On generalisation of Brown's conjecture

Ishfaq Nazir ${ }^{\text {a,* }}$, Mohammad Ibrahim Mira ${ }^{\text {a }}$, Irfan Ahmad Wani ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, University of Kashmir, South Campus, Anantnag-192101, Jammu and Kashmir, India

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let P be the complex polynomial of the form $P(z)=z \prod_{j=1}^{n-1}\left(z-z_{j}\right)$, with $\left|z_{j}\right| \geq 1,1 \leq j \leq n-1$. Then according to famous Brown's Conjecture $p^{\prime}(z) \neq 0$, for $|z|<\frac{1}{n}$. This conjecture was proved by Aziz and Zarger [1]. In this paper, we present some interesting generalisations of this conjecture and the results of several authors related to this conjecture.

Keywords: polynomial, disk, zeros, derivative, conjecture. 2010 MSC: Primary 30C15; Secondary 12D10.

1. Introduction

If all the zeros of a polynomial lie in the disk $\mathbb{D}=\{z:|z-c| \leq r\}$, then according to Gauss-Lucas Theorem, every critical point of $p(z)$ lie in \mathbb{D}. B. Sendov conjectured that, if all the zeros of $p(z)$ lie in $|z| \leq 1$, then for any zero z_{0} of $p(z)$, the disk $\left|z-z_{0}\right| \leq 1$ contains at least one zero of $p^{\prime}(z)$ [5]. This conjecture has attracted much attention for the last six decades and a broad overview can be found in [7]. In connection with this conjecture, Brown [3] posed the following problem.

Let Q_{n} denote the set of all complex polynomials of the form $p(z)=z \prod_{j=1}^{n-1}\left(z-z_{j}\right)$ where $\left|z_{j}\right| \geq 1$ for $1 \leq j \leq n-1$. Find the best constant C_{n} such that $p^{\prime}(z)$ does not vanish in $|z|<C_{n}$.

Brown himself conjectured that $C_{n}=\frac{1}{n}$. However, conjecture was verified by Aziz and Zarger [1] by proving the following more general result.

Theorem 1.1. If all the zeros of polynomial $Q(z)=\prod_{j=1}^{n-1}\left(z-z_{j}\right)$ lie in $|z| \geq 1$ and $P(z)=z^{m} Q(z)$, then $P^{\prime}(z)$ has $(m-1)$ fold zero at origin and remaining $(n-m)$ zeros lie in $|z| \geq \frac{m}{n}$.

Remark 1.2. For $m=1$, it reduces to conjecture of Brown.

[^0]Zarger and Manzoor [2] have proved following result for $s^{\text {th }}$ derivative of $P(z)=z^{m} \prod_{j=1}^{n-m}\left(z-z_{j}\right)$ with $\left|z_{j}\right| \geq 1,1 \leq j \leq n-m$.

Theorem 1.3. Let $P(z)=z^{m} \prod_{j=1}^{n-m}\left(z-z_{j}\right)$ be a polynomial of degree n with $\left|z_{j}\right| \geq 1,1 \leq j \leq n-m$, then for $1 \leq s \leq m$ the polynomial $P^{(s)}(z)$, the $s^{\text {th }}$ derivative of $P(z)$ does not vanish in

$$
0<|z|<\frac{m(m-1) \ldots(m-s+1)}{n(n-1) \ldots(n-s+1)}
$$

N. A Rather and F. Ahmad [6] have proved following results:

Theorem 1.4. Let $p(z)=(z-a) \prod_{k=1}^{n-1}\left(z-z_{k}\right)$ with $|a| \leq 1$, be a polynomial of degree n with $|a| \leq 1$, and $\left|z_{k}\right| \geq 1$ for $1 \leq k \leq n-1$, then $p^{\prime}(z)$ does not vanish in the region

$$
\left|z-\left(\frac{n-1}{n}\right) a\right|<\frac{1}{n} .
$$

The result is best possible as is shown by the polynomial

$$
p(z)=(z-a)\left(z-e^{i \alpha}\right)^{n-1}, 0 \leq \alpha<2 \pi .
$$

Theorem 1.5. Let $p(z)=(z-a)^{m} \prod_{k=1}^{n-m}\left(z-z_{k}\right)$ be a polynomial of degree n with $|a| \leq 1$, and $\left|z_{k}\right| \geq 1$ for $1 \leq k \leq n-m$, then $p^{\prime}(z)$ has $(m-1)$ fold zero at $z=a$ and remaining $(n-m)$ zeros of $p^{\prime}(z)$ lie in the region

$$
\left|z-\left(\frac{n-m}{n}\right) a\right| \geq \frac{m}{n} .
$$

The result is best possible as is shown by the polynomial

$$
p(z)=(z-a)^{m}\left(z-e^{i \alpha}\right)^{n-m}, 0 \leq \alpha<2 \pi .
$$

In this paper, we first prove a result which generalises the result of Theorem 1.1, Theorem 1.5 and includes Brown's Conjecture as a special case.

For the proof of our results, we shall use the following result, which is Walsh's Concidence Theorem 5].

Theorem 1.6. (Walsh's Concidence Theorem): Let $G\left(z_{1}, z_{2}, \ldots z_{n}\right)$ is a symmetric n-linear form of total degree n in $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and let C be a circular region containing the n points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, then there exists at least one point $\alpha \in C$ such that

$$
G\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right)=G(\alpha, \alpha, \ldots, \alpha) .
$$

2. Main Results

Theorem 2.1. If all the zeros of a polynomial $P(z)$ of degree n lie in $|z| \geq 1$, then for every real $\lambda>0$, the polynomial $\lambda P(z)+(z-a) P^{\prime}(z),|a| \leq 1$ has no zero in

$$
\left|z-\frac{n a}{n+\lambda}\right|<\frac{\lambda}{n+\lambda} .
$$

Proof . Let $z_{1}, z_{2}, \ldots, z_{n}$ be the zeros of $P(z)$, so that $\left|z_{j}\right| \geq 1,1 \leq j \leq n$. Let w be any zero of $\lambda P(z)+(z-a) P^{\prime}(z)$, then

$$
\begin{equation*}
\lambda P(w)+(z-a) P^{\prime}(w)=0 . \tag{1}
\end{equation*}
$$

This is an equation which is linear and symmetric in $z_{1}, z_{2}, \ldots, z_{n}$. Hence by Theorem 1.6, for the circular region $C=\{z:|z| \geq 1\}$, there exists $\alpha \in C$ such that

$$
P(z)=(z-\alpha)^{n} .
$$

Thus equation (1) reduces to

$$
\lambda(w-\alpha)^{n}+n(w-a)(w-\alpha)^{n-1}=0 .
$$

Equivalently

$$
(w-\alpha)^{n-1}(\lambda(w-\alpha)+n(w-a))=0 .
$$

This gives $w=\alpha$ and $w=\frac{\lambda \alpha}{n+\lambda}+\frac{n a}{n+\lambda}$.
Now, If $w=\alpha$, then using the fact that $|a| \leq 1$, we have

$$
\begin{aligned}
\left|w-\frac{n a}{n+\lambda}\right| & =\left|\alpha-\frac{n a}{n+\lambda}\right| \\
& \geq|\alpha|-\frac{n}{n+\lambda}|a| \\
& \geq 1-\frac{n}{n+\lambda} \\
& =\frac{\lambda}{n+\lambda} .
\end{aligned}
$$

That is

$$
\left|w-\frac{n a}{n+\lambda}\right| \geq \frac{\lambda}{n+\lambda} .
$$

Again, if $w=\frac{\lambda \alpha}{n+\lambda}+\frac{n a}{n+\lambda}$, then

$$
\left|w-\frac{n a}{n+\lambda}\right|=\frac{|\lambda||\alpha|}{|n+\lambda|} \geq \frac{\lambda}{n+\lambda} .
$$

This gives

$$
\left|w-\frac{n a}{n+\lambda}\right| \geq \frac{\lambda}{n+\lambda} .
$$

Since w is any zero of $\lambda P(z)+(z-a) P^{\prime}(z)$, it follows that every zero of $\lambda P(z)+(z-a) P^{\prime}(z)$ lies in

$$
\left|z-\frac{n a}{n+\lambda}\right| \geq \frac{\lambda}{n+\lambda} .
$$

This completes the proof of the Theorem.

Remark 2.2. If all the zeros of polynomial $Q(z)=\prod_{j=1}^{n-m}\left(z-z_{j}\right)$ lie in $|z| \geq 1$ and $P(z)=$ $(z-a)^{m} Q(z),|a| \leq 1$, then

$$
P^{\prime}(z)=(z-a)^{m-1}\left(m Q(z)+(z-a) Q^{\prime}(z)\right) .
$$

Applying Theorem 2.1 with $\lambda=m$ to the polynomial $Q(z)$, which is of degree $n-m$, we immediately obtain Theorem 1.5 .

Remark 2.3. For $a=0$ and $\lambda=m$ in Remark 2, we obtain Theorem 1.1.
Remark 2.4. Theorem 2.1 also includes validity of the Brown's Conjecture as a special case when $a=0, \lambda=1$ and $P(z)$ is polynomial of degree $n-1$.

Next, we shall prove following result which describes the regions which contains the zeros of higher derivatives of the polynomial $P(z)=(z-a)^{m} \prod_{j=1}^{n-m}\left(z-z_{j}\right)$ with $|a| \leq 1$ and $\left|z_{j}\right| \geq 1$.

Theorem 2.5. Let $P(z)=(z-a)^{m} \prod_{j=1}^{n-m}\left(z-z_{j}\right)$ be a polynomial of degree n, with $|a| \leq 1$ and $\left|z_{j}\right| \geq 1,1 \leq j \leq n-m$. Then for $1 \leq s \leq m$, the polynomial $P^{(s)}(z)$, $s^{\text {th }}$ derivative of $P(z)$ has $(m-s)$ fold zero at $z=a$ and remaining $(n-m)$ zeros lie in

$$
\left|z-\left(1-\frac{m(m-1) \ldots(m-s+1)}{n(n-1) \ldots(n-s+1)}\right) a\right| \geq \frac{m(m-1) \ldots(m-s+1)}{n(n-1) \ldots(n-s+1)} .
$$

Proof . Let $P(z)=(z-a)^{m} Q(z)$, where $Q(z)=\prod_{j=1}^{n-m}\left(z-z_{j}\right)$. Then

$$
P^{\prime}(z)=(z-a)^{m-1}\left(m Q(z)+(z-a) Q^{\prime}(z)\right) .
$$

Applying Theorem 2.1 with $\lambda=m$ to the polynomial $Q(z)$ which is of degree $(n-m)$, it follows that $P^{\prime}(z)$ has $(m-1)$ fold zero at $z=a$ and remaining $(n-m)$ zeros lie in

$$
\left|z-\left(\frac{n-m}{n}\right) a\right| \geq \frac{m}{n} .
$$

That is $P^{\prime}(z)=(z-a)^{m-1} R(z)$, where $R(z)=(z-a) Q^{\prime}(z)+m Q(z)$ has $(m-1)$ fold zero at $z=a$ and remaining $(n-m)$ zeros lie in

$$
\left|z-\left(\frac{n-m}{n}\right) a\right| \geq \frac{m}{n}
$$

We can write

$$
P^{\prime \prime}(z)=(z-a)^{m-2} T(z),
$$

where $T(z)=(z-a) R^{\prime}(z)+(m-1) R(z)$.
Consider the polynomial

$$
\begin{equation*}
S(z)=p^{\prime}\left(\frac{m}{n} z+\frac{n-m}{n} a\right) \tag{2}
\end{equation*}
$$

or

$$
S(z)=\left(\frac{m}{n}\right)^{m-1}(z-a)^{m-1} R\left(\frac{m}{n} z+\frac{n-m}{n} a\right),
$$

then $S(z)$ is a polynomial of degree $n-1$ with $(m-1)$ fold zero at $z=a$ and remaining $(n-m)$ zeros lie in $|z| \geq 1$. Thus,

$$
S^{\prime}(z)=\left(\frac{m}{n}\right)^{m-2}(z-a)^{m-2}\left[(z-a) \frac{m}{n} R^{\prime}\left(\frac{m}{n} z+\frac{n-m}{n} a\right)+(m-1) R\left(\frac{m}{n} z+\frac{n-m}{n} a\right)\right] .
$$

Again applying Theorem 2.1 with $\lambda=m-1$ to the polynomial $R\left(\frac{m}{n} z+\frac{n-m}{n} a\right)$ which is of degree $(n-m)$, it follows that $S^{\prime}(z)$ has $(m-2)$ fold zero at $z=a$ and remaining $(n-m)$ zero lie in

$$
\left|z-\left(\frac{n-m}{n-1}\right) a\right| \geq \frac{m-1}{n-1}
$$

Replacing z by $\frac{n}{m} z+\left(\frac{m-n}{m}\right) a$ in (2) we obtain $P^{\prime \prime}(z)$ has $(m-2)$ fold zero at $z=a$ and remaining $(n-m)$ zeros lie in

$$
\left|z-\left(1-\frac{m(m-1)}{n(n-1)}\right) a\right| \geq \frac{m(m-1)}{n(n-1)} .
$$

Proceeding similarly as above and by repeated application of Theorem 2.1, we get for any positive integer s such that $1 \leq s \leq m$, the polynomial $P^{(s)}(z), s^{\text {th }}$ derivative has $(m-s)$ zeros at $z=a$ and remaining zeros lie in

$$
\left|z-\left(1-\frac{m(m-1) \ldots(m-s+1)}{n(n-1) \ldots(n-s+1)}\right) a\right| \geq \frac{m(m-1) \ldots(m-s+1)}{n(n-1) \ldots(n-s+1)} .
$$

Remark 2.6. For $s=1, a=0$ and $m=1$, we get Brown's conjecture.
Remark 2.7. For $a=0$, we get Theorem 1.3 which is the result due to Zarger and Manzoor.
For $a=0$ and $s=m$, following result proved in [8] immediately follows:
Corollary 2.8. If $p(z)=z^{m} \prod_{k=1}^{n-m}\left(z-z_{k}\right)$ be a polynomial of degree n with $\left|z_{k}\right| \geq 1$ for $1 \leq k \leq n-m$, then the polynomial $p^{(m)}(z), m \geq 1$ does not vanish in $|z|<\frac{m!}{n(n-1) \ldots(n-m+1)}$.

For $s=m$, we obtain following result proved in [4].
Corollary 2.9. If $p(z)=(z-a)^{m} \prod_{k=1}^{n-m}\left(z-z_{k}\right)$ be a polynomial of degree n with $|a| \leq 1$ and $\left|z_{k}\right| \geq 1$ for $1 \leq k \leq n-m$, then the polynomial $p^{(m)}(z), m \geq 1$ has all its zeros in the region

$$
\left|z-\left(1-\frac{m!}{n(n-1) \ldots(n-m+1)}\right) a\right| \geq \frac{m!}{n(n-1) \ldots(n-m+1)} .
$$

References

[1] A. Aziz and B.A. Zarger, On the critical points of a polynomial, Aust. Math. Soc. 57 (1998) 173-174.
[2] B. A. Zarger and M. Ahmad, On some generalisation of Brown's conjecture, Int. J. Nonlinear Anal. Appl. 7(2) (2016) 345-349.
[3] J.E. Brown, On the Ilief-Sendov conjecture, Pacific J. Math. 135 (1988) 223-232.
[4] M. Ibrahim, N. Ishfaq and I.A. Wani On zero free regions for derivatives of a polynomial, Krajugevac J. Math. 47(3) (2020) 403-407.
[5] Q.I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, 2002.
[6] N.A. Rather and F. Ahmad, On the critical points of a polynomial, BIBECHANA, 9 (2013) 28-32.
[7] B. Sendov, Generalization of a conjecture in the geometry of polynomials, Serdica Math. J. 28 (2002) 283-304.
[8] B.A Zarger and A.W. Manzoor, On zero free regions for the derivative of a polynomial, BIBECHANA, 14 (2017) 48-53.

[^0]: *Corresponding author
 Email addresses: ishfaqnazir02@gmail.com (Ishfaq Nazir), ibrahimmath80@gmail.com (Mohammad Ibrahim Mir), irfanmushtaq62@gmail.com (Irfan Ahmad Wani)

