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Abstract

In this paper, we provide certain conditions under which guarantee the existence of a common fixed
point for weakly contractive mappings defined on orthogonal modular spaces. Also, Banach fixed
point theorem on an orthogonal modular space without completeness is obtained. To prove much
stronger and more applicable results, some strong assumptions such as the convexity and the Fatou
property of a modular are relaxed.
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1. Introduction

The Banach contraction mapping theorem [8] popularly known as Banach contraction mapping
principle is a rewarding result in fixed point theory. It has widespread applications in both pure
and applied mathematics. This celebrated principle has been generalized by several authors. In one
approach, fixed point theory in modular spaces has received a lot of attention after being proposed
as a generalization of normed spaces [36, 37, 38, 40, 41]. A growing literature on fixed point theorems
in Modular spaces deals with rigorous formulations and proofs of many interesting problems which
are applicable in a wide variety of settings, including Quantum Mechanics, Machine Learning and
etc. The study of this theory in the context of modular function spaces was initiated by Khamsi et
al. in [22] by using some constructive techniques for single-valued mappings. This work has been
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widely cited as the inspiration for a variety of fixed point work along with [23, 24]. This line of work
was extended by several works in a variety of ways. Recently, Kutabi and Latif [29] studied fixed
points of multivalued maps in modular function spaces. Then Lael et al. generalized their work in
modular spaces by relaxing convexity and boundedness [31]. In one successful approach, Kuaket and
Kumam [27] and Mongkolkeha and Kumam [33, 34, 35], considered and proved some fixed point and
common fixed point results for generalized contraction mappings in modular spaces. Also, Kumam
[28] obtained some fixed point theorems for non-expansive mappings in convex modular spaces.
Then, Khamsi et al. explored the existence of fixed points of nonexpansive mapping and asymptotic
pointwise nonexpansive mapping in modular function spaces in [5, 25], respectively. Further, on
the basis of their result, in [3], an analog of DeMarr’s common fixed point theorem for a family of
symmetric Banach operator pairs in modular vector spaces is proved. Furthermore, authors in [2]
study the existence and uniqueness of common fixed point results in partially ordered modular
function spaces (see [45, 46]). Almost all researchers focus on key properties of modulars, convexity
and Fatou property.

In another approach, Rhoades [44] introduced the concept of ϕ-contractive mappings. Afterwards,
some researchers introduced a few ϕ- and ψ − ϕ-weakly contractive conditions and discussed the
existence of fixed and common fixed point for these mappings [1, 42]. In particular, Abbas et al.[6]
presented several common fixed point results of generalized weak contractive mappings in partially
ordered b-metric spaces, and in [2], they showed the existence and uniqueness of common fixed point
results in partially ordered modular function spaces. Very recently, Lael et al. [30, 32] proved some
fixed point theorems for multivalued mappings with suitable ϕ-contraction on modular spaces.

Although fixed point theory is shown to be successful in challenging problems and has contributed
significantly to many real-world problems, various fixed point theorems strongly are proved under
strong assumptions. In particular, in modular spaces, some of these assumptions can lead to having
some induced norms. So, some assumptions often do not hold in practice or can lead to their
reformulations as a particular problem in a normed vector spaces. A recent trend of research has
been dedicated to studying the fundamentals of fixed point theorems and relaxing their assumptions
with the ambition of pushing the boundaries of fixed point theory in modular spaces (see [4, 10, 22]).
But, you can hardy find literatures which relaxed the convexity and the Fatou property of the
modular in fixed point theory [31].

Recently, Eshaghi et al. [16] introduced the notion of orthogonal set and then gave an extension
of Banach’s fixed point theorem. They proved, by means of an example, that their main theorem is a
real generalization of Banach’s fixed point theorem. The main result of [16] is the following theorem.

Theorem 1.1. [16] Let (X,⊥, d) be an O-complete metric space (not necessarily complete metric
space) and 0 < k < 1. Let f : X → X be ⊥-continuous, ⊥- contraction with Lipschitz constant k
and ⊥-preserving. Then, f has a unique fixed point z ∈ X. Also, f is a Picard operator, that is,
limfn(x) = z for all x ∈ X.

After that in [43], orthogonal modular space is defined and a new generalized modular version of
the Meir–Keeler fixed point theorem endowed with an orthogonal relation is presented. The famous
Nguyen Van Dung, in [48], has talked about the importance of results which are proved on orthogonal
set and showed that many existence results on fixed points in orthogonal-complete metric spaces can
be proved by using the corresponding existence results in complete metric spaces. For more details
about orthogonal space, we refer the reader to [16, 7, 19, 12].

Our main concern in this paper is to prove common fixed point theorems involving generalized
weakly contractive conditions in orthogonal modular spaces by relaxing strong assumptions on the
modular such as continuity, convexity and Fatou property. In a bird-eyes view, the paper starts



Common fixed point of generalized weakly contractive mappings12 (2021) No. 2,1121-1140 1123

with Section 2 which is a brief introduction to modular spaces and orthogonal modular spaces along
with the required concepts. Section 3 includes Banach fixed point Theorem on an SO−complete
space along with two main common fixed point theorems. Finally, in Section 4, as an application an
integral equation is solved by using proved theorems.

2. Preliminaries

This section will serve as an introduction to some fundamental concepts of modular spaces and
orthogonal sets. A detailed introduction in modular space can be found, for example, in the textbooks
[26, 36].

A pair (X, %) is called a modular space, where X is a real linear space and % is a real valued
functional on X which satisfies the conditions:

1. %(x) = 0 if and only if x = 0,

2. %(−x) = %(x),

3. %(αx + βy) ≤ %(x) + %(y), for any nonnegative real numbers α, β with α + β = 1.

The functional % is called a modular on X.
If (3) replaces by %(αx+βy) ≤ α%(x) +β%(y), for any α, β ∈ R+ with α+β = 1 the modular is called
a convex modular. Interestingly, it is shown that a modular induces a vector space X% = {x ∈ X :
α → 0 implies %(αx) → 0} which is called a modular linear space. For a modular space (X, %), the
function w% which is said growth function [9] is defined on [0,∞) as follows:

w%(t) = inf{w : %(tx) ≤ w%(x) : x ∈ X, 0 < %(x)}.

It is shown that a modular % implies that

‖x‖% = inf{a > 0 : %(
x

a
) ≤ 1},

defines an F-norm on X%. Specifically, if % is convex, ‖ · ‖% is a norm and it is frequently called
the Luxembourg norm [17]. Note that a modular space determined by a function modular % will
be called a modular function space and will be denoted by L%. Then, it is not difficult to show
that ‖ · ‖% is an F-norm induced by %. More importantly, (L%, ‖ · ‖%) is a complete space. There
are many arguably important special instances of well known spaces in which these properties are
fulfilled [39, 40, 41, 47]. Furthermore, Musielak and Orlicz in [37, 40, 41] naturally provide the first
definitions of the following key concepts in a modular space (X, %):

D1. A sequence (xn) in B ⊆ X is said to be convergent to a limit point x ∈ B if lim %(xn − x) = 0.
It is easy to show that the limit point of a convergent sequence is unique.

D2. A closed subset B ⊆ X is meant that it contains the limit of all its convergent sequences.

D3. A sequence (xn) in B ⊆ X is said to be Cauchy if lim %(xm− xn) = 0 as m,n→∞. It is easy to
show when (X, %) satisfying w%(2) <∞, then every convergent sequence in (X, %) is Cauchy.

D4. A subset B of X is said to be complete if each Cauchy sequence in B is convergent to a point
of B. It is clear that every closed subset of a complete modular space is complete.

D5. Fatou property: % has the Fatou property, if %(x) ≤ lim inf %(xn) whenever the sequence (xn)
is convergent to x.
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D6. bounded subsets: A subset B ⊆ X% is called bounded if sup
x,y∈B

%(x− y) <∞.

Now, we recall some definitions on orthogonal set and orthogonal modular space (for more
details see [11, 13, 14, 15]).

Definition 2.1. Let X 6= ∅ and ⊥⊂ X ×X be a binary relation. If ⊥ satisfies the following
condition

∃x0 ∈ X; ((∀x ∈ X; x ⊥ x0) or (∀x ∈ X; x0 ⊥ x));

then X with ⊥, is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

Definition 2.2. Let (X,⊥) be an O-set and (X, %) be a modular space, then (X, %,⊥) is
called an orthogonal modular space.

Definition 2.3. A sequence (xn), n ∈ N is called a orthogonal sequence (briefly, O-sequence)
if

((∀n; xn ⊥ xn+1) or (∀n; xn+1 ⊥ xn)).

Also it is called an strongly orthogonal sequence (briefly, SO-sequence) if

((∀n, k; xn ⊥ xn+k) or (∀n, k; xn+k ⊥ xn)).

It is clear that every orthogonal modular space is a modular space, so all definitions, D1–D6,
can be defined for (X, %,⊥), similarly. And if a sequence (xn) is O-sequence (SO-sequence),
then D1–D3 in (X, %,⊥) are called convergent O-sequence (convergent SO-sequence), O-closed
set (SO-closed set), Cauchy O-sequence (Cauchy SO-sequence), respectively.

Definition 2.4. Let (X, %,⊥) be an orthogonal modular space:

a. Then X is said to be O-complete (SO-complete) if every Cauchy O-sequence (Cauchy SO-
sequence) is convergent. Clearly, every O-complete is SO-complete. If X is SO-complete
then it is not necessary to be O-complete.

b. Let B ⊂ X. A mapping f : B → B is called:

(i) Orthogonal preserving mapping if x ⊥ y implies f(x) ⊥ f(y).

(ii) O-continuous (SO-continuous) at x ∈ B if fxn → fx, for each O-sequence (SO-
sequence) xn ∈ B which xn → x. Also, f is O-continuous (SO-continuous) on B if f is
O-continuous (SO-continuous) in each x ∈ B.

3. Main Results

In this section, we prove orthogonal modular version of Banach fixed point theorem and exis-
tence and uniqueness of common fixed point for generalized weakly contractive mappings (i.e.
satisfying inequality (3.1) or (3.17)) in complete modular space. Also to support our main
results, we give an example. We shall consider the contractive conditions are constructed via
auxiliary functions defined with the families Ψ,Φ, respectively:

Ψ = {ψ : [0,∞)→ [0,∞) is an increasing and continuous function},
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and

Φ = {ϕ : [0,∞)→ [0,∞) is an increasing and continuous function and ϕ(t) = 0 implies t = 0}.

The following lemmas are handy tools that will be used in the sequel.

Lemma 3.1. [31] Every sequence (xn) in a modular space (X, %) is a Cauchy sequence if there
exists k ∈ [0, 1) such that

%(xn − xn+1) ≤ k%(xn−1 − xn).

Lemma 3.2. If X is a modular space and (xn) is a convergent sequence to x in X, then

1

w%(2)
%(x− y) ≤ lim inf %(xn − y) ≤ lim sup %(xn − y) ≤ w%(2)%(x− y),

for every y ∈ X.

Proof . If we apply twice the modular’s triangle inequality, we get for every n ∈ N

1

w%(2)
%(x− y)− %(xn − x) ≤ %(xn − y) ≤ w%(2)%(x− y) + w%(2)%(xn − x).

If we take lim inf on the left-hand side inequality and lim sup on the right-hand side inequality,
we obtain the desired property. �

Theorem 3.3 is an orthogonal modoular version of Banach fixed point theorem, as we know
the triangle inequality in a modoular space is weaker than the triangle inequality in a normed
space, so we can say that Theorem3.3 is a generalization of Theorem 1.1 in some aspects. Also,
it is a generalization of [Theorem 3 .3 in [31]] for single valued mapping.

Theorem 3.3. Let (X, %,⊥) be SO-complete, and f : X → X be SO-continuous and orthog-
onal preserving mapping. Suppose that for every x, y ∈ X that x ⊥ y, we have

%(fx− fy) ≤ k%(x− y),

where k ∈ [0, 1). Then f has a unique fixed point.

Proof . Since X is an O-set, then without loss of generality, there exists x0 ∈ X such that,

x0 ⊥ x ∀x ∈ X.

We define the sequence xn = fxn−1 for all n ∈ N. Since for all k ∈ N, x0 ⊥ xk and f is orthogonal
preserving, so x1 ⊥ xk+1, by induction, we have

xn ⊥ xn+k, ∀n, k ∈ N.

By contraction, we have that %(xn+1 − xn) ≤ k%(xn − xn−1). Lemma 3.1 implies that the SO-
sequence (xn) is Cauchy. This implies that there exists z ∈ X such that xn → z as n → ∞,
since X is SO-complete space. Since f is SO-continuous, so xn+1 = fxn → fz. Thus fz = z.
Now, we show that z is a unique fixed point. By contradiction, we suppose that there is z 6= z′
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such that fz = z and fz′ = z′. Since x0 ⊥ z and x0 ⊥ z′, and f is orthogonal preserving, so
by n-times using the orthogonality of f , we will have xn ⊥ z and xn ⊥ z′. By using twice the
contraction’s definition, we have

%(
z− z′

2
) = %(

fz− fz′

2
) ≤ %(fz− fxn) + %(fz′ − fxn) ≤ k[%(z− xn) + %(z− xn)].

as n→∞, z = z′. �

We would like to highlight that while the convexity of % is required for the modular version of
Banach fixed point Theorem which is proved in both papers [10] and [29], we showed in Theorem
3.3, that it can be removed. Also, completeness of the modular space % is replaced with a weaker
assumption SO-complete. So Theorem 3.3 generalized Banach fixed point theorems in many
aspects.

Definition 3.4. [18] Let f and g be two self-mappings on a nonempty set X. If c = fx = gx,
for some x ∈ X, then x is said to be the coincidence point of f and g, and c is called the point
of coincidence of f and g. Let C(f, g) denote the set of all coincidence points of f and g. If for
some x ∈ X, x = fx = gx, then x, is called a common fixed point of f and g.

Definition 3.5. [18] Let f and g be two self-mappings defined on a nonempty set X. Then
f and g is said to be weakly compatible if they commute at every coincidence point, that is,
fx = gx implies fgx = gfx, for every x ∈ C(f, g).

In the following, we suppose that (X, %,⊥) is complete to ease the notation let us now denote
X = (X, %,⊥). And the mappings f, g : X → X satisfying f(X) = g(X), g(X) is an closed
subset of X, g is one-to-one and g−1 ◦ f is an orthogonal preserving map. Also, we suppose
that ψ ∈ Ψ and ϕ ∈ Φ.

Theorem 3.6. If there are functions ψ and ϕ such that for mappings f and g, we have

ψ(w2
%(2)[%(fx− fy)]2) ≤ ψ(N(x, y))− ϕ(M(x, y)), ∀ x ⊥ y, (3.1)

where

N(x, y) = max{[%(fx− gx)]2, [%(gx− gy)]2, [%(fy− gy)]2, %(fx− gy)%(fx− gx),
%(fx− gx)%(fx− fy), %(fx− gx)%(gx− gy)},

and

M(x, y) = max{[%(fy− gy)]2, [%(fx− gy)]2, [%(gx− gy)]2,
[%(fx− gx)]2[1 + [%(gx− gy)]2]

1 + [%(fx− gy)]2
.

Then f and g have a unique coincidence point in X. Moreover, f and g have a unique common
fixed point provided that f and g are weakly compatible.
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Proof . Since X is an O-set, there exists x0 ∈ X such that without loss of generality

x0 ⊥ x ∀x ∈ X. (3.2)

As fX ⊆ gX, there exists x1 ∈ X such that fx0 = gx1. Now, we define the sequence (xn) and
(yn) in X by fxn = gxn+1 for all n ∈ N, i.e. xn+1 = (g−1 ◦ f)xn, and yn = fxn = gxn+1. If
yn = yn+1 for some n ∈ N, then we have yn = yn+1 = fxn+1 = gxn+1 and f and g have a point
of coincidence. Without loss of generality, we assume that yn 6= yn+1 for all n ∈ N.

By (3.2), for each k ∈ N, we have x0 ⊥ xk, and since g−1 ◦ f is an orthogonal preserving map,
these imply that g−1 ◦ fx0 ⊥ g−1 ◦ fxk i.e x1 ⊥ xk+1. By induction, for each n, k ∈ N, we will
have

xn ⊥ xn+k. (3.3)

Now, according (3.3) and (3.1) with x = xn and y = xn+1, we obtain

ψ(w2
%(2)[%(yn−yn+1)]

2) = ψ(w2
%(2)[%(fxn−fxn+1)]

2) ≤ ψ(N(xn, xn+1))−ϕ(M(xn, xn+1)), (3.4)

where

N(xn, xn+1) = max{[%(yn − yn−1)]
2, [%(yn−1 − yn)]2, [%(yn+1 − yn)]2,

%(yn − yn)%(yn − yn−1), %(yn − yn−1)%(yn − yn+1), [%(yn − yn−1)]
2]},(3.5)

and

M(xn, xn+1) = max{[%(yn+1 − yn)]2, [%(yn − yn)]2, [%(yn−1 − yn)]2,

[%(yn − yn−1)]
2[1 + [%(yn−1 − yn)]2]

1 + [%(yn − yn)]2
}. (3.6)

If %(yn − yn+1) ≥ %(yn − yn−1) > 0 for some n ∈ N, in view of (3.5) and (3.6), we have

N(xn, xn+1) = [%(yn − yn+1)]
2

and

M(xn, xn+1) ≥ max{[%(yn − yn+1]
2, [%(yn − yn−1)]

2} = [%(yn − yn+1)]
2.

It follows from inequality (3.4) and the above inequalities,

ψ([%(yn − yn+1)]
2) ≤ ψ(w2

%(2)[%(yn − yn+1)]
2) (3.7)

≤ ψ(N(xn, xn+1))− ϕ(M(xn, xn+1))

≤ ψ([%(yn − yn+1)]
2)− ϕ([%(yn − yn+1)]

2),
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which implies ϕ([%(yn−yn+1)]
2) = 0, that is, yn = yn+1, a contradiction. Hence, %(yn−yn+1) <

%(yn−yn−1) and (%(yn−yn+1)) is a non-increasing sequence and so there exists r ≥ 0 such that
lim %(yn− yn+1) = r. By virtue of (3.5) and (3.6) again, we have N(xn, xn+1) = [%(yn− yn−1)]

2,
and M(xn, xn+1) = [%(yn − yn−1)]

2. It follows that

ψ([%(yn − yn+1)]
2) ≤ ψ(N(xn, xn+1))− ϕ(M(xn, xn+1))

≤ ψ([%(yn − yn−1)]
2)− ϕ([%(yn − yn−1)]

2).

Now suppose that r > 0. By taking the limit as n→ +∞ in (3.7), we have ψ(r2) ≤ ψ(r2)−ϕ(r2)
a contradiction. This yields that

lim %(yn − yn+1) = r = 0. (3.8)

Now we shall prove that (yn) is a Cauchy sequence in X. Suppose on the contrary that,
lim

n,m→+∞
%(yn−ym) 6= 0. It follows that there exists ε > 0 for which one can find sequences (ymk

)

and (ynk
) of (yn) satisfying nk is the smallest index for which nk > mk > k, ε ≤ %(ymk

− ynk
)

and %(ymk
− ynk−1) < ε. In view of the triangle inequality in modular space, we get

ε2 ≤ [%(ymk
− ynk

)]2

≤ [w%(2)%(ymk
− ynk−1) + w%(2)%(ynk−1 − ynk

)]2

= w2
%(2)[%(ymk

− ynk−1)]
2

+ w2
%(2)[%(ynk−1 − ynk

)]2 + 2w2
%(2)%(ymk

− ynk−1)%(ynk−1 − ynk
)

≤ w2
%(2)ε2 + w2

%(2)[%(ynk−1 − ynk
)]2 + 2w2

%(2)%(ymk
− ynk−1)%(ynk−1 − ynk

)

Using equality (3.8) and taking the upper limit as k →∞ in the above inequality, we obtain

ε2 ≤ lim sup
k

[%(ymk
− ynk

)]2 ≤ w2
%(2)ε2.

As the same arguments, we deduce the following results:

ε2 ≤ [%(ymk
− ynk

)]2

≤ [w%(2)%(ymk
− ynk−1) + w%(2)%(ynk−1 − ynk

)]2

= w2
%(2)[%(ymk

− ynk−1)]
2 + w2

%(2)[%(ynk−1 − ynk
)]2

+2w2
%(2)%(ymk

− ynk−1)%(ynk−1 − ynk
) (3.9)

ε2 ≤ [%(ymk
− ynk

)]2

≤ [w%(2)%(ymk
− ymk−1) + w%(2)%(ymk−1 − ynk

)]2

= w2
%(2)[%(ymk

− ymk−1)]
2 + w2

%(2)[%(ymk−1 − ynk
)]2

+ 2w2
%(2)%(ymk

− ymk−1)%(ymk−1 − ynk
) (3.10)
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and

[%(ymk−1 − ynk
)]2 ≤ [w%(2)%(ymk−1 − ymk

) + w%(2)%(ymk
− ynk

)]2

= w2
%(2)[%(ymk−1 − ymk

)]2 + w2
%(2)[%(ymk

− ynk
)]2

+ 2w2
%(2)%(ymk−1 − ymk

)%(ymk
− ynk

) (3.11)

In view of (3.9), we have

ε2

w2
%(2)

≤ lim sup
k→∞

[%(ymk
− ynk−1)]

2 ≤ ε2.

Using (3.10) and (3.11), we obtain

ε2

w2
%(2)

≤ lim sup
k

[%(ymk−1 − ynk
)]2 ≤ w4

%(2)ε2

Similarly, we deduce that

[%(ymk−1 − ynk−1)]
2 ≤ [w%(2)%(ymk−1 − ymk

) + w%(2)%(ymk
− ynk−1)]

2

= w2
%(2)[%(ymk−1 − ymk

)]2 + w2
%(2)[%(ymk

− ynk−1)]
2

+ 2w2
%(2)%(ymk−1 − ymk

)%(ymk
− ynk−1),

and

[%(ymk
− ynk

)]2 ≤ [w%(2)%(ymk
− ymk−1) + w%(2)%(ymk−1 − ynk

)]2

= w2
%(2)[%(ymk

− ymk−1)]
2 + w2

%(2)[%(ymk−1 − ynk
)]2

+ 2w2
%(2)%(ymk

− ymk−1)%(ymk−1 − ynk
)

≤ w2
%(2)[%(ymk

− ymk−1)]
2 + w2

%(2)[w%(2)%(ymk−1 − ynk−1)

+ w%(2)%(ynk−1 − ynk
)]2

+ 2w2
%(2)%(ymk

− ymk−1)[w%(2)%(ymk−1 − ynk−1)

+ w%(2)%(ynk−1 − ynk
)].

It follows that
ε2

w4
%(2)

≤ lim sup
k

[%(ymk−1 − ynk−1)]
2 ≤ w2

%(2)ε2.

Through the definition of N , we have

N(xmk
, xnk

) = max{[%(ymk
− ymk−1)]

2, [%(ymk−1 − ynk−1)]
2,

[%(ynk
− ynk−1)]

2,

%(ymk
− ynk−1)%(ymk

− ymk−1), %(ymk
− ymk−1)%(ymk

− ynk
),

%(ymk
− ymk−1)%(ymk−1 − ynk−1)}
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which yields that

lim sup
k

N(xmk
, xnk

) ≤ max{0, w2
%(2)ε2, 0, 0, 0, 0} = ε2w2

%(2). (3.12)

Also,

M(xmk
, xnk

) = max{[%(ynk
− ynk−1)]

2, [%(ymk
− ynk−1)]

2, [%(ymk−1 − ynk−1)]
2,

[%(ymk
− ymk−1)]

2[1 + [%(ymk−1 − ynk−1]
2]

1 + [%(ymk
− ynk−1)]

2
}

It is easy to show that

lim inf
k

M(xmk
, xnk

) ≥ max{0, ε2

w2
%(2)

,
ε2

w4
%(2)

, 0} ≥ ε2

w4
%(2)

. (3.13)

Again, according (3.1) and (3.3), with x = xmk
and y = xnk

, since xmk
⊥ xnk

, we get

ψ([%(ymk
− ynk

)]2) ≤ ψ(w2
%(2)[%(ymk

− ynk
)]2) ≤ ψ(N(xmk

, xnk
))− ϕ(M(xmk

, xnk
)).

In light of (3.12), one can obtain

ψ(w2
%(2)ε2) ≤ ψ(w2

%(2) lim sup
k

[%(fxmk
− fxnk

)]2)

≤ ψ(lim sup
k

N(xmk
, xnk

))− ϕ(lim inf
k

M(xmk
, xnk

))

≤ ψ(w2
%(2)ε2)− ϕ(lim inf

k
M(xmk

, xnk
))

which implies that

lim inf
k

M(xmk
, xnk

) = 0

a contradiction to (3.13). It follows that (yn) is a Cauchy sequence in X. Since X is complete
modular space, there exists u ∈ X such that

lim %(yn − u) = lim %(fxn − u) = lim %(gxn+1 − u) = 0. (3.14)

Furthermore, we have u ∈ g(X) since g(X) is closed. It follows that one can choose a z ∈ X
such that u = gz, and one can write (3.14) as

lim %(yn − gz) = lim %(fxn − gz) = lim %(gxn+1 − gz) = 0.

Now, we prove that xn ⊥ z. Since f(X) = g(X), we have g−1◦f(X) = X, by continuing this way,
we will have (g−1◦f◦. . . g−1◦f)(X) = X. Therefore there is z1 such that (g−1◦f◦. . . g−1◦f)z1 =
z. Since x0 ⊥ z1 and g−1 ◦ f is orthogonal preserving map, we have xn ⊥ z. From (3.1) with
taking x = xnk

and y = z, we get
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ψ(w2
%(2)[%(ynk

− fz)]2) = ψ(w2
%(2)[%(fxnk

− fz)]2) ≤ ψ(N(xnk
, z))− ϕ(M(xnk

, z)), (3.15)

where

N(xnk
, z) = max{[%(ynk

− ynk−1)]
2, [%(ynk−1 − gz)]2, [%(fz− gz)]2,

%(ynk
− gz)%(ynk

− ynk−1), %(ynk
− ynk−1)%(ynk

− fz),
%(ynk

− ynk−1)%(ynk−1 − gz)},

and

M(xnk
, z) = max{[%(fz− gz)]2, [%(ynk

− gz)]2,

[%(ynk−1 − gz)]2,
[%(ynk

− ynk−1)]
2[1 + [%(ynk−1 − gz)]2]

1 + [%(ynk
− gz)]2

}.

And then we obtain

lim sup
k

N(xnk
, z) = max{0, 0, [%(gz− fz)]2, 0, 0, 0} = [%(gz− fz)]2,

and
lim inf

k
M(xnk

, z) = max{[%(gz− fz)]2, 0, 0, 0} = [%(gz− fz)]2.

Taking the upper limit as k →∞ in (3.15), by Lemma 3.2, we will have

ψ([%(gz− fz)]2) = ψ(w2
%(2)

1

w2
%(2)

[%(gz− fz)]2)

≤ ψ(w2
%(2)[lim sup

k
%(fxnk

− fz)]2)

≤ ψ(lim sup
k

N(xnk
, z))− ϕ(lim inf

k
M(xnk

, z))

= ψ([%(gz− fz)]2)− ϕ([%(gz− fz)]2)

which implies that ϕ([%(fz − gz)]2) = 0. It follows that %(fz − gz) = 0. That is, fz = gz.
Therefore, u = fz = gz is a point of coincidence for f and g. We also conclude that the
point of coincidence is unique. Assume on the contrary that, there exist c, c′ ∈ C(f, g) i.e.
fz = gz = c, and fz′ = gz′ = c′ but c 6= c′. Since x0 ⊥ z′, g−1 ◦ f is orthogonal preserving map
and g−1 ◦ fz′ = z′, so xn ⊥ z′. Using (3.1) with x = xn and y = z′, implies that

ψ(w2
%(2)[%(fxn − fz′)]2) ≤ ψ(N(xn, z

′))− ϕ(M(xn, z
′)). (3.16)

By Lemma 3.2, we obtain
limN(xn, z

′) ≤ lim[%(fxn − fz′)]2,
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and
limM(xn, z

′) ≤ lim[%(fxn − fz′]2.

As n→ +∞, and replacing the last inequality in (3.16), we will have

ψ(w2
%(2) lim[%(fxn − fz′]2) ≤ ψ(lim[%(fxn − fz′]2)− ϕ(lim[%(fxn − fz′]2)

≤ ψ(lim[%(fxn − fz′]2).

This implies that lim %(fxn − fz′) = 0. Again, by Lemma 3.2, we have

1

w%(2)
%(fz− fz′) ≤ lim %(fxn − fz′) = 0.

From the above inequality, we get fz = fz′. That is, the point of coincidence is unique. Con-
sidering the weak compatibility of f and g, for each coincidence point z, that fz = gz, we have
gfz = ggz i.e. fgz = ggz. This implies that ggz is a point of coincidence. Since the point of
coincidence is unique so ggz = gz. The mapping g is one-to- one, so gz = z. These imply that
z is a common fixed point of f and g. �

Example 3.7. Define %(x) = x2, x ⊥ y if x ≤ y, and f, g : [0,∞)→ [0,∞) by

fx =
x

64
, gx =

x

2
.

The auxiliary functions ψ, ϕ : [0,∞)→ [0,∞) are defined as

ψ(t) =
5t

4
, ϕ(t) =

48545t

87846
∀t ∈ [0,∞).

It is clearly that fX = gX, gX is closed, f, g are nondecreasing so they are orthogonal functions
and in the same way g−1 ◦ f is orthogonal preserving. For all x, y ∈ X such that x ⊥ y, we have

ψ(w2
%(2)[%(fx− fy)]2) = ψ(4(

x

64
− y

64
)4) =

5

4
.4(

x

64
− y

64
)4 =

5

644
(x− y)4.

We have

ψ(N(x, y)) ≥ ψ([%(gx− gy)]2) =
5

4
(
x

2
− y

2
)4 =

5

64
(x− y)4;

and

ϕ(M(x, y)) = max{( y

64
− y

2
)4, (

x

64
− y

2
)4, (

x

2
− y

2
)4,

( x
64
− x

2
)4[1 + ( x

2
− y

2
)4]

1 + ( x
64
− y

2
)4

}

It follows that

ϕ(M(x, y)) ≤ ϕ(2(
33x

64
− 33y

64
)4)

=
5.643 − 5

2.334
.2.(

33

64
)4(x− y)4

=
1310715

644
(x− y)4
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It is easy to see that

ψ(w2
%(2)[%(fx− fy)]2) = ψ([%(gx− gy)]2)− ϕ(2(

33

64
)4(x− y)4)

≤ ψ(N(x, y))− ϕ(M(x, y))

Therefore, the conditions of Theorem 3.6 are satisfied. It is obviously that 0 is the common
fixed point of f and g.

If in Theorem 3.6,we put ψ(t) = t and ϕ(t) = t, we can get the following result.

Corollary 3.8. Every mapping f which is satisfied:

w2
%(2)[%(fx− fy)]2 ≤ N(x, y)−M(x, y), ∀x ⊥ y.

has a fixed point.

Theorem 3.9. If there are functions ψ and ϕ such that for mappings f and g, we have

ψ(w2
%(2)[%(fx− fy)]2) ≤ ψ(N (x, y))− ϕ(M(x, y)), ∀ x ⊥ y (3.17)

where

N (x, y) = max{%(fx− fy)%(gx− gy), %(fy− gy)%(fx− gy),

[%(gx− gy)]2,
[%(fy− gy)]2 + [%(fx− gy)]2

w2
%(2)

},

and

M(x, y) = max{[%(fy− gy)]2, [%(fx− gy)]2, [%(gx− gy)]2,

[%(fx− gx)]2[1 + [%(gx− gy)]2]

1 + [%(fx− gy)]2
,
[%(gx− gy)]2[1 + [%(gx− gy)]2]

1 + [%(fx− gx)]2
}.

have a unique coincidence point in X. Moreover, f and g have a unique common fixed point
provided that f and g are weakly compatible.

Proof . As same as Theorem 3.6, we define the sequences (xn) and (yn) in X by yn = fxn =
gxn+1. It is easy to show that for all n ∈ N and x ∈ X, we will have xn ⊥ x. We also suppose
that yn 6= yn+1 for each n ∈ N, it follows from (3.17) that

ψ(w2
%(2)[%(yn−yn+1)]

2) = ψ(w2
%(2)[(fxn−fxn+1)]

2) ≤ ψ(N (xn, xn+1))−ϕ(M(xn, xn+1)), (3.18)

where

N (xn, xn+1) = max{%(yn − yn+1)%(yn−1 − yn), %(yn+1 − yn)%(yn − yn), [%(yn−1 − yn)]2,

[%(yn+1 − yn)]2 + [%(yn − yn)]2

w2
%(2)

} (3.19)
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M(xn, xn+1) = max{[%(yn+1 − yn)]2, [%(yn − yn)]2, [%(yn−1 − yn)]2,

[%(yn − yn−1)]
2[1 + [%(yn−1 − yn)]2]

1 + [%(yn − yn)]2
,

[%(yn−1 − yn)]2[1 + [%(yn−1 − yn)]2]

1 + [%(yn − yn−1)]2
}. (3.20)

If we assume that, for some n ∈ N,

%(yn − yn+1) ≥ %(yn−1 − yn) > 0;

then from inequality (3.19) and (3.20), we get that

N (xn, xn+1) ≤ [%(yn+1 − yn)]2;

M(xn, xn+1) ≥ [%(yn+1 − yn)]2.

In view of (3.18), we have the following inequality,

ψ([%(yn − yn+1)]
2) ≤ ψ(w2

%(2)[%(yn − yn+1)]
2)

≤ ψ(N (xn, xn+1))− ϕ(M(xn, xn+1))

≤ ψ([%(yn − yn+1)]
2)− ϕ([%(yn − yn+1)]

2),

which gives that %(yn − yn+1) = 0, a contradiction to %(yn, yn+1) > 0. It follows that

%(yn − yn+1) < %(yn − yn−1).

Hence, the sequence (%(yn − yn+1)) is non-increasing. Consequently, the limit of the sequence
is a nonnegative number, say r ≥ 0. That is, lim %(yn − yn+1) = r. According to (3.19) and
(3.20), we have

N (xn, xn+1) ≤ [%(yn − yn−1)]
2;

and
M(xn, xn+1) ≥ [%(yn − yn−1)]

2.

So,

ψ([%(yn − yn+1)]
2) ≤ ψ(N (xn, xn+1))− ϕ(M(xn, xn+1))

≤ ψ([%(yn − yn−1)]
2)− ϕ([%(yn, yn−1)]

2).

If r > 0, then letting n→∞ in above inequality, we obtain that ψ(r2) ≤ ψ(r2)− ϕ(r2) which
implies that r = 0, i.e. lim %(yn − yn+1) = 0. Now we prove that (yn) is a Cauchy sequence.
If not, as the proof of Theorem 3.6, there exists ε > 0 for which one can find sequences (ymk

)
and (ynk

) of (yn) so that nk is the smallest index for which nk > mk > k, and the following
inequalities hold:

ε ≤ lim sup
k

%(ymk
− ynk

) ≤ w%(2)ε,

ε

w%(2)
≤ lim sup

k
%(ymk

− ynk−1) ≤ ε,

ε

w%(2)
≤ lim sup

k
%(ymk−1 − ynk

) ≤ w2
%(2)ε, (3.21)

ε

w2
%(2)

≤ lim sup
k

%(ymk−1 − ynk−1) ≤ w%(2)ε.
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We deduce the following equation according to the definitions of N (x, y) and M(x, y),

N (xmk
, xnk

) = max{%(ymk
− ynk

)%(ymk−1 − ynk−1),

%(ynk
− ynk−1)%(ymk

− ynk−1), [%(ymk−1 − ynk−1)]
2,

[%(ynk
− ynk−1)]

2 + [%(ymk
− ynk−1)]

2

w2
%(2)

},

and

M(xmk
, xnk

) = max{[%(ynk
− ynk−1)]

2, [%(ymk
− ynk−1)]

2, [%(ymk−1 − ynk−1)]
2,

[%(ymk
− ymk−1)]

2[1 + [%(ymk−1 − ynk−1)]
2]

1 + [%(ymk
− ynk−1)]

2
,

[%(ymk−1 − ynk−1)]
2[1 + [%(ymk−1 − ynk−1)]

2]

1 + [%(ymk
− ymk−1)]

2
}.

Using (3.21), one can obtain that

lim sup
k
N (xmk

, xnk
) ≤ max{w2

%(2)ε2, 0, w2
%(2)ε2,

ε2

w2
%(2)
} = w2

%(2)ε2

and

lim inf
k
M(xmk

, xnk
) ≥ max{0, ε2

w2
%(2)

,
ε2

w4
%(2)

, 0,
ε2

w4
%(2)

(1 +
ε2

w4
%(2)

)} ≥ ε2

w4
ϕ(2)

(3.22)

Taking x = xmk
and y = xnk

in (3.17), we get

ψ([%(ymk
− ynk

)]2) ≤ ψ(w2
%(2)[%(ymk

− ynk
)]2) ≤ ψ(N (xmk

, xnk
))− ϕ(M(xmk

, xnk
))

Therefore, we have

ψ(w2
%(2)ε2) ≤ ψ(w2

%(2) lim sup
k

[%(fxmk
− fxnk

)]2)

≤ ψ(lim sup
k

(N (xmk
, xnk

)))− ϕ(lim inf
k
M(xmk

, xnk
))

≤ ψ(w2
%(2)ε2)− ϕ(lim inf

k
M(xmk

, xnk
)),

and we concluded that lim inf
k
M(xmk

, xnk
) = 0 which gives a contradiction to (3.22). Hence,

lim
n,m→∞

%(yn − ym) = 0.

The completeness of X ensures that there exists u ∈ X such that

lim %(yn − u) = lim %(fxn − u) = lim %(gxn+1 − u) = 0.

In view of the hypothesis g(X) is closed, we obtain that u ∈ g(X). It follows that one can
choose z ∈ X such that u = gz, and we write the above equality as

lim %(yn − gz) = lim %(fxn − gz) = lim %(gxn+1 − gz) = 0
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If fz 6= gz, putting x = xnk
and y = z into contractive condition (3.17), we have

ψ(w2
%(2)[%(fxnk

− fz)]2) ≤ ψ(N (xnk
, z))− ϕ(M(xnk

, z)); (3.23)

where

N (xnk
, z) = max{%(ynk

− fz)%(ynk−1 − gz), %(fz− gz)%(ynk
− gz), [%(ynk−1 − gz)]2,

[%(fz− gz)]2 + [%(ynk
− gz)]2

w2
%(2)

},

and

M(xnk
, z) = max{[%(fz− gz)]2, [%(ynk

− gz)]2, [%(ynk−1 − gz)]2,
[%(ynk

− ynk−1)]
2[1 + [%(ynk−1 − gz)]2]

1 + [%(ynk
− gz)]2

,

[%(ynk−1 − gz)]2[1 + [%(ynk−1 − gz)]2]
1 + %(ynk

− ynk−1)
}.

Consequently, we get

lim sup
k
N (xnk

, z) = max{0, 0, 0, [%(fz− gz)]2

w2
%(2)

} ≤ [%(fz− gz)]2,

and
lim inf

k
M(xnk

, z) = max{[%(fz− gz)]2, 0, 0, 0, 0} = [%(fz− gz)]2.

Taking the upper limit as k →∞ in (3.23), by Lemma 3.2, we have

ψ([%(gz− fz)]2) = ψ(w2
%(2)

1

w2
%(2)

[%(gz− fz)]2)

≤ (w2
%(2) lim sup

k
[%(fxnk

− fz)]2)

≤ ψ(lim sup
k
N (xnk

, z))− ϕ(lim inf
k
M(xnk

, z))

≤ ψ([%(gz− fz)]2)− ϕ([%(gz− fz)]2),

which implies that %(fz − gz) = 0. That is, u = fz = gz is a point of coincidence for f and
g. Using the same technique of the proof of Theorem 3.6, it can be proved that z is a unique
common fixed point. This completes the proof. �

Note. If in Theorem 3.6 and 3.9, we let an additional assumption that f is an orthogonal
preserving map, then they could be proved with weaker assumption, SO-complete modular
space and SO-closed set g(X).
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4. Application

In this section, we will use Theorem 3.6 to show that there is a solution to the following integral
equation:

x(t) =

∫ t

0

K(r, x(r))dr. (4.1)

Let X = C[0, T ] be the set of real continuous functions defined on [0, T ] for T > 0. We consider
the following orthogonal relation in X:

x ⊥ y ⇔ ∀t, s ∈ [0, T ] : x(t)y(t) ≥ 0.

Define the modular % by
%(x) = max

t∈[0,T ]
|x(t)|

m
2 ,

for all x ∈ X, where m > 2. It is evident that (X, %,⊥) is SO-complete. Consider the mapping
f : X → X by

fx(t) =

∫ t

0

K(r, x(r))dr. (4.2)

Theorem 4.1. Consider the integral equations (4.1) and suppose that the following conditions
hold:

(i) K : [0, T ]× R→ R+ is continuous;

(ii) there exists a continuous function ν : [0, T ]→ [1,∞) such that we have

|K(r, x(r))−K(r, y(r))| ≤ ν(r)|x(r)− y(r)|, ∀x ⊥ y.

(iii) there exists a constant k ∈ (0, 1) such that for all r ∈ [0, T ]

sup
t∈[0,T ]

∫ t

0

1 + ν(r)dr ≤ k.

Then the integral equations 4.1 has a unique solution in X.

Proof . Let x, y ∈ X and x ⊥ y, from conditions (i), (ii) and (iii),

|fx(t)− fy(t)|m = |
∫ t

0

K(r, x(r))dr −
∫ t

0

K(r, y(r))dr|m

≤ (

∫ t

0

|K(r, x(r))−K(r, y(r))|dr)m

≤ (

∫ t

0

ν(r)(|x(r)− y(r)|)dr)m

≤ (

∫ t

0

1 + ν(r)dr)m%2(x(t)− y(t))

≤ k%2(x(t)− y(t)).

(4.3)
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Thus
%(fx(t)− fy(t)) ≤

√
k%(x(t)− y(t)).

By Theorem 3.3, the mapping f defined in (4.2) has a unique fixed point in X, which is the
solution of the integral equation (4.2). �

Recently, fixed point theory on orthogonal metric space and orthogonal modoular space is
discussed in [7, 11, 13, 14, 15, 16, 19, 12] and some fixed point theorems are generalized on
these spaces. In our paper, we proved some new fixed point theorems on orthogonal modular
space. In 2020, S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, introduce the notion of R-
metric spaces which is a generalization of orthogonal metric space, and give a real generalization
of Banach fixed point theorem and the Brouwer fixed point on R-metric space (see [20, 21]).
Now, there are open questions whether:

1) Is it possible to generalize our main results on R-metric space?

2) could be our main results generalized to multivalued mappings f and g?

5. Conclusion

Although fixed point theorems in modular spaces have remarkably applied to a wide variety of
mathematical problems, these theorems strongly depend on some assumptions which often do
not hold in practice or can lead to their reformulations as particular problems in normed vector
spaces. A recent trend of research has been dedicated to studying the fundamentals of fixed
point theorems and relaxing their assumptions with the ambition of pushing the boundaries of
fixed point theory in modular spaces further. In this paper, we focus on convexity, continuity
and Fatou property of the orthogonal modular in common fixed point results taken from the
literature for contractive mappings. To relax these three assumptions, we seek to use a new
method to prove the convergent of the constructed sequence that its limit is the common fixed
point of two self-mappings.
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