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Abstract

To obtain the approximate solution to Riccati matrix differential equations, a new variational itera-
tion approach was proposed, which is suggested to improve the accuracy and increase the convergence
rate of the approximate solutons to the exact solution. This technique was found to give very ac-
curate results in a few number of iterations. In this paper, the modified approaches was derived to
give modified solutions of proposed and used and the convergence analysis to the exact solution of
the derived sequence of approximate solutions is also stated and proved. Two examples were also
solved, which shows the reliability and applicability of the proposed approach.

Keywords: Riccati matrix differential equation, Variational iteration method, Differential
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1. Introduction

A well-known ”differential equation” is the Riccati differential equation (RMDE) that has a vast
range of engineering and scientific applications [18]. This matrix equations is labeled as RMDE
after an Italian aristocrat mathematician Count Jacopo Francesco Riccati (1676-1754), [4]. Various
approaches can be used to solve RMDE with constant coefficients analytically. Recently, ”Adomian’s
decomposition method (ADM)”, ”He’s variational iteration method (VIM)”, ”homotopy perturbation
method (HPM)” were suggested for solving quadratic RMDE and other types of such equations.

An approximate analytical VIM was first proposed and included by He [12, 13, 14, 21] and many
authors have proven it to be powerful and effective method for solving several kinds of problems
[7, 10, 22, 17]. The VIM [1, 2, 3, 5, 15, 7, 8] is currently widely utilized by academics to solve a wide
range of linear and nonlinear problems. This method provides an effective approach for evaluating
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analytic approximate solutions and carrying out numeric simulations for real-life applications [8, 9,
10, 11, 12]. The VIM, which is based on the use of certain variation, which is called the restricted
variations, and a correction functional, has found widespread use in solving nonlinear differential
equations, ordinary and partial [7, 8, 9, 10, 11, 12]. This approach do not require an apperance of
small parameters in the differential equation and produces the solution, or its approximation, as an
evaluation of iterated approximated sequence. For the new variational iteration approach used in this
work, it is not required for nonlinear terms to be differentiable with respect to the dependent variable
and its derivatives. Recently, [1, 2, 16, 20, 6] applied the differential method to solve RMDEs.

In this article, we modify the VIM to find the approximate numerical solution to RMDE, and two
examples are solved as an illustration to demonstrate the accuracy of the suggested new approach.

2. Preliminary Concepts for Solving RMDEs Using VIM

For the purpose of introducing, new approach using the VIM by modifying the linear operator
of the RMDE. For this objective, we must first recall some basic concepts related to RMDEs. When
”A”, ”B” and ”C” are n n matrices with real entries such that ”A”, ”C” are symmetric, then the
RMDE considered in this paper is assumed of the form [13, 14]:

P ′ + PB + BT P − PAP = −C(t), 0 ≤ t ≤ 1 (1)

The derivation approach starts by introducing the correctional functional related to the RMDE using
the VIM, which is for all n = 0, 1, . . . :

Pn+1(t) = Pn(t) +

∫ t

a

λ(t, s)[P ′
n(s) + Pn(s)B + BT Pn(s)− Pn(s)APn(s) + C]ds (2)

where λ is the general Lagrange multiplier and for simplification purpose, equation (1) may be
rewritten as [15]:

P ′(t) + Y (t, P (t)) = 0 (3)

where Y (t, P (t)) = P (t)B + BT P (t)− P (t)AP (t) + C and define the nonlinear operator A related
to the RMDE as:

A. =
d

dt
. + .B + BT .− .A. (4)

Now, decomposing the nonlinear operator given in equation (4) into linear and nonlinear parts
namely L and N , respectively, where:

L. =
d

dt
. + .B + BT . (5)

N. = −.A. (6)

The approximate sequence of solutions obtained by applying the VIM in relation to the nonlinear
RMDE will then take the form:

LP (t) + NP (t) = −C(t) (7)

where P is an unknown function which have to be determined.
Therefore using the VIM, the correction functional takes the form:

Pn+1(t) = Pn(t) +

∫ t

0

λ(t, s)[L(Pn(s)) + N(P̃n(s)) + C(s)]ds (8)

where P̃ is assumed here as a restricted variation, i.e., its first variation ∂P̃n equals zero.
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3. New VIM Formulation for Solving RMDEs

Now, the new approach will be introduced next by modifying the linear and nonlinear operators
L and N, respectively. This has been made by introducing any linear operator, say L1, as follows:

L(P (t)) + L1(P (t))− L1(P (t)) + N(P (t)) = −C(t)

Hence, the modified correction functional may be constructed based on the following new linear and
nonlinear operators of P , which are abbreviated as L and N and defined respectively by:

L(P (t)) = L(P (t)) + L1(P (t))

N(P (t)) = −L1(P̃ (t)) + N(P̃ (t))

Thus, for all n = 0, 1, 2, . . . ; the new correction functional with considering L and N in mind then
has the form:

Pn+1(t) = Pn(t) +

∫ t

0

λ(t, s)[L(Pn(s)) + L1(Pn(s))− L1(P̃n(s)) + N(P̃n(s)) + C(s)]ds

= Pn(t) +

∫ t

0

λ(t, s)[L(Pn(s)) + N(P̃n(s)) + C(s)]ds (9)

For simplicity and application of this approach, one may take L1(P ) = P and hence in order to find
the general Lagrange multiplier λ, we take the first variation δ with respect to Pn(t) and considering

δP̃n(t) = 0 and δC(t) = 0, which will yields to:

δPn+1(t) = δPn(t) +

∫ t

0

λ(t, s)[(P ′
n(s)) + Pn(s) + F (s, Pn(s)]ds (10)

where:
F (s, Pn(s)) = Pn(s)B + BT Pn(s)− Pn(s)− Pn(s)APn(s) + C

which may be considered as the nonlinear term, i.e., F may be rewritten in terms of the restricted
variation P̃n(s) and since δP̃n(s) = 0. Therefore δF (s, P̃n(s)) = 0. Thus equations (10) will be
reduced to:

δPn+1(t) = δPn(t) +

∫ t

0

λ(t, s)δP ′
n(s)ds +

∫ t

0

λ(t, s)δPn(s)ds +

∫ t

0

λ(t, s)δF (s, P̃n(s))ds

= δPn(t) +

∫ t

0

λ(t, s)δP ′
n(s)ds +

∫ t

0

λ(t, s)δPn(s)ds (11)

Evaluating the first integral of equation (11) using integration by parts, we get:

δPn+1(t) = [1 + λ(t, s)]Pn(s)|s=t +

∫ t

0

[1− λ′(t, s)]δPn(s)ds (12)

Using calculus of variation’s theory, the first variation δPn+1(t) = 0, the Euler-Lagrange necessary
condition for extremizing functional (12), we get as a result the following differential equation:

1 + λ′(t, s) = 0 (13)

with the natural boundary condition:

1 + λ(t, s)|s=t = 0 (14)
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Equations (13) and (14) represent an initial value problem which may be solved to find λ and it is
easily found to be λ(t, s) = s − t − 1. Therefore, the final iterative solution equation is found after
substituting λ back into equation (2), which is:

Pn+1(t) = Pn(t) +

∫ t

0

λ(s− t− 1)[P ′
n(s) + Pn(s)B + BT Pn(s)− Pn(s)APn(s) + C]ds (15)

4. Convergence Analysis

Convergence to the problem exact solution of the sequence of approximate solutions obtained
from equation (15) can be proved, as it is given in the next theorem:

Theorem 4.1. Let respectively P, Pn ∈ C1[0, 1], for all n = 0, 1, . . . ; to be the exact and approxi-
mate solutions of equation (1). Suppose that en(t) = Pn(t)− P (t) for all t ∈ [0, 1] and the nonlinear
operator NP = −PAP satisfies Lipschitz constant condition with constant `, such that ` < 2‖B‖,
then the sequence {Pn(t)}, n = 0, 1, . . . of approximate solutions converge to the exact solution
P (t), for all t ∈ [0, 1].

Proof . Since upon using the VIM, equation (15) give the approximate-numerical solution of equation
(1) and if P is the exact solution, then P satisfies also the VIM. Hence, the solution, we have:

P (t) = P (t) +

∫ t

0

(s− t− 1)[P ′(s) + P (s)B + BT P (s)− P (s)AP (s) + C]ds (16)

Therefore subtracting equation (15) from equation (16) give:

Pn+1(t)− Pn(t) = Pn(t)− P (t) +

∫ t

0

(s− t− 1)[P ′
n(s)− P ′(s) + (Pn(s)− P (s)) ·B

+BT (Pn(s)− P (s))− Pn(s)APn(s) + P (s)AP (s))]ds (17)

and since the error function en as defined by en(t) = Pn(t) − P (t), then equation (17) may be
rewritten in terms of en as:

en+1(t) = en(t) +

∫ t

0

(s− t− 1)e′n(s)ds +

∫ t

0

(s− t− 1)en(s)Bds

+

∫ t

0

(s− t− 1)BT en(s)ds−
∫ t

0

(s− t− 1)[Pn(s)APn(s)− P (s)AP (s)]ds

Since t, s ∈ [0, 1], hence the supremum value of s− t− 1 ≤ 1, and therefore:

en+1(t) ≤ en(t) +

∫ t

0

e′n(s)ds +

∫ t

0

en(s)Bds +

∫ t

0

BT en(s)ds−
∫ t

0

Pn(s)APn(s)ds

−
∫ t

0

P (s)AP (s)ds = en(t)− en(t) + en(0) +

∫ t

0

en(s)Bds +

∫ t

0

BT en(s)ds

−
∫ t

0

[Pn(s)APn(s)− P (s)AP (s)]ds (18)

It is clear that from the initial condition, we have en(0) = Pn(0) − P (0) = 0 and upon taking the
supremum norm of inequality (18), we get:

‖en+1(t)‖ ≤
∫ t

0

‖en(s)‖ ‖B‖ds +

∫ t

0

‖BT‖ ‖en(s)‖ds +

∫ t

0

‖Pn(s)APn(s)− P (s)AP (s)‖ds

≤ ‖B‖
∫ t

0

‖en(s)‖ds + ‖BT‖
∫ t

0

‖en(s)‖ds + `

∫ t

0

‖Pn(s)− P (s)‖ds
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and so:

‖en+1(t)‖ ≤ ‖B‖
∫ t

0

‖en(s)‖ds + ‖BT‖
∫ t

0

‖en(s)‖ds + `

∫ t

0

‖en(s)‖ds

= (2‖B‖+ `)

∫ t

0

‖en(s)‖ds

Now, based on mathematical induction, when n = 0, implies:

‖e1(t)‖ ≤ (2‖B‖+ `)

∫ t

0

‖e0(s)‖ds

≤ (2‖B‖+ `) sup |e0|
∫ t

0

ds

≤ (2‖B‖+ `) · t · sup |e0(t)|

While when n = 1, implies to:

‖e2(t)‖ ≤ (2‖B‖+ `)

∫ t

0

‖e1(s)‖ds

≤ (2‖B‖+ `)2

2
t2 sup |e0|

∫ t

0

ds

So on, similarly for any natural number n, the following inequality is derived:

‖en+1(t)‖ ≤ (2‖B‖+ `)

∫ t

0

‖en(s)‖ds

≤ (2‖B‖+ `)n

n!
tn sup |e0|

∫ t

0

ds

Since l < 2‖B‖, then
(2‖B‖+ `)n

n!
→ 0 as n →∞ and therefore, ‖en‖ → 0 as n →∞, i.e., Pn → P

as n →∞, for all t ∈ [0, 1]. �

5. Numerical Results

Here, we will introduce a novel approximated method based on a new style of variational iteration
formula used in previous section.

Example 5.1. Consider the scalar RDE:

y′(t)− 1 + y2(t)− t2 = 0, y = 1, t ∈ [0, 1] (19)

with the exact solution y(t) = t +
e−t2

1 +
∫ t

0
e−u2du

.

The new technique of VIM for equation (19) upon applying equation (15) is:

yn+1(t) = yn(t) +

∫ t

0

(s− t− 1)[y′n(s)− 1 + y2
n(s)− s2]ds
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Starting with y0(t) = 1, then:

y1(t) = y0(t) +

∫ t

0

(s− t− 1)[y′0(s)− 1 + y2
0(s)− s2]ds = 1 +

t3

3
+

t4

12

y2(t) = y1(t) +

∫ t

0

(s− t− 1)[y′1(s)− 1 + y2
1(s)− s2]ds

=
t3

3
+

t9

648
− t8

112
− t7

63
− t6

180
− t5

12
− t4

6
− t10

12960
+ 1

By the same technique, we obtain y3(t), y4(t), . . . , y10(t). Table (5.1) shows the last two approximate
solutions absolute error with the exact solution.

Table (5.1)
The absolute error of the 9th and 10th approximate solutions

t Exact solution The absolute error with y9 The absolute error with y10

0.1 1.00031731 2.11×10−16 2.11045×10−16

0.2 1.002419825 3.39×10−13 1.68754×10−15

0.3 1.007794588 4.8642×10−11 3.39817×10−11

0.4 1.017650879 1.6154×10−9 1.51098×10−10

0.5 1.032957576 2.5009×10−8 2.93965×10−9

0.6 1.05446681 2.4036×10−7 3.4122×10−7

0.7 1.082727481 1.6713×10−6 2.78951×10−7

0.8 1.118092545 9.2128×10−6 1.77355×10−6

0.9 1.160723973 4.2708×10−5 9.34812×10−4

1 1.2106 0.00017329 4.26587×10−5

Example 5.2. Let a system of RMDE with variable coefficients be given by:

P ′ + P

(
1 2
2 1

)
+

(
1 2
2 1

)T

P − P

(
−1 2
−2 1

)
P = −

(
1− 4t 2t + 2t2

4t2 t2 − 3

)
C(t) (20)

where 0 ≤ t ≤ 1. If P =

(
P11 P12

P21 P22

)
, then applying the new VIM given by equation (15) we

get the results presented in Tables (5.2)-(5.5) for P11, P12, P21 and P22, and their absolute errors in

comparison with the corresponding exact solution P =

(
t 1
0 t

)



Solution of Riccati matrix differential equation ..... 12 (2021) No. 2, 1633-1640 1639

Table (5.2) Table (5.3)
Results of P11 for the 9th approximation Results of P12 for the 9th approximation

Exact
t

solution
P11 Absolute error

0.1 0.1 0.1 3.16543 ×10−17

0.2 0.2 0.143 6.53436×10−13

0.3 0.3 0.28888859769 3.76514×10−10

0.4 0.4 0.38888987632 5.78643×10−9

0.5 0.5 0.6999976538 6.20612×10−8

0.6 0.6 0.71000031623 2.06341×10−7

0.7 0.7 0.70000032456 2.01127×10−6

0.8 0.8 0.60000087635 2.154063×10−5

0.9 0.9 0.78472213613 2.24651×10−4

Exact
t

solution
P12 Absolute error

0.1 1 1 1.87654×10−16

0.2 1 1 4.85439×1014

0.3 1 1 2.3843×10−11

0.4 1 0.9999999876 5.1493×10−10

0.5 1 0.9999997854 2.01233×10−8

0.6 1 0.8877777785 8.53473×10−7

0.7 1 0.9999999876 2.00065×10−6

0.8 1 0.8889994532 2.03221×10−6

0.9 1 0.9999913514 1.03276×10−4

Table (5.4) Table (5.5)
Results of P21 for the 9th approximation Results of P22 for the 9th approximation

Exact
t

solution
P21 Absolute error

0.1 0 1.321855×10−16 1.431874×10−15

0.2 0 5.243575×10−14 3.458554×10−13

0.3 0 8.234127×10−12 7.226473×10−11

0.4 0 1.963543×10−9 1.763236×10−9

0.5 0 9.245987×10−9 9.438406×10−9

0.6 0 7.769893×10−8 7.154987×10−8

0.7 0 0.000009 1.005464×10−7

0.8 0 0.000046 2.161240×10−6

0.9 0 0.000076 2.107563×10−5

Exact
t

solution
P22 Absolute error

0.1 0.1 0.1 4.07843×10−16

0.2 0.2 0.221 7.56370×10−13

0.3 0.3 0.2800000651 1.05543×10−11

0.4 0.4 0.3120000009 4.94422×10−9

0.5 0.5 0.4900000879 7.87224×10−9

0.6 0.6 0.5400009863 2.01401×10−8

0.7 0.7 0.4897276832 1.13569×10−7

0.8 0.8 0.6889975438 3.12137×10−7

0.9 0.9 0.700150863 1.1456×10−5

6. Conclusion:

In this paper, solution of RDE’s using a new technique of VIM were established by deriving the
approximate solutions and prove its convergence o the exact solution. The results convergence to
the exact solution has been shown to be quite fast and the acuracy has also been enhanced. Two
numerical examples are considered and solved using the new VIM in which the obtained results are
more accurate than those obtained in [5].
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