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Abstract

In the present article, we prove some result using C∗-class function in the notion of C∗-algebra valued
metric space which is more general than metric space. The obtained results extend and generalize
some of the results in the literature.
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1. Introduction

A very useful and effective tool of fixed point theory is “Banach Contraction Principle [2]”. This
is widely used in today’s world problems. It has many application in many field of pure as well
as applied science. Many researcher has generalised the principle in various spaces. From the last
few decade, several type of contractive mapping for existence and uniqueness of fixed point has
investigated (see [1, 4, 7, 8, 9, 10, 11, 12, 14]). The principle is also gained a remarkable scope in
differential equation, partial differential equation and integral equations (see [2, 13]).

Recently, Ma et al. [11] introduced the more generalised notion called C∗-algebra valued metric
space by replacing real number with positive member of unital C∗-algebra in metric space. See [5]
for more information on C∗-algebras. Later, many researcher discussed results in the frame work of
C∗-algebra value metric space (see [6, 15, 16, 17]).

In the present manuscript, we prove some result using C∗-class function in the notion of C∗-algebra
valued metric space which is more general than metric space.
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2. C∗-Algebra valued metric spaces

The following results and definitions are required in the sequel to prove the results in the main
section.

Definition 2.1. [11] Suppose X is a nonempty set. The mapping d : X × X → A is called a
C∗-algebra valued metric on X if it satisfies :

1. d(j, k) � θA;

2. d(j, k) = θA if and only if j = k;

3. d(j, k) = d(k, j);

4. d(j, l) � d(j, k) + d(k, l) for all j, k, l ∈ X.

Then d is called a C∗-algebra metric on X and the triplet (X,A, d) is called a C∗-algebra valued
metric space.

Remark 2.2. In case, we take A = R the notion of C∗-algebra valued metric space becomes equiva-
lent to the definition of the real metric space.

Definition 2.3. [11] A sequence {tn} in (X,A, d) is said to be

1. convergent with respect to A, if for given ε > 0, there exists a positive integer m such that
‖d(tn, t)‖ < ε, for all n > m;

2. Cauchy sequence with respect to A if for any ε > 0, there exists m ∈ N such that ‖d(tn, tk)‖ < ε
, for all n, k > m.

The triplet (X,A, d) is called a complete C∗-algebra valued metric space if every Cauchy sequence
with respect to A is convergent.

Definition 2.4. (C∗- class function) [3] Let A be a unital C∗-algebra. Then a continuous function
F : A+ ×A+ → A+ is called a C∗-class function if for any P,Q ∈ A+, the following conditions hold:

1. F (P,Q) � P ;

2. F (P,Q) = P implies that either P = θ or Q = θ.

Here C∗ will denote the class of all C∗-class function. The extra condition should be imposed on F if
required, i.e., F (θ, θ) = θ.

Let Ψ be the set of all continuous functions ψ : A+ → A+ satisfying the following conditions:

1. ψ is continuous and nondecreasing;

2. ψ(T ) = θ if and only if T = θ.

3. Main results

In this section, we prove some results using C∗-class function in the framework of C∗-algebra
valued metric spaces.

Theorem 3.1. Let (X,A, d) be a complete C∗-algebra valued metric space and T : X → X be a self
mapping satisfying the following

ϕ (d(Tx, Ty)) � F∗

(
ϕ(d(x, y)), φ(d(x, y))

)
, ∀x, y ∈ X,

where φ, ϕ ∈ Ψ and F∗ ∈ C∗. Then T has a unique fixed point.
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Proof . Fix x0 ∈ X. Define xn ∈ T n(x0) for every n = 1, 2, 3.... Then we shall prove that

d(xn, xn+1)→ θ as n→∞.

We have

ϕ (d(xn, xn+1)) = ϕ (d(Txn−1, Txn))

� F∗

(
ϕ(d(xn−1, xn)), φ(d(xn−1, xn))

)
� ϕ (d(xn−1, xn)) . (3.1)

Therefore, we get
ϕ(d(xn, xn+1)) � ϕ(d(xn−1, xn)).

Hence ϕ is non decreasing and so the sequence (d(xn−1, xn)) is monotonically decreasing in A+. So
there exists θ � t ∈ A+ such that

d(xn, xn+1)→ t as n→∞.

Letting n→∞ in (3.1) and by definition of F∗ and continuity of ϕ, φ, we have

ϕ(t) � F∗(ϕ(t), φ(t)) � ϕ(t).

Thus F∗
(
ϕ(t), φ(t)

)
= ϕ(t) and so ϕ(t) = θ or φ(t) = θ. Hence t = θ. Therefore,

d(xn, xn+1)→ θ as n→∞.

Now, we shall show that {xn} is a Cauchy sequence in (X,A, d). To prove it, we shall prove that

lim
n→∞

d(xn, xn+1) = θ. (3.2)

Assume that {xn} is not a Cauchy in (X,A, d). Then there exist ε > 0 and subsequences {xmk
} and

{xnk
} with nk > mk > k such that

‖d(xmk
, xnk

)‖ ≥ ε.

Now, corresponding to mk, we can choose nk such that it is the smallest integer with nk > mk and
satisfying above inequality. Hence

‖d(xmk
, xnk−1)‖ < ε.

So we have

ε ≤ ‖d(xmk
, xnk

)‖ ≤ ‖d(xmk
, xnk−1)‖+ ‖d(xnk−1, xnk

)‖
≤ ε+ ‖d(xnk−1, xnk

)‖.

Using (3.2, we have
ε ≤ lim

k→∞
‖d(xmk

, xnK
)‖ < ε+ θ.

This implies
lim
k→∞
‖d(xmk

, xnk
)‖ = ε. (3.3)

Again,

‖d(xnk
, xmk

)‖ ≤ ‖d(xnk
, xnk−1)‖+ ‖d(xnk−1, xmk

)‖
≤ ‖d(xnk

, xnk−1)‖+ ‖d(xnk−1, xmk−1)‖+ ‖d(xmk−1, xmk
)‖. (3.4)
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Also,

‖d(xnk−1, xmk−1)‖ ≤ ‖d(xnk−1, xnk
)‖+ ||d(xnk

, xmk−1)‖
≤ ‖d(xnk−1, xnk

)‖+ ‖d(xnk
, xmk

)‖+ ‖d(xmk
, xmk−1)‖. (3.5)

Letting k →∞ in (3.4) and (3.5) and using (3.2) and (3.3), we have

lim
k→∞
‖d(xnk−1, xmk−1)‖ = ε.

Since d(xnk−1, xmk−1), d(xnk
, xmk

) ∈ A+ and

lim
k→∞
‖d(xnk−1, xmk−1)‖ = lim

k→∞
‖d(xnk

, xmk
)‖ = ε,

there exists s ∈ A+ with ‖s‖ = ε such that

lim
k→∞
‖d(xnk−1, xmk−1)‖ = lim

k→∞
‖d(xnk

, xmk
)‖ = s. (3.6)

Now by (3.6), we have

ϕ(s) = lim
k→∞

ϕ (d(xnk
, xmk

)) � lim
k→∞

F∗

(
ϕ(d(xnk−1, xmk−1)), φ(d(xnk−1, xmk−1))

)
.

Therefore
ϕ(s) � F∗

(
ϕ(s), φ(s)

)
� ϕ(s).

Thus ϕ(s) = θ or φ(s) = θ and so s = θ, which is a contradiction. Hence {xn} is a Cauchy sequence
in (X,A, d). Hence there exist z ∈ X such that

lim
n→∞

d(xn, z) = θ.

Now, we shall show that z is fixed point of T . Using (3.6), we get

ϕ(d(xn, T z)) � F∗

(
ϕ(d(xn−1, z), φ(d(xn−1, z)))

)
.

Letting n→∞ and using the concept of continuity of the functions ϕ, φ and F∗, we have d(z, Tz) = θ.
Hence by Definition 2.1, we have Tz = z.

For the uniqueness, let α, β ∈ X be two fixed points of T . Using (3.6), we get

ϕ(d(α, β)) = ϕ (d(Tα, Tβ)) � F∗

(
ϕ(d(α, β)), φ(d(α, β))

)
� ϕ (d(α, β)) .

Hence ϕ(d(α, β)) = θ or φ(d(α, β)) = θ. Thus we get d(α, β) = θ. Hence by Definition 2.1, we have
α = β. This implies uniqueness. �

For F∗ = A−B, we have the following result.

Corollary 3.2. Let (X,A, d) be a complete C∗-algebra valued metric space and T : X → X be a self
mapping satisfying the following

ϕ (d(Tx, Ty)) � ϕ(d(x, y))− φ(d(x, y)) forall x, y ∈ X;

where φ, ϕ ∈ Ψ and F∗ ∈ C∗. Then T has a unique fixed point.
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4. Conclusion

In this paper , we have proved some result using C∗-class function in the notion of C∗-algebra
valued metric space which is more general than metric space. The obtained results extend and
generalize some of the results in the literature.
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