
Abstract

Due to the high sampling rate, the recorded Electrocardiograms (ECG) data are huge. For storing
and transmitting ECG data, wide spaces and more bandwidth are therefore needed. The ECG data
are also very important to preprocessing and compress so that it is distributed and processed with
less bandwidth and less space effectively. This manuscript is aimed at creating an effective ECG com-
pression method. The reported ECG data are processed first in the pre-processing unit (ProUnit)
in this method. In this unit, ECG data have been standardized and segmented. The resulting ECG
data would then be sent to the Compression Unit (CompUnit). The unit consists of an algorithm for
lossy compression (LosyComp), with a lossless algorithm for compression (LossComp). The random-
ness ECG data is transformed into high randomness data by the failure compression algorithm. The
data’s high redundancy is then used with the LosyComp algorithm to reach a high compression ratio
(CR) with no degradation. The LossComp algorithms recommended in this manuscript are the Dis-
crete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). LossComp algorithms such
as Arithmetic Encoding (Arithm) and Run Length Encoding (RLE) are also suggested. To evaluate
the proposed method, we measure the Compression Time (CompTime), and Reconstruction Time
(RecTime) (T), RMSE and CR. Simulation results suggest the highest output in compression ratio
and in complexity by adding RLE after the DCT algorithm. The simulation findings indicate that the
inclusion of RLE following the DCT algorithm increases performance in terms of CR and complexity.
With CR = 55
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1. Introduction

ECG is a control system for Electrophysiological recording and measurement of the electrical
performance in the heart. A sensors collection, called electrodes, is positioned on the chest or on the
human body. These electrodes are collected and sent to an external station to inspect and record the
effect of electric pulses in the heart. Due to the high sampling frequency of the collected ECG data,
it is difficult to transmit these broad data because of the channel size and the power restrictions[15].
As a solution to the canal storage issue and power usage constraints, data compression is proposed.
Compression techniques are commonly known as LosyComp and lossComp. The original data (Org-
Data) can be completely reconstituted without degradation in the initial data LossComp algorithms.
The random scheme and the utilize compression methods just find it impossible to achieve a higher
CR [39]. In this work, LosyComp algorithms are thus utilized with an appropriate distortion degree.
First, in order to maintain the standard normal distribution and segmented within a ProUnit, the
ECG OrgData were standardized. A losyComp algorithm is then applied to the pre-processed files,
with a LossComp algorithm. DCT and DWT are utilized in this paper as a LosyComp algorithm for
compression. The performance data of the DCT/DWT algorithm are strongly redundant. Therefore,
it provides a high CR without additional loss of ECG data to incorporate a LossComp algorithm
after the loss compressor Algorithm. RLE and Arithm are used in this work as a lossComp algorithm
for compression [30].

A variety of works on the compression of ECG data have been studied. In [26], the authors
used only the LosyComp technique, the DCT algorithm, to compress ECG data. In contrast to a
lossy use case followed by a LossComp algorithm, the rapid response rate can be improved only by
using LosyComp. A compression scheme composed of DCT and RLE followed by Hoffman coding
was introduced in [34] by the authors. This compression system can provide high CR, but for
compOperations and RecOperations, it is more complicated and time consuming. The authors
present a comparative DWT, DCT, and hybrid (DWT + DCT) analysis in [24]. Usage of an algorithm
for LosyComp (DCT) followed by a LosyComp algorithm that significantly distorted the ECG data
(DWT). A LosyComp algorithm followed a LossComp algorithm in this manuscript to balance the loss
of data, CR, and machine complexity. Different combinations of losyComp and LossComp algorithms
were tested in order to discover the best output combination. The remaining components of his
manuscript are arranged as follows: An overview of compression techniques is given in the second
section. In this section, DWT, DCT, Arithm, and RLE are listed. The third section describes
the pressure model and performance improvements that are proposed. In Section IV, simulation
outcomes are discussed. Finally, the manuscript ends in section five.

2. Data compressing methods

In this section, a summary of the data compressing algorithms used in this manuscript was
introduced. Data compression methods are commonly regarded to be techniques of LosyComp and
LossComp. The following is a short overview of the algorithms of losyComp/ LossComp used in this
work [38, 7]:

A. DCT

DCT is a time series signal transformation technique that converts a signals to the components
of its frequency. DCT’s key feature is its ability to concentrate the energy of the input signal on
the first few coefficients of the output signal. This feature is heavily explored in the field of data
compression. Suppose f(x) is the DCT ECG input signal consisting of samples of N ECG data, and
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that Y (u) is the DCT output signal consisting of N coefficients. The following equation [21, 23] gives
the one-dimensional DCT [23]:

Y (u) =

√
2

N
α(u)

N−1∑
x=0

f(u)cos(
π(2x+ 1)u

2N
) (1)

Where

α(u) =


1√
2

, u = 0

1 , u > 0


The element DC in Y (0) is an average value of the OrdSignal f(x), while the frequency f(x) AC
elements of the OrdSignal are different from the average. The opposite DCT action takes the input
Y (u) coefficients and transforms them into f(x). The conversion to the reverse DCT is as follows:

f(x) =

√
2

N
α(u)

N−1∑
u=0

Y (u)cos(
π(2x+ 1)u

2N
) (2)

The majority of DCT coefficients have small values and are typically approximated to zero.

B. DWT

As Fig. 1 shows, the input signal is decayed by DWT into low frequency and high-frequency
approximation elements. The decline of the input signal enables a resolution proportional to its scale
to be studied on every frequency part [38, 7]. DWT is utilized for the Haar Base Function since it
is less complex and performs well. The hair function coefficients are defined in DWT for every 2
consecutive samples (Ssignal(2m);Ssignal(2m+ 1)):

CA(m) =
1√
2

[Ssignal(2m);Ssignal(2m+ 1)] (3)

CD(m) =
1√
2

[Ssignal(2m);Ssignal(2m+ 1)] (4)

Calculating the CA(m) and CD(m) is equal to passing a signals via High Pass and Low Pass filters
with a 2 sub-sample factor and standardization by 1/

√
(2), as shown in Equations 3 and 5.

Figure 1: Tree of DWTs
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Figure 2: RLE Structure

C. RLE

RLE is the most basic LossComp algorithm for compression. The aim of RLE is for a single value
to replace the sequences with the same data value with the series of events as seen in Fig. 2. RLE
is effective when handling with data that contains multiple repeat values.

D. Arithm

Arithm is a LossComp data entropy encoding algorithm. Arithmetical codification utilizes a
message consisting of input symbols and transforms it into a number less than one and larger than
zero (a floating point). Next, the input symbol (data file) is read by the arithmetic algorithm and
begins at an interval. The interval is then constrained depending on each symbol’s possibility. A
new interval needs more bits to start.

3. ECG data compression system proposed

As shown in Fig.3, the suggested compression system consists of a preprocessing unit(PrepUnit),
CompUnit, RecUnit, and data combiner unit.

A. PrepUnit

This unit’s responsibilities include reading, standardizing, and segmenting recorded ECG data.
Standardization gives the ECG data a standard normal distribution property, which permits the
ECG data to be given high CR on the same scale. Standardization transfers the mean of the ECG
data to zero for the defaults seen in the algorithm. Let X be the ECG data vector; the structured
ECG data Xs are given as follows:

Xs =
X − µ
σ

(5)
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where µ is the mean and standard deviation of X. In order to improve compression efficiency, the
standard ECG data are then segmented with sampling time Ts. As shown in Fig. 3, every Ts second,
a segment of the ECG data is produced by the preprocessing device. Consequently, the size of the
ECG segment generated depends on Ts. Reducing Ts increases the average duration of compression.
The value of Ts, however, can not be reduced below the threshold value to ensure that each inbound
ECG segment comes in a new unit following completion of the previous segment:

Ts >= max(TlosyComp;Tthrsh;TLossComp;TIlossComp;TIlosyComp) (6)

where TLosyComp is the LosyComp algorithm’s time, Tthrsh is the thresholding time, TIlossComp is the
LossComp algorithm’s time, TIlossComp is the inverse LossComp algorithm’s time, and TIlossComp is
the inverse LossComp algorithm’s time. As a result, the following is the minimal sampling time (Ts):

Tmin = max(TlosyComp;Tthrsh;TLossComp;TIlossComp;TIlossComp) (7)

The smallest CompTime and RecTime is achieved at Ts = Tmin.

Figure 3: The proposed system infrastructure

B. CompUnit

The unit consists of an algorithm for LosyComp followed by an algorithm for LossComp. As
a losyComp algorithm, each DWT and DCT algorithms are uilized. A threshold is then used to
maximize the redundancy of the transformed data after the LosyComp algorithm. The transformed
data values are set to zero below a threshold value. Consequently, the series of zero coefficients is
increased/decreased based on changing of threshold values. The performance of the compression
method can then be verified on the basis of the threshold value.
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Algorithm 1 Pre-Processing

I/p: ECG Data Rec
O/p: Pre-Pro-cessed ECG Data
I ECG Data Standarizing

Set ECG data To x
Set means of x To µ
Set standard deviation of x To σ
xs Equal to (x− µ)/σ

I Samplings
Set Number Of Required Samples To N
Set Length Of ECG Data To L
Set floor(L equal to N) To sp
Set 1 To k

Whilst k Less than Or Equal to N do
if k Less then Or Equal to 1 then
Set ECG Data (1 To sp) To Data

Otherwise
(k -1) sp plus 1 To initially
Set (k ∗ sp) To finally
Set (ECG Data (initial To final)) To Data

End if
if k equale to N then

Set ECG Data(k∗sp plus 1 To L) To vector
Set [Data Vector] To Data

End if
Set kplus sp To k

End Whilst

To conclude, a LossComp algorithm for compressing is utilized. This method recommends both
RLE and Arithmetic algorithms.

C. RecUnit

In order to reconstructing the OrgData of ECG files, the inverse process of the CompUnit is used.
The RLE/Arithmetic algorithm is used in the first step, the IDCT/IDWT is applied.

D. Performance evaluation measures

Below are the performance evaluation measures utilized to assess the suggested compression
method.

1) Root Mean Square Error (RMSE): The difference between two signals’ error is measured by
the RMSE. The RMSE is then utilized to calculate the difference between the OrgData and
RecData in this manuscript. The RMSE shall be:

RMSE =

√√√√ 1

N

N∑
n=1

[x(n)− x′(n)]2 (8)
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Where x(n) is an OrgSig, and x
′
(n) is an an improving of ECG signal.

2) Compressing Ration (CR): The CR measured the varity between the OrgData and the RecData
in terms of size as follows:

CR =
OrgData Size− Compression Data Size

OrgData Size
x100 (9)

3) CompTime and RecTime (T ): The last CompTime and RecTime is the final performance factor
used in this manuscript:

T = Tcomp. + Tre−const (10)

where Tcomp and Treconst are the CompTime and RecTime respectively and defined as the
following:

Tcompr. = TLosyComp + Tthrsh + TLossComp (11)

Tre−const = TIlossComp + TIlosyComp (12)

Finally, the total time is given as follows:

T = TLosyComp + Tthrsh + TLossComp + TIlosyComp + TIlossComp (13)

4) Percentage Root mean Difference (PRD): Accuracy is calculated by percent root mean dif-
ference by judicious comparison with the raw data. PRD does not display the exact quality
of RecSignal, although it is commonly utilized, and evaluation should be carried out through
visual inspection of the signals that have been decompressed. PRD is defined as:

PRD =

√∑N
n=1(x(n)− x′

(n))2∑N
n=1 x

2(n)
x100 (14)

where x(n) and x
′
(n) equates the OrgSampling and RecSampling values accordingly, and N is

the length of window from which the PRD is computed. A lower PRD value, usually between
the OrgSignal and the RecSignal, shows less error. A PRD calculation for ECG signal recording
is shown in Table 4.3 below. 134 is occupied from the Dataset for “MIT-BIH Arrhythmia”.

5) Root Mean Square Error (RMS): with respect to the OrgSignal, Root Mean Square provides
the RecSignal error measurements. The RMS meaning is as follows:

RMS = 100x

√∑N
n=1(x2(n)− x1(n))2

N − 1
(15)

It is an RMS error between the ECG signal of the OrgSignal and RecSignal.

6) Signal to Noise Ration (SNR): In decibels (dB), SNR is the ”peak signal-to-noise ratio” and
can be expressed as follows:

SNR = 10x log

(∑N−1
0 (X(n)−mean(X))2∑N−1

0 (X(n)− Y (n))2

)
(16)

The extensive utilization of SNR in ECG data compression literature can be seen in order to
measure RecSignal quality in comparison to the OrgSignal.
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7) Quality Score (QS): QS is the CR and PRD ratio, which defines the compression technique’s
overall efficiency. With fewer errors, a higher Quality Score implies higher compression effi-
ciency. QS is described as continuing:

QS =
CR

PRD
(17)

8) Root Mean Square Error (RMSE): may be well-defined in the equation that follows as the
root mean square error, and this equation is utilized to evaluate the signal:

RMSE =

√√√√ 1

N

N∑
n=1

[x(n)− x′(n)]2 (18)

Where x(n) is an original signal, and x
′
(n) is an ECG signal improvement.

4. Performance evaluation measures

Python runs Intel (R) Core (TM) i7 3.9GHz CPU and 8 GB of RAM to assess the proposed
compression method performance. The ECG data used is 1 MB in size. The CR with various
RMSE values is illustrated in Figure 4. As seen in this figure, the better CR in comparison with
the Arithm/DCT and RLE/DWT is possible with DCT as a LosyComp algorithm and RLE as a
LossComp. The RLE/DWT high CR is based on the DCT’s ability to generate high-release results,
rendering the use of RLE simpler. At high RMSE, both Arithm/DCT and DWT/RLE have around
the same CR. The threshold value is changed to control the RMSE values. The threshold values
are selected from 0:005 to 0:05 in these results. The segment-sized CR appears in figure 5. As in
this figure, when the section size is raised, the CR increases slightly. The segment’s size depends on
the time (Ts) of the sample. This means that growing Ts gives large segments and vice versa. This
calculation also indicates the highestCR of the RLE/DWT. Figure 6 indicates the CompTime and
RecTime with RMSE of both tests. This figure shows that due to its simplicity, both RLE/DCT
and RLE/DWT take a short time, while Arithm/DCT is more difficult and takes longer time. Fig.
7 indicates the size of the segment compression and RecTime. As this figure shows, increasing the
segment size leads to a longer compression period. Therefore, the sampling time (Ts) controls the
segment size is changed between CR and compression time. Fig. 8 provides a contrast of all the
proposed CR and T compression algorithms. The RLE/DCT results in both CR and compression
times as seen in this figure. Furthermore, RLE/DWT has perfect compression time and CR, while
Arithm/DCT uses long period of time in comparison with RLE/DCT and RLE/DWT. Eventually, in
the event of a DCT with RLE, Fig. 9 presents the ECG data OrgSinal and RecSignal with separate
CR. In Fig. 9, the recovered ECG dates at CR are smallly distorted = 94%, i.e. RMSE = 0 : 188,
while CR = 55. Both original and recovered ECG dates are less distorted, i.e., RMSE = 0 : 065 are
approximately the same.
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Figure 4: CR versus RMSE

Figure 5: The Size of Segment with Compression ratio (CR)
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Figure 6: RMSE with ComTime/RecTime of ECG Signal

Figure 7: The Size of Segment with CompTime/RecTime of ECG Signal
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Figure 8: The Time of CompTime/RecTime of ECG Signals VsCR with Various RMSE Values

Figure 9: (A) ECG signal in its OrgSignal (B) DCT Utilization For RecSignal (C) DWT Utilization For RecSignal
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Algorithm 2 Compressing and Reconstructing

I/p: Pre-pro-cessed ECG Data
O/p: Rec ECG Data
I LosyComp

Then if DCT is chosen
Set DCT(Preprocessed ECG Data) To Transformed Data

Otherwise
Set DWT(Pre-pro-cessed ECG Data) To Data Processed(Transformed)

End if
I Thresholding
Set Threshold Value To Thrsh
Set Sort(jPre-pro-cessed Dataj) To [Data Sorting, indexing]

Set I equal to 1
for Length of Data do
if jx(i) = x(1)j > Thr then
Set i+ 1 To i
continue

Otherwise
Stop

End if
End for

Set Transformed Data(index(i+ 1:end)) Equal to Zero
I LossComp

if RLE is Required then
Set RLE(Transformed ECG Data) To CompData

Otherwise
Set Arithm(Transformed ECG Data) To CompData

End if
IRecUnit

if RLE is utilized then
Set IRLE(ECG CompData ) To Decoded Data

Otherwise
Set IArithm(ECG CompData) To Decoded Data

End if
if DCT is utilized then
Set IDCT(Decoded ECG Data) To RecData

Otherwise
Set IDWT(Decoded ECG Data) To RecData

End if
I Collection of Data

Set [Final O/p ECG RecData] To Final O/p
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5. Expermintal findings

The MIT-BIH Arrhythmia Database provided the ECG records (Physionet Bank). DCT and
DWT are applied to the same ECG signal (MIT BIH Rec 106 ECG) in this analysis, and the
simulation results are described in Table 2. The global threshold is applied in all three cases. Various
wavelet filters include Haar, db7, db10, bior3.5, coif3, coif4 and coif 5 are utilized to compress the
ECG signal in the case of DWT. The original ECG signaling plot (MIT-BIH 100 record) and its
RecSignal version are shown in Figure 10. Table 1 summarizes a comparative study of the various
transformations.

Table 1: the results obtained from different transforms
Transform Class CRs PRDs MSEs MEs SNRs

DCTs 5.01 9.02 4.23x10–3 1.001 19.82
DCTs 7.022 9.88 4.54x10–4 1.032 18.35

Haar Based on DWT 4.31 12.89 2.12x10−4 1.25 19.68
dB7 based on DWT 4.32 10.43 4.74x10−5 1.23 21.33
dB10 based on DWT 4.1 10.2 6.95x10−5 1.11 19.13

Bior 3.5 based on DWT 4.3 12.1 9.04x10−3 1.31 20.55
Coif3 based on DWT 4.22 7.99 5.43x10−3 1.102 20.53
Coif4 based on DWT 4.16 9.01 5.51x10−5 1.21 20.42
Coif5 based on DWT 4.42 8.9 4.63x10−4 1.06 22.02

Table 2: Performance of the proposed technique based on Rec #106.

Performance Metrics Realized Values
CR 25.74
QS 13.44

SNR 52.78
PRD 1.91
MSE 0.2
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Table 3: Comparison of recommended algorithm performance with actual 50 training Records and The highest CR
with the best residual results is obtained.

ECG Records Nos. CRs % PRDs % QSs % SNRs (dB)
100 19.85 3.28 6.05 52.77
101 17.95 3.60 4.99 55.70
102 21.35 4.18 5.11 51.65
103 19.33 4.09 4.72 59.75
104 21.16 5.30 3.99 53.58
105 20.02 4.57 4.38 57.78
106 18.66 4.92 3.79 57.48
107 21.94 5.58 3.93 56.99
108 23.18 4.71 4.92 49.96
109 22.36 5.01 4.47 56.16
111 21.17 5.58 3.79 52.58
112 22.91 2.07 11.08 47.31
113 20.81 4.53 4.60 60.23
114 22.48 4.17 5.39 51.09
115 22.25 3.13 7.11 55.33
116 19.47 2.89 6.75 57.75
117 25.74 1.91 13.44 52.78
118 23.83 3.31 7.19 48.85
119 26.01 4.41 5.89 51.00
121 32.47 2.36 13.73 53.14
122 21.71 2.39 9.10 54.93
123 24.38 2.69 9.06 50.92
124 27.12 2.20 12.34 57.97
200 22.64 7.64 2.96 50.04
201 16.04 3.71 4.33 60.18
202 24.73 4.72 5.24 58.11
203 19.37 7.14 2.71 51.88
205 19.68 3.04 6.48 53.05
207 28.23 6.15 4.59 54.75
208 21.36 7.83 2.73 50.64
209 15.38 4.61 3.33 56.70
210 21.87 5.92 3.70 53.28
212 16.77 5.52 3.04 55.51
213 15.61 4.04 3.86 60.41
214 24.15 5.74 4.21 55.14
215 20.18 8.65 2.33 46.92
217 22.48 4.95 4.54 59.55
219 23.35 4.80 4.86 49.33
220 20.80 3.20 6.49 53.22
221 22.14 5.36 4.13 54.94
222 21.66 5.49 3.95 51.70
223 21.00 2.73 7.70 61.04
228 27.12 8.41 3.22 47.73
230 18.52 5.28 3.51 56.13
231 19.61 4.89 4.01 56.48
232 17.09 5.24 3.26 44.62
233 19.74 6.68 2.95 53.37
234 19.10 4.51 4.24 59.62

Average 21.56 4.65 5.38 54.17
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Table 4: finding simulation between the literature, methods and the recommended method for a dataset in record 117.

Record Number # CRs % PRDs % MSEs % PSNRs %
# 117- Based Literature 1 11.6 5.3 0.5 31.05
# 117- Based 2 14.9 5.83 0.36 29.98
# 117- Based Literature 3 14.3 2.43 0.4 33.91
# 117- Based Literature 4 15.1 2.5 0.52 33.44
# 117- Based Literature 5 5.65 3.63 0.41 30.1
# 117- Based Literature 6 7.8 1.973 0.33 32.54
# 117- Based Literature 7 16 2.29 0.28 30.88
# 117- Based on Recommended Method 25.74 1.911 0.2 36.84

Figure 10: Varios Measurements Parameters with Threshold of ECG Signals CompSignal/RecSignal Based on Various
Techniques

6. Conclusion

In this manuscript, a compression scheme consisting of losyComp and LossComp algorithms
is developed. LosyComp techniques include DCT and DWT shift followed by threshold. As a
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LossComp algorithm, we utilize RLE encryption and computation. The data generated by the missing
compression portion has a high redundancy rate, which makes it easier to utilize non-LosyComp
algorithms. CRs, RMSEs, and CompTime are computed to verify system efficiency. utilizing DCT
as a LosyComp followed algorithm by RLE as a LossComp algorithm yields better findings than
DWT and computational coding. The presented work can be developed as a future technology for
purposes of ECGs signals compressing utilizing both DCT and RLE on HW devices and verifying
their performance in various applications in real-time.
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