>>Z

A new modification of Kalman filter algorithm

Ahmed Raad Radhi®*, Zainab Abdul Redha®®?, Irtefaa A. Neamah?

aDepartment of Mathematics, Faculty of Computer Science and Mathematics, University of Kufa, Iraq
bMinistry of Education, Najaf, Iraq.

(Communicated by Madjid Eshaghi Gordji)

Abstract

This study is concerned with estimating random data and in the presence of noise, as we used the
Kalman filter estimation method through the backpropagation algorithm to estimate these data.
This is because modern estimation methods have become more important as they were in the past
years due to the expansion of the field of science and technology and the increasing data Therefore,
the interest became in estimation methods that solve the noise problems that occur in the data. The
Kalman filter has become one of the most popular and most reliable estimators in case of data noise.
This study tests the use of the Kalman filter and Back Propagation algorithm to estimate the data
containing noise and compare the results with the proposed method on the same data. The data is
generated randomly in the simulation study. The results showed that Kalman is more efficient in
filtering noise from the data and giving a lower mean square error compared to the backpropagation
algorithm, but the results of the proposed method outperformed the results of the Kalman filter and
the backpropagation with the least possible error.
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1. Introduction

Machine learning play a fundamental role in recent researches in statistics as well as big data.
Today, the Kalman family of condition assessment techniques, including the Kalman filter and its
many variations, is the de facto basis for condition estimation. More than 6000 patents have been
issued in the United States regarding applications or processes containing the Kalman filter. Ac-
cording to Google Scholar, the term ”Kalman filter” is used in more than 100,000 scientific articles.
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Additionally, over 7,500 scholarly citations were recorded in Kalman’s original article [9]. One of the
most commonly used learning algorithms is back-propagation (BP-ANN) [I3].The back-propagation
algorithm is the main one for Feed-Forward Neural Networks training, very simpler in implementation
and calculation compared to other techniques that are mathematically complicated [22].

Rudolf Emil Kalman was born on May 19, 1930, in Budapest, Hungary, It was 1958 that he
discovered the Kalman filter for the first time. Kalman Filter (KF) is named after Rudolf E. Kalman,
who published his popular paper ” A New Approach to Linear Filtering and Prediction Problems” in
1960.

He’s revolutionized the subject in 1960 and 1961 with his articles on the Kalman filter [12] [11].
In his first essay, Kalman demonstrated difficulties in case estimation and prediction. He suggested
a framework to address these exemplary problems where the system model is linear and properly
understood and the statistical properties of noise are achieved. If the system model is not linear, the
unscented Kalman filter (UKF) was introduced in 1997 by S.J Julier and J.K Uhlmann. The Robust
Kalman filter (RUK)was also introduced to accurately solve problems that could not be achieved
on the system model. Then Adaptive Kalman Filter (AKF) was used to solve the problem that the
statistical properties of noise and processing are not certain [17].

The Kalman filter is one of the most remarkable inventions of the twentieth century. It has been
more than 50 years since Rudolf Kalman’s first groundbreaking paper on state estimation began,
which launched a major transition towards dynamic modeling of state space. This powerful tour in
theory of mathematical systems, along with the two other groundbreaking articles, helped him secure
a variety of important awards, including the Medal of Honor of IEEE in 1974, the Kyoto Prize in
1985, the Steele Prize in 1986, and the Charles Stark Prize. Draper Prize in 2008, and the U.S. Global
Medal in Science in 2009. The Kalman filter is a popular tool to remove the measurement noise that
gets in the data that is often retrieved from various sensors. The most popular application is data
cleaning from the dimensions of accelerometers and gyroscopes, which can be found in smartphones
and other modern devices, among other things. The Kalman filter is also an estimator that allows
the estimation of parameters that are not measured directly by the sensors but are dependent on the
measurement quantities [I9]. For optimal linear filtering of static random processes, it can be said
that the Kalman filter (KF) is the most popular algorithm that provides optimal estimates in the
minimum mean squared error (MMSE) [27].of a linear state-space model with Gaussian operation
and measurement noise [8]. This algorithm is based on the state-space representation of a linear
process. This can be described by two equations, the first is called the state equation, which is a
linear combination of a vector of unobserved state variables and some process noise, while the second
is called the observation equation that is formed by two lines of relationship with state variables and
random noise [14]. The Kalman filter is also an estimation of the minimum variability of dynamic
systems and has attracted widespread interest with increasing demands for target tracking. [15].

Kalman filter whose efficiency is due to

1. Low-cost computational requirements.

2. Well-designed recursive properties.

3. Representing the optimum estimator for one-dimensional linear systems, assuming Gaussian
error statistics and suitability for real-time application [1].

Due to its optimization, simplicity of implementation, and low computational complexity, the
Kalman filter has been effectively implemented in many practical applications, such as target tracking,
positioning, navigation, and signal processing [8] It is also commonly used in nearly every quantitative
or technical field. In computing, for example, it also has common applications in mapping, guidance,
robotics, radar, error detection, and computer vision. They are also used in applications including
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stabilization of video, recognition of voice, and vehicle control systems. In strictly quantitative
domains, the Kalman filter algorithm plays an important role in the study of mathematical finance,
time series, econometrics, system determination, and neural networks [13].

A typical structure of a neural network consists of an “input” layer, one or more “hidden” layers,
and an “output” layer. The amount of neurons in the layer and the number of layers depend greatly
on the complexity of the system studied. It is also important to define Optimal network design [2].
Neural networks come in two classes:

1. feed-forward networks.
2. recurrent (or feedback) networks.

The feed-forward network. It’s a non-recurring network that includes inputs, hidden layers, and
output; signals may only propagate in one direction [22].

The Backpropagation algorithm quickly learns by calculating interlaced updates using feedback
connections to provide error signals.

The BackPropagation Neural Network (BPNN) was suggested by Rumelhart and McClelland in
1986. It is a multilayer feedforward network trained by the backpropagation algorithm error and it
is the most commonly utilized neural network model at present. The BPNN consists of input layer,
secret layer, and output layer, and each layer includes multiple neurons. The neurons in the same
layer are not connected with each other, while the neurons in the neighboring layers are connected
with each other. Trained backpropagation networks are at the core of the latest machine learning
successes, including the very latest in speech and image recognition as well as language translation
[16], [26].

In several real-world contexts, the elucidation of the training this algorithm by Rumelhart (1986)
was the crucial move to make neural networks functional. It is a systematic method for multiple
training (three or more) layered artificial neural networks. However, the BP algorithm is a critical
to the advancement of neural networks due to the limitations of one-layer and two-layer networks.
Indeed, back propagation played a critically important role in the re-emergence of the neural network
field in the mid-1980s. Today, 80% of all applications are estimated to use this BP algorithm in one
form or the other [4]. By the backpropagation algorithm [23] computed the images of a simple
object digitally from the phase and intensity data measured through a large numerical aperture
located at an interval of half the aperture width of the object. The images were produced for
distinct object directions, and doubling the transparency of the images improved the resolution. The
experimental results of using the reverse error propagation algorithm in a simple and carefully selected
problem have been presented by the researchers, [3] . The effect of changing network architecture,
the number of hidden units, training set size, and initial weight values were studied. Many solution
analysis methods have been shown for such a simple problem. Explanations are provided for observed
behavior that may provide insights that apply to a range of problems.

This article use the ability of back propagation algorithm in estimation without noise and combine
these features in Kalman filter to introduced a new algorithm better than both of them . The
suggested algorithm is applied in simulation study to compare the numerical results with different
sample size and different rates of noise.

2. Optimum estimates

The Kalman filter is known as an optimal estimator for linear dynamic systems with white process
and measurement noise. Before deriving the Kalman filter, it is helpful to review some basic concepts
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to an optimal estimate. Generalizing the theory to random variables is easy. Assume we get what
can be observed

Yk = T + V.

x, - defined as unknown signal

vy, : refer to component of additive noise

If ;. defined as the a signal posteriori estimate x;, , given the observations yi,y2, ..., Yk -
Generally, T estimation differs from the unknown term signal z, .

It is necessary for incorrect estimates to have a cost function in order to derive this
estimate ideally. The cost function must meet the following requests:

e The cost function is nonnegative.

e The cost function is the non decreasing of the estimation error z; defined by
Ek = Tk — 33\]C

These two requests are met by a mean square error (MSE) defined by

Where F is the expected value operator.

The cost function dependent J; on time k£ emphasizes the nonstationary nature of the recursive
process of estimation. The performance cost functions are defined as least mean squared estimation
error and the dynamic systems are defined as linear. To compute the derivative of an optimal value
for the estimate Ty, two theories can be used from the stochastic process theory.

3. Kalman filter estimation

In control theory and statistics, Kalman filtering, also known as linear-quadratic estimation (LQE)
since it minimizes the quadratic function of estimate error for a linear dynamic system with white
measurement and disturbance noise [17]. Uses of a sequence of measurements observed over time,
containing statistical noise and other inaccuracies, and generates estimates of unknown variables that
appear to be more reliable than those based on a single measurement alone are by estimating a joint
probability distribution over the variables for each period [I7]. In certain respects, the filter is very
powerful: it supports estimates of past, present, and even future states [25].

Let’s now think of the "filter” part. All filters have the same goal: to achieve something when
nothing else can. The coffee filter is an example that many people can relate to this portafilter will
cause liquid to flow through it, leaving behind strong coffee beans. You might also consider a low-
pass filter that allows lower frequencies to pass while attenuating higher frequencies. The Kalman
filter also functions as a filter, but its operation is more complicated and difficult to understand. The
Kalman filter takes the information with the knowledge that it is error, ambiguous, or noisy.
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3.1. The discrete-time Kalman filter

Kalman filter (KF) is a collection of the mathematical equations which are, in a way that reduces
the mean squared error, provides an effective (iterative) computational method for estimating the
state of a process [25] We chose to adopt the original Kalman paper for derivation, which is not only
elegant but informative as well. We have studied a discrete linear dynamics system of time. The
state or state vector simply, denoted by z, the subscript k£ indicates a separate time the state is the
least amount of data on past behavior of the system needed to predict future behavior. The status
of x, is generally unknown. We use a set of observed data, denoted by the vector y, , to estimate
it [7].

3.2. Kalman filter algorithm summary

The algorithm of Kalman filter consists of two main steps: predicting and updating. Note that
the concepts 7 prediction ” and "update” are often referred to as ”propagation” and ”correction”
respectively. The algorithm of the Kalman filter is summarized as follows:

e Linear Process and Measurement Models
Process Equation: x), = Ap_1Tr_1 + wi_1
Measurement Equation: y, = Hyxy, + vg

e Prediction step:

1. Predicted state estimate T, = Ay 1Tk
2. Predicted error covariance P, = Ay 1P, 1AL + Qr

e Update step:

1. Kalman gain Ky, = P, HL [Hy P, H + erl.

2. Updated state estimate Ty =7, + Ky [yk — Hk/x\ﬂ.
3. Updated error covariance P, = (I — KyHy) P .

In the equations mentioned above, the predicted state estimate is evolved from the updated
previous updated state estimate. P is called state error covariance. It encrypts the error covariance
that the filter think the estimate error has. Note that the covariance of a random variable z is defined

as cov (z)=E [(x —-7)(x — f)T] where E denotes the predicted (mean) value of the statement.

We will observe that the error covariance increases at the prediction stage due to the summation
with Q, which means that the filter is more unsure about the state estimation after the prediction
stage. During the update stage, the measurement residual y; is calculated first. The measurement
residual, also known as creativity, is the difference between the actual measurement g, and the
estimated HZ, .The filter estimates the current measurement by multiplying the predicted state by
the measurement matrix. to provide the correction, Ky , to the predicted estimate z, . we use the
residual, 7, Multiplied by the Kalman gain, K} . After having the updated estimates, the Kalman
filter calculates a new error covariance ”Updated”, Py , which will be used for the next time stage.
To implement the Kalman filter, we need an initialization step. As initial values, We need the initial
guess of the state estimation, T, , as well as the initial guess of the error covariance matrix, F.
Along with @) and R, ¥y and P, play an important role in achieving the desired results. There
is a rule of thumb called ”initial ignorance,” which implies that, for faster convergence, User must
choose a large F, . Finally, after initialization of estimates, one can achieve the implementation of a
Kalman filter by implementing the prediction and update phases for each time stage, k = 1,2,5,...,

[6].
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4. Back propagation algorithm

The back propagation algorithm (BP) is a fast and simple iterative process that typically performs
well, even with complex data. Unlike other learning algorithms (such as Bayesian learning), back
propagation has strong computational properties particularly when large-scale data is presented.
Training for back propagation is like training on other neural networks. During the training phase
with back propagation, the input data is sent repeatedly to the neural network, and for each iteration
of the training process, each neural network output presentation is compared to the result required
to calculate the error. The error (backpropagation) is then passed onto the neural network and used
to adjust the weights so that the error decreases with each iteration. As a result, the neural model
gets closer and closer to producing the desired output [21], [18].

The structure of the three-layer BP neural network X = {z,29,...,2;,... ,xn}T is the input
vector, 2o = 1 is used to import the hidden layer’s threshold; V' = {v,v9, ..., v;,. .. ,vn}T It is the
output vector for the hidden layer , vy = 1 is used to import the output layer’s threshold; O =
{01,09,...,04 ... ,on}T is the output vector of output layer; and d = {d;,d, ..., d;,... ,dn}T Is the
expected output vector [10].

Artificial neural networks j and output O; can be formulated in mathematical form as follows:

n
hj: E "LUjiZEZ'.
i=1

The bias (threshold) is sometimes designated as a weight coming from a unitary valued input and
denoted as wgy. As a result, the neuron’s final production is given by the following equation,

Oj = f (hj + 93) = f (Zwﬁxi + 9]) .
i=1

Where
h; : is the hidden layer.
o0j: is the output layer,
6; : the bias factor,
f : the activation function [24] 20].

Input to the hidden layer h;;is given by Eq. (4.1) where x;, represents the data for input
layer

n0
hil = Z wiohxio (41)

i0=1
The answer of the hidden layer v;;is seen in Eq. (4.2]) by sigmoid activation function;

B 1
14 eha

where N, is the output to the output layer and given as Eq. (4.3));

Vi1

(4.2)

nl
Nz’2 = Z Wiy45 Vi1 (43)

i1=1
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The answer of the output layer O;,is shown as Eq. (4.4) by sigmoid activation function;

1

Oig = ———
2T 14 e Mo

(4.4)

In order to minimize the error, those weights should be updated. Mean square error is
determined by using defined relation as Eq. (4.5));

1 n2
Error = 3 Z (O0f — Oi2)2 (4.5)

=1

Where the desired output is sz and ANN model output is O;. The equation which
use to get the weight updated is given by the standard gradient descent approach as Eq.

(4.6);
OF

Ow;giy

Wiy, (W) = wjyy, (old) —n (4.6)
where w;y;, are weights shared between output layer neurons and hidden layer neurons,
71 is the learning rate and E is the mean square error. This equation can also be written

as Eq. ({.7);

Wiy, (W) = wjy,, (old) + ndoiz Vit (4.7)
Where 6o,, = (Ofl2 — 07;2) Ois (1 — O;5) called error backpropagated through weights
from output layer neurons to hidden layer neurons. Answer of hidden layer neurons is
written as v;;. Same process is practiced to update the weights between secret layer
neurons and input layer neurons. Associated gradient descent approach is shown as Eq.

[E3)

oF
Wios, (NewW) = w;q;, (old) — nawnio (4.8)
where wjq;, are weights shared between hidden layer neurons and input layer neurons.
This equation can also be written as Eq. (4.9);
Wios, (new) = w;g;, (0ld) + Ndniy Tip. (4.9)

Where 0p1 = vi1 (1 — v41) 2?22:1 doigWiy;, called error back propagated through weights
from hidden layer neurons to input layer neurons.
If a situation happens where the input becomes zero during the period of iteration, when

multiplied by weights, it will give no value. Therefore, in order to achieve a non-zero
value, a prejudice is added. The prejudice valueneed not be zero [5].
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5. Proposed algorithm

The proposed algorithm is a modification of the Kalman filter using the back propagation

algorithm.

The Kalman filter, as it is known, works in noise and maintains its stability in the
estimation calculation and depends on the most important feature is Kalman filter, it is

the update measures and update state per step k.

While the back propagation algorithm is good at estimation even at large sample sizes,

provided that there is no noise. It will be less effective as the noise increases.

Therefore, combining the updating features of the Kalman filter with the layers feature
of the back propagation algorithm, we will obtain a modified algorithm that combines

the advantages of two algorithms. The updating as the next:

1. Updating the true state of the Kalman filter by relying on the first layer in the back propagation

(multiplying the real state in the first layer). We obtain the following equation:

n
Sk =551 + Ky [z — Zi] E wyr; i=1,...,n
i=1

Where the first layer is h; = Z?:l Wij T4,

2. Then updating the measurement of the Kalman filter based on the second layer of back prop-

agation (multiplying the measurement in the second layer). We obtain
The following equation:

n
zr = Hys,, g WijT5 j=1..., n
Jj=1

Where, h; =", wyz;, the second layer.

Proposed Algorithm Steps

Step 1: Read process noise and measurement noise.
Step 2: Generate random data.
Step 3: Define measurements and Kalman gain.
Step 4: First measurement= weights of BP + square root of process noise * data
Step 5: Estimating of posterior state.
Step 6: Estimating of posterior error covariance.
Step 7: Fori: N
do updating of true state
data= data+ first estimate x first layer of BP.

noise x second layer.
Step 9: Compute new Kalman posterior.
Step 10: Compute MSE.

Step 8: Updating measurement = first measurement + square root of measurement

This proposed method will be implemented and applied in a simulation study in the next section.
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6. Simulation and results

Simulation is performed in MATLAB in a Simulink environment. Digital simulation by generat-
ing random data from samples of different sizes (n=30,50,100,250, 500,1000,5000), with generate a
process noise covariance matrix Q and a measurement noise covariance matrix R. Where this data
was used in three methods: Kalman filter, back propagation, and the proposed method, which is a
new method in the field of statistical estimation, which has proven its accuracy and efficiency through
the results of the mean square error.

Figure 1 below, explains how this simulation is and then explains the strategy steps for this simula-

tion.

input sample size

I

| Generate random number ‘

I
¥ ¥ ¥
Estimation Estimation Estimation
kalman filter Back Propagation Proposed method

| e I
¥

Calculated mean square error

Figure 1: Strategy steps for a simulation study

We simulate the KF, BP, and KFBP algorithm for each of the seven different sample sizes

mentioned in the above paragraph. We compare the proposed method (KFBP) with both KF and
BP by MSE.

Table 1: Mean square error of estimation when @ = 0.001, R = 0.02 .

Simple Size MSE

KF BP Proposed
30 0.0074 0.0002 0.0046
50 0.0079 0.0001 0.0037
100 0.0086 0.0002 0.0034
250 0.0062 0.0001 0.0021
500 0.0047 0.0001 0.0016
1000 0.0039 0.2018 0.0036
5000 0.0038 0.6857 0.0010

From the above table, we note that the proposed method is less than the mean square error
(MSE) compared to other methods and for all sample sizes. We also note the following points:

1. The mean square error of a Kalman filter decreases as the sample size increases. This means
that this filter has the ability to reduce the effects of random noise.

2. The back propagation algorithm deteriorates as the sample size increases and therefore the
mean square error is increased due to the increase in noise.
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3. The proposed algorithm remains the best, most accurate, and efficient in all samples, whether
the sample size is increased or decreased, it has the mean square error as low as possible despite
the presence of random noise and deterioration of the reverse propagation algorithm.

The following Fgures 2,3, shows the behavior of random data estimation in the Kalman filter, the
back propagation algorithm, and the proposed algorithm. The data are represented by the real and
estimated values of some sample sizes 50,500,1000. The above three figures also show the comparison
between the algorithms in the sample size (50), as well as the samples (500, 1000), respectively. There
is a clear difference between the real data and the speculative data in the sample size (1000) using
the BP method while we do not observe this in KF and the proposed algorithm.

Kajman Filtering: Tracking a Whits Nolce Frocecs with @ = 0.001, R=0.02  Egqk Fropegation: Trackinga Whits Nolce Froascs wilh G = 0.001, R = 0.02
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i
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i
i
n
d

e 7
0 5 30 35 a0 45 50 . 5 10 15 =0 3 =0
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n
3
in

o gEreposed: Tracking a White Nolse Frocess with @ = 0.001, R = 0.02

Trow walew
os | Erocomss Eatimes |
N

= 10 a5 =0 = =20 E5 40 4g E

Kaiman Flitering: Tracking a Whits Molse Frooess with @ = 0.001, R =0.02

Eack Fropegation: Tracking a White Nolse Froosss with @ =0.001, R =0.02
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o S0 100 1s0 200 IS0 300 350  4DD 450 500
Sampics 56 400 150 200 250 30D 350 40D 450 500

0o B o B a8 O
Wk

Troe vEine
Froposed Sstimss

Valle

Figure 2: Simulation Results for KF, BP and proposed when sample size = 500, QQ = 0.001, R = 0.02
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Kalmpan Filtering: Tracking a White Noise Process with @ =0.001, R =0.02 Baclg Propegation: Tracking a White Noise Process with G =0.001, R =002

13

16 F
14k
12k
= 1
=
03
06 F
04
- Trues ey oz True value
———— ¥F Estrnas 5P Estimaie
o A i i I A i L | i i L i i . .
4] 100 200 300 400 500 600 F0O0 500 900 1000 i 100 200 S00 400 500 G600 TOO  S00 0 1000
Samples Samples

Propoesd: Tracking awhite Noles Process with @ =0.001, R =002

‘ale

a 100 200 300 400 2S00 2S00 TFOO EOD  SOD 1000
Samples

Figure 3: Simulation Results for KF, BP and proposed when sample size = 1000, @ = 0.001, R = 0.02

Table 2: Mean square error of estimation when @ = 0.02, R = 0.001.

Simple Size MSE

KF BP Proposed
30 0.0047  0.0983 0.0042
50 0.0033 0.0611 0.0024
100 0.0021  0.0759 0.0013
250 0.0013  0.4066 0.0013
500 0.0011  0.6195 0.0005
1000 0.0010 6.1153 0.0001
5000 0.0009 19.8327 0.0009

From the above table, we note that the proposed method is less than the mean square
error (MSE) compared to other methods and for all sample sizes. We also note the
following points:

1. The mean square error of a Kalman filter decreases as the sample size increases. This means
that this filter has the ability to reduce the effects of random noise.

2. The back propagation algorithm deteriorates as the sample size increases and therefore the
mean square error is increased due to the increase in noise.
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3. The proposed algorithm remains the best, most accurate, and efficient in all samples, whether
the sample size is increased or decreased, it has the mean square error as low as possible despite
the presence of random noise and deterioration of the reverse propagation algorithm.

4 §ropoced: Tracking a White Nolce Procese with @ = 0.02, R = 0.001 Ea_‘clé Propegation: Tracking a Whits Nolse Process with @ =0.02, R= 0001
e E Trus vas
e — Froposed Ssmms | e e

alie
a
<

-] s 10 15 ) F5 30 35 40 45 50

,Gropocea: Tracking a White Nolse Process with @ = 0.02, R = 0.001

True vaue
.z b — Sroposed Ssomme |

Samples

Figure 4: Simulation Results for KF, BP and proposed when sample size 50, @ = 0.02, R = 0.001
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Figure 5: Simulation Results for KF, BP and proposed when sample size 500, Q = 0.02, R = 0.001
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Figure 6: Simulation Results for KF, BP and proposed when sample size 1000, Q = 0.02, R = 0.001

The above three figures show the comparison between the algorithms in the sample size
(50), as well as the samples (500, 1000), respectively. There is a clear difference between
the real data and the speculative data in all sample sizes reported using the BP method
while we do not observe this in the KF and the proposed algorithm.

7. Conclusion

Modern researches are concerned with employing the recent algorithms and its capabilities
and advantages in developing the procedures of statistical methods.

The main point of this study was to improve the working of the Kalman filter algorithm
based on the strengths of the back propagation algorithm.

Through the results that we obtained in this study, it can be concluded that the back
propagation algorithm is inefficient in large sample sizes when increasing the noise ratio.
As for the Kalman filter, it works optimaly in sample sizes despite the increase in the
rate of noise in the data.

The strength of the proposed method lies in conjuncting the features of the back prop-
agation propagation algorithm and its ability to train the data using layers, while the
strength of the Kalman filter lies in the optimal estimation in the noised data. Therefore,
the proposed method gave the best results in all sample sizes and with different noise
ratios.
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