̄) K = yασ̄γ(Lθαγ ◦ π)Xθ + yα[(ρiα ◦ π)
∂σ̄γ

∂xi
]Xγ + yα[(ρiα ◦ π)

∂(σ̄γBβγ )

∂xi
]Vβ

− σ̄γBαγXα + Sα
∂σ̄γ

∂yα
Xγ − σ̄γ[(ρiγ ◦ π)

∂Sα

∂xi
]Vα

+ Sα
∂(σ̄γBβγ )

∂yα
Vβ − σ̄γBβγ

∂Sα

∂yβ
Vα.

Now, setting σ̄ = êγ and using H(êγ) = δγ arise

JS,H(êγ) K = JS, δγ K = {yβ(Lαβγ ◦ π)− Bαγ }Xα + {yβ(ρiβ ◦ π)
∂Bαγ
∂xi

− (ρiγ ◦ π)
∂Sα

∂xi
+ Sβ

∂Bαγ
∂yβ

− Bβγ
∂Sα

∂yβ
}Vα.

Acting V on the above equality, yields the assertion. �

Using the Jacobi endomorphism K, the fundamental affine curvature R : T 0
2 (π∗π)→ T 1

2 (π∗π) is
defined by

R (η̄, ξ̄) :=
1

3
(∇vK(ξ̄, η̄)−∇vK(η̄, ξ̄)). (4.3)

The affine curvature H : T 0
3 (π∗π)→ T 1

3 (π∗π) is defined by

H (η̄, ξ̄)σ̄ := ∇vR (σ̄, η̄, ξ̄). (4.4)

For a A ∈ T 1
l+1(π), its trace denoted by tr(A) is defined as follows

tr(A)(X1, . . . , Xl) := tr(Φ), Φ(Z) := A(Z,X1, . . . , Xl),

where π is a bundle projection.
The projective deviation tensor W ◦ is defined by

W ◦ := K − 1

n− 1
(trK )IdΓ(£πE) +

3

n+ 1
(trR )⊗ δ +

2− n
n2 − 1

(∇vtrK )⊗ δ. (4.5)

Note that we can quickly rewrite this tensor as follows

W ◦ = K−
◦

K IdΓ(£πE) +
1

n+ 1
(∇v

◦
K −tr∇vK )⊗ δ, (4.6)
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where
◦

K :=
1

n− 1
trK .

The fundamental projective curvature is defined by

W (η̄, ξ̄) :=
1

3
(∇vW ◦(ξ̄, η̄)−∇vW ◦(η̄, ξ̄)), (4.7)

and the projective curvature W ∗ as

W ∗(η̄, ξ̄)(σ̄) := ∇vW (σ̄, η̄, ξ̄). (4.8)

The Berwald curvature B and Douglas curvature D are defined by

B(η̂, ξ̂)(σ̂) := (∇v∇hσ̂)(η̂, ξ̂), (4.9)

and

D := B − 1

n+ 1
{(trB)� IdΓ(£πE) +∇vtrB ⊗ δ}, (4.10)

where � shows the numerical factor is omitted from symmetric product.
A Lie symmetry of the semispray S is a section η of E such that JS, ηC K = 0. We have the

following.

Proposition 4.2. A section η = ηαeα of E is a Lie symmetry of S if and only if

yβyλ(ρiλ ◦ π)
∂(ηα|β ◦ π)

∂xi
− ((ηλρiλ) ◦ π)

∂Sα

∂xi
+ Sλ(ηα|λ ◦ π)− yβ(ηλ|β ◦ π)

∂Sα

∂yλ
= 0, (4.11)

where ηα|β := ρjβ
∂ηα

∂xj
− ηγLαγβ.

Proof . Using (2.3) and (3.1) we obtain

JS, ηC K = JyαXα + SαVα, (ηλ ◦ π)Xλ + yβ(ηλ|β ◦ π)Vλ K

= {yλρiλ
∂(ηα ◦ π)

∂xi
+ yσ((ηλLασλ) ◦ π)− yβ(ηα|β ◦ π)}Xα

+ {yβyλ(ρiλ ◦ π)
∂(ηα|β ◦ π)

∂xi
− ((ηλρiλ) ◦ π)

∂Sα

∂xi
+ Sλ(ηα|λ ◦ π)

− yβ(ηλ|β ◦ π)
∂Sα

∂yλ
}Vα.

Using direct calculation we deduce that the coefficient of Xα vanishes. Therefore JS, ηC K = 0 if and
only if the coefficient of Vα is zero. �

Lemma 4.3. Let S be a spray on the prolongation of a Lie algebroid with the structure (J ·, · K, ρ£)
and η ∈ Γ(E). Then the following statements are equivalent.

(i) η is a Lie symmetry of S;

(ii) [η, ξ]h = J ηC , ξh K for any ξ ∈ Γ(E);

(iii) [v, ηC ]F−N = 0.
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Proof . (i) =⇒ (ii): Setting
A(η, ξ) := [η, ξ]h − J ηC , ξh K, (4.12)

it arises the following

A(η, ξ) = ξβ{ηλρiλ
∂Bαβ
∂xi
− yγρiβ

∂ηα|γ
∂xi

+ yγηλ|γ
∂Bαβ
∂yλ

− Bλβηα|λ + ηγ|βB
α
γ }Vα, (4.13)

where η = ηαeα and ξ = ξβeβ. Putting (3.3) in the above equation, yields

A(η, ξ) = ξβ{1

2
ηλρiλ(

∂2Sα

∂xi∂yβ
− yθ

∂Lαβθ
∂xi

)− yγρiβ
∂ηα|γ
∂xi

+
1

2
yγηλ|γ(

∂2Sα

∂yβ∂yλ
− Lαβλ)−

1

2
ηα|λ(

∂Sλ

∂yβ
− yθLλβθ)

+
1

2
ηγ|β(

∂Sα

∂yγ
− yθLαγθ)}. (4.14)

Differentiating from (4.11) with respect to y and putting it into the (4.14), we obtain

A(η, ξ) =
1

2
ξβ{yλρiλ

∂ηα|β
∂xi
− ηγ|βy

λLαγλ − ηλρiλyγ
∂Lαβγ
∂xi

− yγηλ|γL
α
βλ + ηα|λy

γLλβγ − yγρiβ
∂ηα|γ
∂xi
}. (4.15)

Putting ηα|β = ρjβ
∂ηα

∂xi
−ηγLαβγ into the above equation, simplification and suitable changing of indices,

the following will be yield.

A(η, ξ) =
1

2
ξβ{yλ∂η

α

∂xj
(ρiλ

∂ρjβ
∂xi
− ρiβ

∂ρjλ
∂xi

+ ρjγL
γ
βλ)

− yληγ(ρiλ
∂Lαγβ
∂xi

+ LθγβL
α
λθ + ρiγ

∂Lαβλ
∂xi

+ LθλγL
α
βθ

+ LαγθL
θ
βλ + ρiβ

∂Lαλγ
∂xi

)}. (4.16)

Applying (2.1) with above equation, clearly A(η, ξ) = 0.
(ii) =⇒ (iii): Direct calculations give us [v, ηC ]F−N(Vβ) = 0 and [v, ηC ]F−N(Xβ) = A(η, δβ). Since
(ii) holds, thus from (4.12), we have A(η, ξ) = 0 for any ξ ∈ Γ(E). Thus A(η, δα) = 0 and conse-
quently (iii) is hold.
(iii) =⇒ (i): From (iii) we obtain

ηλρiλ
∂Bαβ
∂xi
− yγρiβ

∂ηα|γ
∂xi

+ yγηλ|γ
∂Bαβ
∂yλ

− Bλβηα|λ + ηγ|βB
α
γ = 0. (4.17)

Plugging (3.3) into the (4.17), relation (4.11) will be yield. Thus (i) is hold. �

A projectable section ξ̃ is said to be a curvature collineation of a curvature tensor C ∈ T 1
k that

k ∈ {1, 2, 3} of a spray algebroid, if L̃ξ̃C = 0.

Theorem 4.4. Let S be a spray on the prolongation of a Lie algebroid with the structure (J ·, · K, ρ£)
and η be a Lie symmetry of S. Then ηC is a curvature collineation of K , R and H .
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Proof . Let ξ be a section of E. Then

(L̃ηCK )ξ̂ = L̃ηC (K (ξ̂))− K (L̃ηC ξ̂) = L̃ηC (V JS, ξh K)− V JS,H(L̃ηC ξ̂) K
= i−1 J ηC , v JS, ξh K K−V JS,H ◦ i−1 J ηC , ξv K K
= i−1(J ηC , v JS, ξh K K−v JS, [η, ξ]h K K).

Using lemma (4.3), yields

(L̃ηCK )ξ̂ = i−1(J ηC , v JS, ξh K K−v JS, J ηC , ξh K K).

According to the Jacobi identity and because of η is a Lie symmetry of S, we have JS, J ηC , ξh K K =
J ηC , JS, ξh K K. Therefore and using lemma (4.3), the following will be yield.

(L̃ηCK )ξ̂ = −i−1([v, ηC ]F−N JS, ξh K) = 0,

proving the first assertion. Also the vanishing of L̃ηCK is equivalent to

L̃ηC ◦ K = K ◦ L̃ηC . (4.18)

Using relation (3.23), we deduce

L̃ηC (∇vK (σ̂, ξ̂)) = ∇v
σ̂ ◦ L̃ηCK (ξ̂) + L̃[η,σ]V (K (ξ̂)). (4.19)

On proceeding to prove the second, we check it on the locally bases as follow

(L̃ηCR )(ξ̂, σ̂) = L̃ηC (R (ξ̂, σ̂))− R (L̃ηC ξ̂, σ̂)− R (ξ̂, L̃ηC σ̂). (4.20)

But

L̃ηC (R (ξ̂, σ̂)) =
1

3
(L̃ηC (∇vK (σ̂, ξ̂))− L̃ηC (∇vK (ξ̂, σ̂)))

=
1

3
(∇v

σ̂ ◦ L̃ηCK (ξ̂) + L̃[η,σ]V (K (ξ̂))

−∇v
ξ̂
◦ L̃ηCK (σ̂)− L̃[η,ξ]V (K (σ̂))),

and

R (L̃ηC ξ̂, σ̂) =
1

3
((∇vK )(σ̂, L̃ηC ξ̂)− (∇vK )(L̃ηC ξ̂, σ̂))

=
1

3
((∇v

σ̂K )(L̃ηC ξ̂)− (∇v
L̃
ηC
ξ̂
K )(σ̂).

According to corollary (3.5) and relations (3.9) and (4.18) and noting that L̃ηC ξ̂ = i−1 J ηC , ξV K =

[̂η, ξ], we can derive

R (L̃ηC ξ̂, σ̂) =
1

3
(∇v

σ̂ ◦ L̃ηC (K (ξ̂))−∇v

[̂η,ξ]
(K (σ̂))).
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Thus

−{R (L̃ηC ξ̂, σ̂) + R (ξ̂, L̃ηC σ̂)} = −R (L̃ηC ξ̂, σ̂) + R (L̃ηC σ̂, ξ̂)

=
1

3
{−∇v

σ̂ ◦ L̃ηC (K (ξ̂)) +∇v

[̂η,ξ]
(K (σ̂))

+∇v
ξ̂
◦ L̃ηC (K (σ̂))−∇v

[̂η,σ]
(K (ξ̂))}

=
1

3
{−∇v

σ̂ ◦ L̃ηC (K (ξ̂)) + L̃[η,ξ]V (K (σ̂))

+∇v
ξ̂
◦ L̃ηC (K (σ̂))− L̃[η,σ]V (K (ξ̂))}.

Therefore the right-hand side of (4.20) is zero. Hence we proved the second assertion. Finally for H ,
using (3.23) and corollary (3.5) possess to

(L̃ηCH )(ξ̂, σ̂, ϑ̂) = L̃ηC (H (ξ̂, σ̂)ϑ̂)− H (L̃ηC ξ̂, σ̂)ϑ̂

− H (ξ̂, L̃ηC σ̂)ϑ̂− H (ξ̂, σ̂)L̃ηC ϑ̂
= L̃ηC (∇v

ϑ̂
(R (ξ̂, σ̂)))− (∇v

ϑ̂
R )(L̃ηC ξ̂, σ̂)

− (∇v
ϑ̂

R )(ξ̂, L̃ηC σ̂)− (∇v

[̂η,ϑ]
R )(ξ̂, σ̂)

= ∇v
ϑ̂
◦ L̃ηC (R (ξ̂, σ̂)) + L̃[η,ϑ]V (R (ξ̂, σ̂))

−∇v
ϑ̂
(R (L̃ηC ξ̂, σ̂))−∇v

ϑ̂
(R (ξ̂, L̃ηC σ̂))−∇v

[̂η,ϑ]
(R (ξ̂, σ̂)).

Since L̃ηCR = 0, thus from (4.20) we obtain

L̃ηC (R (ξ̂, σ̂)) = R (L̃ηC ξ̂, σ̂) + R (ξ̂, L̃ηC σ̂). (4.21)

Arising from (4.21) and relation (3.20) we deduce that L̃ηCH = 0. �

Lemma 4.5. Let F ∈ C∞(E), then (L̃ηC∇vF )(ξ̂) = ρ£(ξV )(ρ£(ηC)F ).

Proof . For every ξ ∈ Γ(E), we have

(L̃ηC∇vF )(ξ̂) = ρ£(ηC)(ρ£(ξV )F )−∇vF ([̂η, ξ])

= ρ£(J ηC , ξV K)F + ρ£(ξV )(ρ£(ηC)F )− ρ£([η, ξ]V )F

= ρ£(ξV )(ρ£(ηC)F ).

�

Theorem 4.6. Let S be a spray on the prolongation of a Lie algebroid with the structure (J ·, · K, ρ£)
and η be a Lie symmetry of S. Then ηC is a curvature collineation of W ◦, W and W ∗.

Proof . Noting that L̃ηCIdΓ(£πE) ≡ 0, L̃ηCδ = V(0) = 0 and L̃ηC ◦ tr = tr ◦ L̃ηC we have

L̃ηCW ◦ = L̃ηCK − 1

n− 1
tr(L̃ηCK )IdΓ(£πE) +

3

n+ 1
(tr(L̃ηCR ))⊗ δ

+
2− n
n2 − 1

(L̃ηC (∇vtrK ))⊗ δ

=
2− n
n2 − 1

(L̃ηC (∇vtrK ))⊗ δ.

Now according to lemma (4.5), (L̃ηC (∇vtrK ))(ξ̂) = 0, that proves L̃ηCW ◦ = 0. The similar result
for W and W ∗ is analogous to theorem (4.4). �
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Theorem 4.7. Let S be a spray on the prolongation of a Lie algebroid with the structure (J ·, · K, ρ£)
and η be a Lie symmetry of S. Then ηC is a curvature collineation of the Berwald curvature.

Proof . For any sections ξ, σ, ϑ ∈ Γ(E),

(L̃ηCB)(ξ̂, σ̂, ϑ̂) = L̃ηC (B(ξ̂, σ̂)ϑ̂)− B(L̃ηC ξ̂, σ̂)ϑ̂

− B(ξ̂, L̃ηC σ̂)ϑ̂− B(ξ̂, σ̂)L̃ηC ϑ̂

= L̃ηC ((∇v∇hϑ̂)(ξ̂, σ̂))− ((∇v∇hϑ̂)([̂η, ξ], σ̂))

− ((∇v∇hϑ̂)(ξ̂, [̂η, σ]− ((∇v∇hL̃ηC ϑ̂)(ξ̂, σ̂)

= L̃ηC (∇v
ξ̂
∇h
σ̂ϑ̂)−∇v

[̂η,ξ]
∇h
σ̂ϑ̂−∇v

ξ̂
∇h

[̂η,σ]
ϑ̂−∇v

ξ̂
∇h
σ̂L̃ηC ϑ̂

= ∇v
ξ̂
(L̃ηC∇h

σ̂ϑ̂) + L̃[η,ξ]V∇h
σ̂ϑ̂−∇v

[̂η,ξ]
∇h
σ̂ϑ̂

−∇v
ξ̂
∇h

[̂η,σ]
ϑ̂−∇v

ξ̂
L̃ηC∇h

σ̂ϑ̂+∇v
ξ̂
L̃J ηC ,σh Kϑ̂

= −∇v
ξ̂
∇h

[̂η,σ]
ϑ̂+∇v

ξ̂
L̃J ηC ,σh Kϑ̂ = 0,

proving the assertion. �

Theorem 4.8. Let S be a spray on the prolongation of a Lie algebroid with the structure (J ·, · K, ρ£)
and η be a Lie symmetry of S. Then ηC is a curvature collineation of the Douglas curvature.

Proof . It is enough to show that L̃ηC (∇vtrB) = 0. For any sections ξ, σ, ϑ ∈ Γ(E),

L̃ηC (∇vtrB)(ξ̂, σ̂, ϑ̂) = ρ£(ηC)((∇vtrB)(ξ̂, σ̂, ϑ̂))− (∇vtrB)([̂η, ξ], σ̂, ϑ̂)

− (∇vtrB)(ξ̂, L̃ηC σ̂, ϑ̂)− (∇vtrB)(ξ̂, σ̂, L̃ηC ϑ̂)

= ρ£(ηC)ρ£(ξV )(trB(σ̂, ϑ̂))− ρ£([η, ξ]V )(trB(σ̂, ϑ̂))

− ρ£(ξV )(trB(L̃ηC σ̂, ϑ̂))− ρ£(ξV )(trB(σ̂, L̃ηC ϑ̂)).

Scince J ηC , ξV K = [η, ξ]V , then

L̃ηC (∇vtrB)(ξ̂, σ̂, ϑ̂) = ρ£(ξV ){ρ£(ηC)trB(σ̂, ϑ̂)

− trB(L̃ηC σ̂, ϑ̂)− trB(σ̂, L̃ηC ϑ̂)}
= ρ£(ξV ){L̃ηC trB(σ̂, ϑ̂)}
= ρ£(ξV ){(trL̃ηCB)(σ̂, ϑ̂)}
= 0.

�
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