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Abstract

Compatibility of type (E) and weak subsequential continuity is utilized in a fuzzy metric space for
the existence of a common fixed point. Illustrations and an application are stated to elucidate our
outcomes.
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1. Introduction

The fuzzy metric space is one of the consequential generalizations of metric space due to its
interesting applications in stability theory, applied science, mathematical programming, engineering
science, modelling theory, medical science, control theory, image processing and communication. The
idea was initiated by Zadeh [20], where he defined the fuzzy sets. Later Kramosil and Michalek [7]
familiarised with the fuzzy metric space which is further improved by George and Veeramanti [6]
using the continuous t-norms [5, 6, 7, 8, 10, 11, 13, 14, 17, 20]. Now we establish common fixed point
exploiting compatibility of type (E) and weak subsequential continuity to demonstrate the usefulness
of these notions for contractive, ϕ-contractive as well as an integral type contractive condition in the
fuzzy metric space. In the sequel illustrations and an application to solve a functional equations is
also stated to elucidate our outcomes.
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2. Preliminaries

Definition 2.1. [2] Let ∃ a sequence {xn} ∈ X satisfying lim
n→∞

Axn = lim
n→∞

Hxn = z ∈ X. A pair

(A,H) over the standard metric space (X, d) is

1. weakly subsequentially continuous iff lim
n→∞

AHxn = Az or lim
n→∞

HAxn = Hz.

2. H-subsequentially continuous, lim
n→∞

HAxn = Hz.

3. A-subsequentially continuous, iff limAHxn = Az.

4. compatible of type (E) [15] if

lim
n→∞

H2xn = lim
n→∞

HAxn = Az

and
lim
n→∞

A2xn = lim
n→∞

AHxn = Hz.

5. A-compatible of type (E) [15] if

lim
n→∞

A2xn = lim
n→∞

AHxn = Hz.

6. H-compatible of type (E) [15] if

lim
n→∞

H2xn = lim
n→∞

HAxn = Az.

Now we give an example of A-subsequentially continuous and weakly subsequentially continuous
mappings in the fuzzy metric space:

Example 2.2. Let X = [0, 2] and M(x, y, t) = t
t+|x−y| with continuous t-norm: a ∗ b = ab, t > 0.

We define A and H as:

Ax =

{
1 + x, 0 ≤ x ≤ 1
x+1
2
, 1 < x ≤ 2,

Hx =

{
1− x, 0 ≤ x ≤ 1
2− x, 1 < x ≤ 2.

Observe that A and H are not continuous at 1.

We consider a sequence {xn}, where xn =
1

n
, n ≥ 1.

So,
lim
n→∞

Axn = lim
n→∞

Hxn = 1

lim
n→∞

AHxn = lim
n→∞

A(1− 1

n
) = 2 = A1,

i.e., (A,H) is A-subsequentially continuous as well as weakly subsequentially continuous.

{yn} is a sequence, where yn = 1 +
1

n
, n ≥ 1, then

lim
n→∞

Ayn = lim
n→∞

Hyn = 1,

but

lim
n→∞

HAyn = lim
n→∞

H(1 +
1

2n
) = 1 ̸= H1.

So, (A,H) is not reciprocally continuous.
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Observe that the weakly subsequentially continuous orA-subsequentially continuous orH-subsequentially
continuous mappings are never reciprocally continuous maps [12] (see also Tomar and Karapinar [18]).

Now we give an example of compatible of type (E) in a fuzzy metric spaces:

Example 2.3. Let X = [0,∞) and M(x, y, t) = t
t+|x−y| with the t-norm a ∗ b = ab. We define A

and H as follows:

Ax =

{
2, 0 ≤ x ≤ 2
x+ 1, x > 2,

Hx =

{
x+2
2
, 0 ≤ x ≤ 2

0, x > 2.

If the sequence {xn} ∈ X is defined by xn = 2− 1

n
, then

lim
n→∞

Axn = lim
n→∞

Hxn = 2,

lim
n→∞

A2xn = lim
n→∞

AHxn = 2 = H2,

lim
n→∞

H2xn = lim
n→∞

HAxn = 2 = A2.

Hence, (A,H) is compatible of type (E).

Observe that compatibility of type (E) implies A-compatibility as well as H-compatibility of type
(E) but the reverse is not correct.

Lemma 2.4. [11] If in a fuzzy metric space (X,M, ∗), ∃ a constant k ∈ (0, 1) satisfying

M(x, y, kt) ≥ M(x, y, t),

t > 0 and fixed x, y ∈ X, then x = y.

3. Main results

Now we utilize the idea of weak subsequential continuity and compatibility of type (E) in a fuzzy
metric space.

Theorem 3.1. Let (A,H) and (B,K) be compatible of type (E) as well as weakly subsequentially
continuous pairs of a fuzzy metric space (X,M, ∗). Then pairs (A,H) and (B,K) have a coincidence
point. If:

M(Hx,Ky, kt) ≥ min

{
M(Ax,By, t),M(Ax,Hx, t),

M(By,Ky, t),M(Ax,Ky, t),M(By,Hx, t)

}
(3.1)

k ∈ (0, 1), x, y ∈ X and t > 0, then A,B,H and K have a unique common fixed point in (X,M, ∗).
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Proof . As (A,H) is weakly subsequentially continuous, ∃ a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Hxn = z ∈ X

and
lim
n→∞

AHxn = Az

or
lim
n→∞

HAxn = Hz.

Also (A,H) is compatible of type (E), So

lim
n→∞

AHxn = lim
n→∞

A2xn = Hz

and
lim
n→∞

HAxn = lim
n→∞

H2xn = Az.

Consequently, Az = Hz. Similarly (B,K) is weakly subsequentially continuous ∃ a sequence {yn}
such that

lim
n→∞

Byn = lim
n→∞

Kyn = w ∈ X

and
lim
n→∞

BKyn = Bw.

or
lim
n→∞

KByn = Kw.

Also (B,K) is compatible of type (E)

lim
n→∞

BKyn = lim
n→∞

B2yn = Kw

lim
n→∞

KByn = lim
n→∞

K2yn = Bw.

So, Bw = Kw.
We assert Az = Bw. Using x = z and y = w in (3.1):

M(Hz,Kw, kt) ≥ min

{
M(Az,Bw, t),M(Az,Hz, t),

M(Bw,Kw, t),M(Az,Kw, t),M(Bw,Hz, t)

}
M(Az,Bw, kt) ≥ min{M(Az,Bw, t), 1, 1,M(Az,Bw, t),M(Az,Bw, t)},

i.e.,
M(Az,Bw, kt) ≥ M(Az,Bw, t).

From Lemma 2.4, Az = Bw.
Now we prove z = Az. Substituting x = xn and y = w in (3.1):

M(Hxn,Kw, kt) ≥ min

{
M(Axn,Bw, t),M(Axn,Hxn, t),

M(Bw,Kw, t),M(Axn,Kw, t),M(Bw,Hxn, t)

}
.

Letting n → ∞:

M(z,Kw, kt) ≥ min{M(z,Bw, t), 1, 1,M(z,Kw, t),M(Bw, z, t)},



Weak subsequential continuity in fuzzy metric spaces 12 (2021) No. 2, 1485-1496 1489

i.e.,
M(z,Az, kt) ≥ M(z,Az, t).

From Lemma 2.4, z = Az = Hz.
Substituting x = xn and y = yn in (3.1):

M(Hxn,Kyn, kt) ≥ min

{
M(Axn,Byn, t),M(Axn,Hxn, t),

M(Byn,Kyn, t),M(Axn,Kyn, t),M(Byn,Hxn, t)

}
.

Letting n → ∞:
M(z, w, kt) ≥ min{M(z, w, t), 1, 1,M(z, w, t),M(w, z, t)},

i.e., M(z, w, kt) ≥ M(z, w, t), i.e., z = w (Lemma 2.4).
Hence, z is a common fixed point of A,B,H and K.
Suppose q is another common fixed point. Substituting x = z and y = q in (3.1):

M(Hz,Kq, kt) ≥ min{M(Az,Bq, t),M(Az,Hq, t),M(Bq,Kq, t),M(Az,Kq, t),M(Bq,Hz, t)}

M(z, q, kt) ≥ M(z, q, t).

Hence, z = q. Consequently, z is unique. □

Example 3.2. Let X = [0, 2] and M = t
t+|x−y| with t-norm defined by a ∗ b = min{a, b}, x, y ∈ X

and t > 0. Let

Ax =

{
x, 0 ≤ x ≤ 1
1
2
, 1 < x ≤ 2,

Bx =

{
x+1
2
, 0 ≤ x ≤ 1

2, 1 < x ≤ 2,

Hx =

{
1, 0 ≤ x ≤ 1
5
4
, 1 < x ≤ 2,

Kx =

{
2− x, 0 ≤ x ≤ 1
3
4
, 1 < x ≤ 2.

Consider a sequence {xn} defined as xn = 1− 1
n
, n ≥ 1.

Clearly,
lim
n→∞

Axn = lim
n→∞

Hxn = 1.

Also,
lim
n→∞

AHxn = A1

lim
n→∞

HHxn = lim
n→∞

HAxn = A1

and
lim
n→∞

AAxn = lim
n→∞

AHxn = H1,

Consider a sequence {yn} defined by yn = 1, n ≥ 1.
Clearly,

lim
n→∞

Byn = lim
n→∞

Kyn = 1

and
lim
n→∞

BKyn = B1,

lim
n→∞

KKyn = lim
n→∞

KByn = B1

and
lim
n→∞

BByn = lim
n→∞

BKyn = K1,

i.e., (A,H) and (B,K) are compatible of type (E) as well as weakly subsequentially continuous. Now,
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1. When x, y ∈ [0, 1]:

M(Hx,Ky, t)) =
t

t+ |y − 1|
≥ t

t+ 3
2
|y − 1|

= M(By,Ky, t),

then for any k ∈ [2
3
, 1):

M(Hx,Ky, kt)) ≥ M(By,Ky, t).

2. When x ∈ [0, 1] and y ∈ (1, 2]:

M(Hx,Ky, t) =
t

t+ 1
4

≥ t

t+ 1
= M(By,Hx, t),

then for any k ∈ [1
4
, 1):

M(Hx,Ky, kt) ≥ M(By,Hx, t).

3. When x ∈ (1, 2] and y ∈ [0, 1]:

M(Hx,Ky, t) =
t

t+ |3
4
− y|

≥ t

t+ |3
2
− y|

= M(Ax,Ky, t),

then for any k ∈ [1
2
, 1):

M(Hx,Ky, kt)) ≥ M(Ax,Ky, t)).

4. When x, y ∈ (1, 2]:

M(Hx,Ky, t) =
t

t+ 1
2

≥ t

t+ 3
2

= M(Ax,By, t),

then for any k ∈ [1
3
, 1):

M(Hx,Ky, kt)) ≥ M(Ax,By, t).

Hence, for any k ∈ [2
3
, 1) and for all x, y ∈ [0,∞), the inequality (3.1) holds.

Consequently, the hypotheses of Theorem 3.1 are verified and 1 is the unique common fixed point
for A,B,H and K. It is interesting to observe that none of the mappings is continuous. Moreover,
neither AX ⊆ BX nor HX ⊆ KX.

If A = B and H = K:

Corollary 3.3. Let (A,H) be compatible of type (E) and weakly subsequentially continuous pair of
a fuzzy metric space (X,M, ∗). Then the pair (A,H) has a coincidence point. If:

M(Hx,Hy, kt) ≥ min

{
M(Ax,Ay, t),M(Ax,Hx, t),

M(Ay,Hy, t),M(Ax,Hy, t),M(Ay,Hx, t)

}
(3.2)

x, y ∈ X, k ∈ (0, 1) and t > 0, then A and H have a unique common fixed point.

Corollary 3.4. Corollary 3.3 is true even if the pair (A,H) is A-compatible of type (E) and A-
subsequentially continuous.
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Example 3.5. Let X = [0,∞) and M = t
t+|x−y| with t-norm, a ∗ b = min{a, b}, x, y ∈ X, t > 0.

Define:

Ax =

{
3x, 0 ≤ x ≤ 1
2x− 1, x > 1,

Hx =

{
x
4
, 0 ≤ x ≤ 1

0, x > 1.

Consider a sequence {xn}, where xn = 1
n
, n ≥ 1.

Clearly,
lim
n→∞

Axn = lim
n→∞

Hxn = 0.

Also we have:
lim
n→∞

AHxn = A0

lim
n→∞

A2xn = lim
n→∞

AHxn = H0,

i.e., the pair (A,H) is A-compatible of type (E) as well as A-subsequentially continuous. Now,

1. When x, y ∈ [0, 1]:

M(Hx,Hy, t) =
t

t+ 1
4
|x− y|

≥ t

t+ 3|x− y|
= M(Ax,Ay, t),

then for any k ∈ [ 1
12
, 1):

M(Hx,Hy, kt)) ≥ M(Ax,Ay, t).

2. When x ∈ [0, 1] and y > 1:

M(Hx,Hy, t) =
t

t+ 1
4
x
≥ t

t+ 11
4
x
= M(Ax,Hx, t),

then for any k ∈ [ 1
11
, 1):

M(Hx,Hy, kt) ≥ M(Ax,Hx, t).

3. When x ∈ (1,∞) and y ∈ [0, 1]:

M(Hx,Hy, t) =
t

t+ 1
4
y
≥ t

t+ 11
4
y
= M(Ay,Hy, t),

then for any k ∈ [ 1
11
, 1):

M(Hx,Hy, kt) ≥ M(Ay,Hx, t).

4. When x, y ∈ (1,∞):

M(Hx,Hy, t) =
t

t+ 0
≥ t

t+ 2|x− y|
= M(Ax,Ay, t),

then for any k ∈ (0, 1):
M(Hx,Hy, kt) ≥ M(Ax,Ay, t).

Hence, for any k ∈ [ 1
11
, 1) the inequality ?? holds and as a result all the hypotheses of Corollary 3.4

are verified and 0 is the unique common fixed point for A and H. It is interesting to observe that
both A and H are discontinuous and neither AX ̸⊆ HX nor HX ̸⊆ AX.
If A = B in Theorem 3.1:



1492 Beloul, Tomar, Sharma

Corollary 3.6. Let (A,H) and (A,K) be compatible of type (E) and weakly subsequentially contin-
uous pairs of a fuzzy metric space (X,M, ∗). Then A,H and K have a coincidence point. If

M(Hx,Ky, kt) ≥ min

{
M(Ax,Ay, t),M(Ax,Hx, t),

M(Ay,Ky, t),M(Ax,Ky, t),M(Ay,Hx, t)

}
(3.3)

x, y ∈ X and t > 0, then A,H and K have a unique common fixed point.

If H = K:

Corollary 3.7. Let (A,H) be compatible of type (E) and weakly subsequentially continuous pairs of
a fuzzy metric space (X,M, ∗). Then A and H have a coincidence point.

M(Hx,Ky, kt) ≥ min

{
M(Ax,Ay, t),M(Ax,Hx, t),

M(Ay,Hy, t),M(Ax,Hy, t),M(Ay,Hx, t)t

}
(3.4)

x, y ∈ X, k ∈ (0, 1) and t > 0, then A and H have a unique common fixed point.

Now we utilize the weak subsequential continuity and compatibility of type (E) for ϕ-contrative
type mapping.

Theorem 3.8. Theorem 3.1 remains true even if we replace 3.1 by

M(Hx,Ky, kt) ≥ ϕ
(
min

{
M(Ax,By, t),M(Ax,Hx, t),

M(By,Ky, t),M(Ax,Ky, t),M(By,Hx, t)

})
(3.5)

x, y ∈ X, k ∈ (0, 1) and t > 0, ϕ : [0, 1] → [0, 1] is a lower semi continuous such that ϕ(t) > t,
t ∈ (0, 1) with ϕ(0) = 0 and ϕ(1) = 1.

Proof . Theorem 3.8 follow the pattern of Theorem 3.1 as t > 0, ϕ(t) > t.□ Now we exploit integral
type contractive condition in a fuzzy metric space.

Theorem 3.9. Theorem 3.1 remains true even if we replace 3.1 by∫ M(Hx,Ky,kt)

0

φ(t)dt ≥
∫ m(x,y)

0

φ(t)dt, (3.6)

where

m(x, y) = min{M(Ax,By, t),M(Ax,Hx, t),M(By,Ky, t),M(Ax,Ky, t),M(By,Hx, t)}

and x, y ∈ X, k ∈ (0, 1) and t > 0, φ : R+ → R+ is a Lebesgue integrable and summable and for each
ε > 0,

∫ ε

0
φ(t)dt > 0.

Proof . Following Theorem 3.1, Az = Bz and Bw = Kw.
We prove Az = Bw. Taking x = z and y = w in (3.6) we get:∫ M(Hz,Kw,kt)

0

φ(t)dt ≥
∫ min{M(Az,Bw,t),M(Az,Hz,t),M(Bw,Kw,t),M(Az,Kw,t),M(Bw,Hz,t)}

0

φ(t)dt.
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Since, Az = Hz and Bw = Kw, we get:∫ M(Az,Bw,kt)

0

φ(t)dt ≥
∫ min{M(Az,Bw,t),1,1,M(Az,Bw,t),M(Az,Bw,t)}

0

φ(t)dt

=

∫ M(Az,Bw,t)

0

φ(t)dt,

i.e.,
M(Az,Bw, kt) ≥ M(Az,Bw, t).

From Lemma 2.4, Az = Bw.
Substituting x = xn and y = w in (3.6):∫ M(Hxn,Kw,kt)

0

φ(t)dt ≥
∫ m(xn,w)

0

φ(t)dt.

Letting n → ∞: ∫ M(z,Kw,kt)

0

φ(t)dt ≥
∫ M(z,Bw,t)

0

φ(s)ds,

i.e., ∫ M(z,Az,kt)

0

φ(t)dt ≥
∫ M(z,Az,t)

0

φ(t)dt,

i.e.,
M(z,Az, kt) ≥ M(z,Az, t),

i.e., z = Az = Hz (from Lemma 2.4).
Nextly, taking x = xn and y = w in (3.6):∫ M(Hxn,Kyn,kt)

0

φ(t)dt ≥
∫ m(xn,yn)

0

φ(t)dt.

Passing the limit, when n → ∞:∫ M(z,w,kt)

0

φ(t)dt ≥
∫ m(z,w)

0

φ(t)dt =

∫ M(z,w,t)

0

φ(t)dt,

i.e.,
M(z, w, kt) ≥ M(z, w, t).

Consequently, z is a common fixed point of A,B,H and K.
If q is another fixed point, then using (3.6):∫ M(Hz,Kq,kt)

0

φ(t)dt ≥
∫ m(z,q)

0

φ(t)dt =

∫ M(z,q,t)

0

φ(t)dt.

Hence, z = q and z is unique. □

Remark 3.10. All results are true even if we replace compatibility of type (E) and weak subsequential
continuity by any one of the following:

1. H (or A)-compatibility of type (E) and H (or A)-subsequential continuity,

2. A (or H)-compatibility of type (E) or compatibility of type (E) and subsequential continuity.
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4. Application

We utilize Corollary 3.4 to solve functional equations arising in dynamic programming as an
application. It was first studied by Bellman [1] using famous Banach fixed point theorem. Let
W ⊂ X be state space and D ⊂ Y be decision space. Let B(W ) be the set of bounded functions on
W . Define:

M(h, k, t) = e−
d(h,k)

t ,

with t-norm a ∗ b = min{a, b}, a, b ∈ [0, 1], where d(h, k) = ∥h(τ) − k(τ)∥∞ = sup
τ∈W

|h − k|τ . Then

(X,M, ∗) is a fuzzy metric space.

Theorem 4.1. Let H and A be self mappings of (X,M, ∗). If the following hypotheses hold:

(a) H and K are bounded,

(b) ∃ a δ ∈ (0, 1) such that:

|H(x, y, f(τ(x, y)))−K(x, y, g(τ(x, y)))| ≤ δ(h, k, t),

where,

δ(h, k, t) = min{M(Ax,Ay, t),M(Ax,Hx, t),M(Ay,Hy, t),M(Ax,Hy, t),M(Ay,Hx, t)},

x, y ∈ W and h, k ∈ B(W ),

(c) ∃ a sequence {hn} ∈ W, satisfying

lim
n→∞

Ahn = lim
n→∞

Hhn = h ∈ B(W ),

lim
n→∞

AHhn = Ah

and
lim
n→∞

A2hn = lim
n→∞

AHhn = Hh.

Then the system  Hf(t) = sup
x∈W

{u(x, t) +H(x, y, f(τ(x, y)))}

Ag(t) = sup
x∈W

{u(x, y) +K(x, y, g(τ(x, y)))}, (4.1)

has a unique bounded solution.

Proof . The system has a unique solution iff H and A have a unique common fixed point.
For all h, k ∈ B(W ) and ε > 0, ∃ y, z ∈ W such that

Hh < u(x, y) +H(x, y, h(τ(x, y))) + ε (4.2)

Ak < u(x, z) +K(x, z, k(τ(x, z))) + ε (4.3)

and since,
Hh ≥ u(x, z) +H(x, z, h(τ(x, z))), (4.4)

Ak ≥ u(x, y) +K(x, y, k(τ(x, y))), (4.5)
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then from (4.2) and (4.5)

Hh−Ak ≤ H(x, y, h(τ(x, y)))−K(x, y, k(τ(x, y))) + ε

≤ δ(h, k) + ε. (4.6)

Also from (4.3) and (4.4)

Hh−Ak > H(x, y, h(τ(x, y)))−K(x, y, k(τ(x, y)))− ε

≥ −δd(h, k)− ε. (4.7)

Consequently, inequalities (4.5) and (4.7) implies that

d(Hh,Ak) = sup |Hh−Ak| ≤ |H(x, y, h(τ(x, y)))−K(x, y, k(τ(x, y)))|+ ε

≤ δ(h, k) + ε.

Since, ε > 0 is arbitrary

d(Hh,Ak) ≤ d(h, k). (4.8)

So,

e−
d(Hh,Ak)

t ≥ e−
d(h,k)

t .

⇒
M(Hx,Hy, kt) ≥ δ(h, k, t).

The condition (c) implies that (A,H) is A-compatible of type (E) as well as A-subsequentially
continuous as a result all the hypotheses of Corollary 3.4 are verified and consequently, H and A
have a unique common fixed point. Hence, (4.1) has a unique solution.□
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