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BIFURCATION IN A VARIATIONAL PROBLEM ON A SURFACE
WITH A CONSTRAINT

P. VYRIDIS1∗

Abstract. We describe a variational problem on a surface under a constraint
of geometrical character. Necessary and sufficient conditions for the existence of
bifurcation points are provided. In local coordinates the problem corresponds to
a quasilinear elliptic boundary value problem. The problem can be considered
as a physical model for several applications referring to continuum medium and
membranes.

1. Bifurcation in Variational Problems

The classical bifurcation problem has the following form:

f [u, λ] = 0 (1.1)

where f is a mapping f : X × R → R, X is a Hilbert space and λ ∈ R is a real
parameter. We always assume that

f [0, λ] = 0

for all λ ∈ R.

Definition 1.1. The number λ0 ∈ R is called a bifurcation point for equation (1.1)
if and only if in every sufficiently small neighborhood U ⊂ X × R of (0, λ0) there
exists a solution (u, λ) of (1.1) with u 6= 0.

The present problem has been investigated for a long time with plenty of inter-
esting results. The problem has been successfully resolved and the necessary and
sufficient conditions for the existence of bifurcation points have already been posed.

The bifurcation problem of variational character is of special interest since the
integral functionals involved to this problem are models of the deformation energy
of the continuum medium [1]. The problem of the form (1.1) is reduced to

f [u, λ] = G′[u]− λF ′[u] = 0 (1.2)

where G,F are functionals defined on the Hilbert space X. It is proved by I. V.
Skrypnik that if the functionals F,G satisfy some specific assumptions, then the
necessary conditions for the existence of bifurcation points are also sufficient ones
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[7]. Actually, according to this theory every λ ∈ R, corresponding to a non zero
critical point u of the functional

I[u, λ] = G[u]− λF [u],

is a bifurcation point for the equation

I ′[u, λ]w = G′[u ]w − λF ′[u ]w = 0 (1.3)

in Hilbert space X if and only if the equation

I ′′[0, λ](u,w) = (I ′′[0, λ]u, w) = 0 (1.4)

is satisfied by a non zero solution for all w ∈ X. This statement is valid when the
functionals F and G satisfy the following conditions [7]: Let V a neighborhood of
0 ∈ X. We describe the properties of the functionals F,G.
1. Functional G:
The functional G is weakly continuous, differentiable and its differential is Lipschitz
continuous with

G′[u] = Au+N(u) , (1.5)

where A is a linear self adjoint and compact operator. For the nonlinear part N the
following estimate holds:

‖N(u)‖ ≤ c ‖u‖p , (1.6)

where c is a positive constant, p > 1 and u ∈ V .
2. Functional F :
The functional F is differentiable with the property:

F ′[u] = B u+ L(u) , (1.7)

where B is a linear, bounded, self adjoint and positive definite operator. For the
nonlinear part L the following estimates hold:

‖L(u)‖ ≤ c ‖u‖r , ‖L(u1)− L(u2)‖ ≤ c
(
‖u1‖r−1 − ‖u1‖r−1

)
‖u1 − u2‖ (1.8)

where c is a positive constant, r > 1 and u, u1, u2 ∈ V .
Note that under these assumptions equation (1.4) can be rewritten as

Au− λB u = 0.

In addition to the bifurcation problem of variational character the following prob-
lem attracted some special interest [8]

f [u, λ] = G′[u]− λF ′[u] = 0, Φ[u] = 0 (1.9)

where the differentiable mapping Φ : X −→ R satisfies Φ[ 0] = 0. A problem of
this type is called a bifurcation problem under the restriction of a constraint. The
equation of the constraint

Φ[u] = 0 (1.10)

restricts the domain of (1.2) to a smaller subspace according to Lyapunov - Schmidt
decomposition. We consider that the solutions of equation (1.10) for small values of
‖u‖ is a coset in a neighborhood of 0 ∈ X, i.e.

X = X1 ⊕X2 ,
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and there exists a continuous differentiable mapping h from a small neighborhood
of 0 ∈ X1 to a small neighborhood of 0 ∈ X2 such that the set of all solutions:

u = v + w , v ∈ X1 , w ∈ X2

is written in the form:

u = v + h(v) , v ∈ X1 (1.11)

with

h(0) = 0 , h′(0) = 0 . (1.12)

According to (1.11) we define the functionals:

J [ v] = G[v + h(v)] = G[u] , v ∈ X1 (1.13)

and

Q[ v] = F [v + h(v)] = F [u] , v ∈ X1 . (1.14)

Then the derivatives

DF [u] = Q′[ v] , DG[u] = J ′[ v]

have the meaning of differentiation of the functionals F and G along the tangential
direction of the manifold (1.11). Suppose that G′[ 0 ] = F ′[ 0 ] = 0 holds. Then for
all λ ∈ R we obtain:

DG[ 0 ]− λDF [ 0 ] = 0 .

Definition 1.2. The number λ0 ∈ R is a bifurcation point for equation

DG[u ]− λDF [u ] = 0 (1.15)

if in the intersection of a sufficient small neighborhood U ⊂ X × R of (0, λ0) with
the manifold (1.11),there exists a nonzero solution of equation (1.15).

It has been proved [11] that the functionals (1.14) and (1.13) satisfy the properties
(1.7), (1.8), (1.5), (1.6) and the appropriate conditions of continuity and differentia-
bility, with the additional condition r ≥ 2 in a small neighborhood of subspace X1.
This leads to the following result [11]

Theorem 1.3. Let X be a Hilbert space and the functionals G[u], F [u], defined
in a neighborhood of 0 ∈ X, satisfy properties (1.7), (1.8), (1.5), (1.6) and the
appropriate conditions of continuity and differentiability for r ≥ 2. Let Φ : X −→ R
be a continuous differentiable functional, which satisfies the conditions:

Φ[ 0 ] = 0 , KerΦ′[ 0 ] = X1 6= 0 .

Then the number λ 6= 0 is a bifurcation point for problem (1.15) if and only if the
equation

(PAP − λPBP )u = 0 , u ∈ X1 ,

where P : X −→ X1 the orthogonal projector, has a non zero solution.

It is obvious that bifurcation points exists when PAP 6= 0.
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2. Description of the problem and constraint

Let M be a smooth surface in R3 and ~η(x) , where x ∈ R3, a continuously dif-
ferentiable vector field identified to the normal vector field for every x ∈ M . We
assume that the mean curvature of surface M not vanished. Let U ⊂ R3 an open set
with diamU < δ, where δ > 0 small enough and S = M ∩U an open and connected
set in M , with boundary ∂S consisting of two non-intersecting sufficiently smooth
components Γ and Γ1. We denote by ~ν(x) a differentiable vector field in R3, which
is the normal vector field of the one dimensional curve ∂S for every x ∈ ∂S, located
formally in the tangent plane TxM ⊂ R3.

The ∇i operator is the i-th component of the tangent differentiation with respect
to the surface M [4]:

∇i =
∂

∂xi
− ηi(x) ηj(x)

∂

∂xj
, i = 1, 2, 3 , x ∈M. (2.1)

δi is the i-th component of the tangent directional differentiation along the curve
∂S:

δi = τ i(x)
d

ds
= τ i(x) τ j(x)

∂

∂xj
, i = 1, 2, 3 , x ∈ ∂S , (2.2)

where ~τ(x) for x ∈ R3 is a C∞ vector field identified for each x ∈ ∂S to the unitary
tangent vector field of the curve ∂S, and belongs to the tangent plane TxM for each
x ∈ ∂S. For these differential operators the following formulae of integration by
parts hold [6]∫

S

u∇iv dS =

∫
∂S

u v ν i ds−
∫

S

Hniu v dS −
∫

S

v∇iu dS , (2.3)

and [11] ∫
∂S

u δi v ds = −
∫

∂S

(Kν i +Rηi)u v ds−
∫

∂S

v δi u ds , (2.4)

where

H = −∇iη
i

is the mean curvature of surface M [4], K is the geodesic curvature and R is the
normal curvature of curve ∂S, located in the surface M [2].

Let a vector field ~u ∈ H0(S, TxM) where

H0(S, TxM) =
{
~u ∈ W 1

2 (S, TxM) , ~u|Γ ∈ W 2
2 (Γ, TxM) . ~u|Γ1 = ~0

}
.

We denote by W 1
2 (S, TxM) and W 2

2 (Γ, TxM) the Sobolev spaces of functions defined
on S and Γ with values in TxM ⊂ R3 respectively. For every specific ~u ∈ H0(S, TxM)
we introduce the following functionals

F [ ~u ] =
1

2

∫
S

aijkl(x)∇ju
i∇lu

kdS +
1

2

∫
Γ

|δiδi ~u|2ds (2.5)

G[ ~u ] =

∫
Γ

q(~u, x) ds (2.6)

I[ ~u, λ ] = F [ ~u ]− λG[ ~u ] , λ ∈ R. (2.7)
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The coefficients aijkl ∈ L∞(S) satisfy the symmetry properties aijkl(x) = aklij(x),
and they are positive definite, i.e.

aijkl(x) ξ
ijξkl ≥ Λ ξij ξij , Λ > 0

for all the matrices (ξij)(i,j). The functional I[~u, λ] can be considered as the energy
functional of a continuum medium with special characteristics determined by the
coefficients aijkl. The medium is the interior of a shell Γ, which is under the influence
of a force density coming from a potential λ q(~u, x). The medium is fixed up to a
part Γ1 of the boundary ∂S. Hence, the first term of the functional F [~u] represents
the random deformation of the medium while the rest of the expression comes from
the deformation of the shell.

The function q is three times differentiable, and satisfies the following properties

q(0, x) = 0 , qui(0, x) = 0 , x ∈ Γ , i = 1, 2, 3. (2.8)

The present study focuses on the investigation of the critical points of functional
I[ ~u, λ ], i.e. the functions ~u ∈ H0(S, TxM), where x ∈ S, such that for all ~w ∈
H0(S, TxM)

I ′[ ~u, λ ] ~w = 0 (2.9)

is valid under the existence of a constraint with the property of leaving the area of
the domain S invariant on the surface M . We define the mapping

y : ∂S −→M y(x) = x+ ~u(x) , (2.10)

where ~u(x) ∈ H0(S, TxM) for small values of ‖~u‖H0 . Since M can be considered
as a graph of a two times differentiable function f defined on a bounded domain
V ⊂ R2, we choose a coordinate system, which is transformed from the initial one
by an appropriate composition of a translation and rotation. Then

S = M ∩ U =
{
(x1, x2, f(x1, x2)), (x1, x2) ∈ V

}
.

On such a coordinate system on R3, we pick up the axes x1, x2 from the tangent
plane of the surface M at the point x ∈ S, while the axis x3 comes along the normal
vector ~η of the surface M at point x. The following properties for components of
the normal vector of M at x are valid for this specific system of local coordinates:

η3 =
1√

1 + |gradf |2
, ηj = −η3 ∂f

∂xj
, j = 1, 2 , dS =

1

n3
dx1 dx2 , (2.11)

while the components of the tangential differentiation (2.1) in these local coordinates
are written as:

∇i = (δi1 − nin1)
∂

∂x1
+ (δi2 − nin2)

∂

∂x2
, i = 1, 2, 3 , (2.12)

where δij stands for the Kronecker symbol. According to (2.10):

y1 = x1 + u1 , y2 = x2 + u2 , y3 = f(y1, y2) (2.13)

Mapping (2.10) leaves invariant the area of S if and only if∫
V

√
g(x+ ~u(x)) dx1dx2 =

∫
V

√
g(x) dx1dx2 , (2.14)
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where g(x) = det(gij(x)) and gij(x) are the components of metric tensor at x ∈M .
The mapping

Φ[ ~u ] =

∫
V

√
g(x+ ~u(x)) dx1dx2 −

∫
V

√
g(x) dx1dx2 (2.15)

is defined on a small neighborhood of ~0 ∈ H0(S, TxM). It is obvious that (2.14)
holds if and only if

Φ[ ~u ] = 0. (2.16)

The mapping Φ : H0(S, TxM) −→ R is continuously differentiable in a small neigh-

borhood of ~0 ∈ H0(S, TxM). Let a vector field ~u ∈ H0(S, TxM) then ~u|∂S is reduced
to the form

~u(x) = ϕ(x)~τ(x) + ψ(x)~ν(x) , ϕ , ψ ∈ W 2
2 (∂S) , x ∈ ∂S . (2.17)

Proposition 2.1. The solutions of equation (2.16) are form a coset, i.e.

H0(S, TxM) = X1 ⊕X2 , (2.18)

where

X1 =
{
~v ∈ H0(S, TxM), ~v|Γ = ϕ~τ + ψ~ν,

∫
Γ
ψ ds = 0

}
,

X2 = {~v ∈ H0(S, TxM), ~v|Γ = ϕ~τ + C|Γ|−1~ν, C ∈ R} .

Proof. This result is a consequence of Lyapunov - Schmidt decomposition and the
implicit function theorem. We consider equation (2.16) for small values of the norm
‖~u‖H0(S, TxM). Obviously

Φ[~0 ] = 0 .

On a fixed point x ∈ ∂S ⊂ M we introduce the above coordinate system. Then
gij(x) = δij and

gij(y) =
∂ yk

∂ xi

∂ yk

∂ xj
, k = 1, 2, 3 , i, j = 1, 2 .

Using the coordinate transformation (2.13), we obtain:

g11(y) = β2(y)(1 + u1
x1)2 + γ2(y) (u2

x1)2 + 2 fy1 fy2 (1 + u1
x1)u2

x1 ,

g22(y) = β2(y)(u1
x2)2 + γ2(y)(1 + u2

x2)2 + 2 fy1 fy2 u1
x2 (1 + u2

x2) ,

g12(y) = β2(y)(1+u1
x1)u1

x2+γ2(y)u2
x1(1+u2

x2)+fy1 fy2

[
u1

x2u2
x1 + (1 + u1

x1)(1 + u2
x2)

]
,

g(y) = g11(y) g22(y)− g2
12(y) ,

where

β(y) =
√

1 + f 2
y1 , γ(y) =

√
1 + f 2

y2 .

For every ε > 0 there exists δ > 0 such for diamU < δ the inequality |ni(x)| < ε
holds for i = 1, 2 and x ∈ U . This means

|ni(x)nj(x)| → 0 , i, j = 1, 2 , x ∈ U .
Then we derive:

Φ′[~0 ]~v =

∫
V

grad

(
1

n3

)
~v dx1dx2 +

∫
V

(v1
x1 + v2

x2)
1

n3
dx1dx2 . (2.19)
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From (2.11), (2.12) and (2.3) equation (2.19) reduces to:

Φ′[~0 ]~v =

∫
S

(
∇1 v

1 +∇2 v
2
)
dS =

∫
Γ

~v ~ν ds .

Thus,

KerΦ′[~0 ] =

{
~v ∈ H0(S, TxM), ~v|Γ = ϕ~τ + ψ ~ν ,

∫
Γ

ψ ds = 0

}
6= {~0}. (2.20)

We define X1 = KerΦ′[~0 ], X2 = X⊥
1 , i.e.

X2 =
{
~v ∈ H0(S, TxM), ~v|Γ = ϕ~τ + C |Γ|−1 ~ν, C ∈ R

}
. (2.21)

Then the set of the solutions of equation (2.16) is written in the form

~u = ~v + h(~v), ~v ∈ X1 , (2.22)

and there exist δ1, δ2 ∈ R small such that the mapping

h : Bδ1(~0) ⊂ X1 −→ Bδ2(~0) ⊂ X2

is differentiable and
h(~0) = ~0 , h′(~0) = ~0 (2.23)

are valid. �

Assuming the existence of constraint (2.16) the functionals (2.5),(2.6) and (2.7)
reduce to the form

F [~v ] =
1

2

∫
S

aijkl(x)∇j

(
vi + h(~v)i

)
∇l

(
vk + h(~v)k

)
dS +

+
1

2

∫
Γ

|δiδi (~v + h(~v)) |2 ds , (2.24)

G[~v ] =

∫
Γ

q (~v + h(~v), x) ds , (2.25)

I[~v, λ ] = F [~v ]− λG[~v ] , λ ∈ R , ~v ∈ X1 . (2.26)

We define the critical points for the functional I on the subspace X1

Definition 2.2. A critical point for the functional I under the constraint (2.16),
for a given λ ∈ R, is the vector field ~v ∈ X1, which satisfies the relation

I ′[~v, λ ] ~w = 0 (2.27)

for each ~w ∈ X1.

Relation (2.27) is rewritten in the equivalent form∫
S

aijkl(x)∇j

(
wi + h′(~v)i ~w

)
∇l

(
vk + h(~v)k

)
dS+

+

∫
Γ

δiδi (~v + h(~v)) δjδj (~w + h′(~v)~w) ds− (2.28)

−λ
∫

Γ

qui (~v + h(~v), x) (wi + (h′(~v)~w)i) ds = 0.
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Since the conditions (2.8), (2.23) are valid the vector field ~v = ~0 is a critical point
of equation (2.27) for all λ ∈ R. We consider the linearised equation

I ′′[~0, λ ] (~v, ~w) = 0 , ~v, ~w ∈ X1 , (2.29)

or equivalently∫
S

aijkl(x)∇jv
i∇lw

kdS +

∫
Γ

δiδi~v δjδj ~w ds− λ

∫
Γ

quiuj
(~0, x) viwj ds = 0 , (2.30)

which corresponds to equation (2.27). Using the formulae of integration by parts
(2.3) and (2.4) under the additional assumptions ∂S ∈ C∞, aijkl ∈ C∞(S̄), q ∈
C∞(R3, ∂S), and proposition (2.1), we derive the equivalent to (2.30) boundary
value problem (D = δiδi)

Hηlaijkl(x)∇jv
i +∇l (aijkl(x)∇jv

i) = 0, x ∈ S

aijkl(x)ν
lτ k∇jv

i + [K2 +R2 + δj(Kν
j +Rηj)] τ kDvk+

+τ kD2vk − λquiuk(~0, x)viτ k = 0, x ∈ Γ

aijkl(x)ν
lνk∇jv

i + [K2 +R2 + δj(Kν
j +Rηj)] νkDvk+

+νkD2vk − λquiuk(~0, x)viνk = C, x ∈ Γ

~v = ~0, x ∈ Γ1,

(2.31)

where constant C is defined by the relation:

C =
1

|Γ|

∫
Γ

[aijkl(x)ν
lνk∇jv

i +
[
K2 +R2 + δj(Kν

j +Rηj)
]
νkDvk+

+νkD2vk − λquiuk(~0, x)viνk] ds .

3. Existence of bifurcation points

The existence of bifurcation points for problem (2.27) is based on theorem (1.3).
We verify the assumptions of this theorem.

Proposition 3.1. The functionals (2.5) and (2.6) satisfy the conditions (1.7), (1.8)

and (1.5), (1.6), respectively, for all ~u in a neighborhood of ~0 in Hilbert space
H0(S, TxM) with all the appropriate conditions of continuity and differentiability.

Proof. We can verify [9, 11], using the introduced coordinate system, that the ex-
pression

‖~u‖ =

[ ∫
S

aijkl(x)∇ju
i∇lu

k dS +

∫
Γ

|δiδi~u|2 ds
]1/2

(3.1)

defines a norm on Hilbert space H0(S,R3) equivalent to the standard one. Thus
functional (2.5) can be rewritten as:

F [ ~u ] =
1

2
‖~u‖2

H0(S,TxM) =
1

2
(~u, ~u)H0(S,TxM) , (3.2)

where ( , ) is the corresponding inner product in Hilbert space H0(S, TxM). Now
it is obvious that the functional (2.5) is differentiable and satisfies the conditions
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(1.7), (1.8). The functional (2.6) is differentiable due to the smoothness of function
q. The fact that the functional (2.6) is weakly continuous, and its differential is
local Lipschitz continuous, comes from the Sobolev embedding theorem of the space
W 2

2 (Γ,R3) into the space C(Γ,R3). Expression (1.5) holds, where

(A~u, ~w)H0
=

∫
Γ

quiuj(~0, x)uiwj ds

and

(N(~u), ~w)H0
=

∫
Γ

[
qui(~u, x)− quiuj(~0, x)uj

]
wi ds

for all ~w ∈ H0(S, TxM). The operator A : H0(S, TxM) −→ H0(S, TxM) is linear
and symmetric. The same embedding theorem implies that the operator A is also
compact. Finally, the estimate (1.6) holds due to the above embedding theorem for
p = 2. �

We are now ready to formulate the existence of bifurcation points for problem
(2.27).

Theorem 3.2. The number λ0 is a bifurcation point for problem (2.27) if and only
if equation (2.30) has a nonzero solution for all ~w ∈ X1.

Proof. This is a straight result of theorem (1.3) since the properties of functionals
F ,G hold from proposition (3.1) and properties of functional Φ from proposition
(2.1). The integral equation (2.30) corresponding to (2.29) can be written in the
equivalent form:

(~v, ~w)− λ (A~v, ~w) = 0

for all ~w ∈ X1 due to proposition (3.1). This implies that

~v − λA~v = 0 .

Obviously, if quiuj(~0, x) 6= 0, there exist bifurcation points. �
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