Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 1653-1658 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/IJNAA.2021.5294



# Right $\Gamma$ -*n*-derivations in prime $\Gamma$ -near-rings

Hiba A. Ahmed <sup>a,\*</sup>

<sup>a</sup> University of Baghdad, Department of mathematics College of science , Iraq.

(Communicated by Madjid Eshaghi Gordji)

### Abstract

The main purpose of this paper is to study and investigate some results of right  $\Gamma$ -*n*-derivation on prime  $\Gamma$ -near-ring *G* which force *G* to be a commutative ring.

Keywords: Prime  $\Gamma$  -near-ring,  $\Gamma$ -n- derivation

## 1. Introduction

Throughout this paper, a  $\Gamma$ - near ring is a triple  $(G, +, \Gamma)$ , where (i) (G, +) is a (not necessarily abelian) group; (ii)  $\Gamma$  is a non-empty set of binary operations on G such that for each  $\gamma \in \Gamma$ ,  $(G, +, \gamma)$ is a left near-ring (iii)  $s\gamma(r\mu c) = (s\gamma r)\mu c$ , for all  $s, r, c \in G$  and  $\gamma, \mu \in \Gamma$  [5, 7, 8]. And G will denote a zero-symmetric left  $\Gamma$ - near ring with multiplicative center Z(G). For a  $\Gamma$ -near-ring G, the set  $G_0 = \{s \in G : 0\rho s = 0, \forall \rho \in \Gamma\}$  is called zero symmetric part of G. If  $G = G_0$ , then G is called zero symmetric [8, 9]. A  $\Gamma$ -near-ring G is said to be prime  $\Gamma$ -near-ring if  $s\Gamma G\Gamma r = 0$  implies s = 0 or r = 0, for every  $s, r \in G$  and it said to be semiprime if  $s\Gamma G\Gamma s = 0$  implies s = 0 for every  $s \in G$ [7, 8]. The other commutators are;  $[s, r]_{\rho} = s\rho r - r\rho s$  and (s, r) = s + r - s - r denote the additive-group commutator [1, 9].  $\Gamma$ -near-ring G is called commutative if (G, +) is abelian [2, 3].

An additive mapping  $h: G \times G \times \cdots \times G \longrightarrow G$  is said to be  $\Gamma$ -*n*-derivation if the relations

$$h(x_1\gamma x'_1, x_2, \dots, x_n) = h(x_1, x_2, \dots, x_n)\gamma x'_1 + x_1\gamma h(x'_1, x_2, \dots, x_n)$$
  

$$h(x_1, x_2\gamma x'_2, \dots, x_n) = h(x_1, x_2, \dots, x_n)\gamma x'_2 + x_2\gamma h(x_1, x'_2, \dots, x_n)$$
  

$$\vdots$$
  

$$h(x_1, x_2, \dots, x_n\gamma x'_n) = h(x_1, x_2, \dots, x_n)\gamma x'_n + x_n\gamma h(x_1, x_2, \dots, x_{n'})$$

Hold for all  $x_1, x'_1, x_2, x'_2, \dots, x_n, x'_n \in G$ .

\*Corresponding Author: Hiba A. Ahmed

*Email address:* hiba.ahmed@sc.uobaghdad.edu.iq (Hiba A. Ahmed  $^{a,*}$ )

Received: March 2021 Accepted: June 2021

An *n*-additive mapping  $h : \underbrace{G \times G \times \cdots \times G}_{n-times} \longrightarrow G$  is said to be right  $\Gamma$ -*n*-derivation if the

relations

$$h(x_1\gamma x'_1, x_2, \dots, x_n) = h(x_1, x_2, \dots, x_n)\gamma x'_1 + h(x'_1, x_2, \dots, x_n)\gamma x_1$$
  

$$h(x_1, x_2\gamma x'_2, \dots, x_n) = h(x_1, x_2, \dots, x_n)\gamma x'_2 + h(x_1, x'_2, \dots, x_n)\gamma x_2$$
  

$$\vdots$$
  

$$h(x_1, x_2, \dots, x_n\gamma x'_n) = h(x_1, x_2, \dots, x_n)\gamma x'_n + h(x_1, x_2, \dots, x_{n'})\gamma x_n$$

Hold for all  $x_1, x'_1, x_2, x'_2, \ldots, x_n, x'_n \in G$  and  $\gamma \in \Gamma$ 

In this work, we defined the concept  $\Gamma$ -*n*-derivation and right  $\Gamma$ -*n*-derivation. Also we investigate the commutativity of addition and multiplaction of  $\Gamma$ -near-rings satisfying certainidentities involving right  $\Gamma$ -*n*-derivation. And the purpose of this paper is to study and generalize some results of [1, 2, 3, 4, 5] on commutativity of prime  $\Gamma$ -near-ring on which admits suitably constrained right  $\Gamma$ -*n*-derivations.

## 2. Preliminary results

We begin with the following lemmas which are essential for developing the proofs of our main results

**Lemma 2.1.**[5, 8]. Let G be a prime  $\Gamma$ - near ring. there exists a element u of Z(G) such that  $u + u \in Z(G)$ , then (G, +) is abelian.

**Lemma 2.2.** Let G be a  $\Gamma$ -near-ring admitting right  $\Gamma$ - *n*-derivation h, then for every  $s_1, s'_1, \ldots, s_n, r \in G$  and  $\gamma, \beta \in \Gamma$ ,

 $\{h(s_1, s_2, \dots, s_n)\gamma s_1' + h(s_1', s_2, \dots, s_n)\gamma s_1\}\beta r = h(s_1, s_2, \dots, s_n)\gamma s_1'\beta r + h(s_1', s_2, \dots, s_n)\gamma s_1\beta r$ **Proof**. Assume that

$$h((s_1\gamma s_1')\beta r, s_2, \dots, s_n) = h(s_1\gamma s_1', s_2, \dots, s_n)\beta r + h(r, s_2, \dots, s_n)\beta(s_1\gamma s_1')$$
  
=  $(h(s_1, s_2, \dots, s_n)\gamma s_1' + h(s_1', s_2, \dots, s_n)\gamma s_1)\beta r + h(r, s_2, \dots, s_n)\beta(s_1\gamma s_1').$ 

Also

$$h(s_{1}\gamma(s_{1}'\beta r), s_{2}, \dots, s_{n}) = h(s_{1}, s_{2}, \dots, s_{n})\gamma s_{1}'\beta r + h(s_{1}'\beta r, s_{2}, \dots, s_{n})\gamma s_{1}$$
  
=  $h(s_{1}, s_{2}, \dots, s_{n})\gamma s_{1}'\beta r + (h(s_{1}', s_{2}, \dots, s_{n})\beta r + h(r, s_{2}, \dots, s_{n})\beta s_{1}')\gamma s_{1}$   
=  $h(s_{1}, s_{2}, \dots, s_{n})\gamma s_{1}'\beta r + h(s_{1}', s_{2}, \dots, s_{n})\beta r\gamma s_{1} + h(r, s_{2}, \dots, s_{n})\beta s_{1}'\gamma s_{1}$ 

Combining the above two relations, we get

$$(h(s_1, s_2, \dots, s_n)\gamma s_1' + h(s_1', s_2, \dots, s_n)\gamma s_1)\beta r = h(s_1, s_2, \dots, s_n)\gamma s_1'\beta r + h(s_1', s_2, \dots, s_n)\gamma s_1\beta r$$

**Lemma 2.3.**2.3 Let G be a prime  $\Gamma$ - near-ring admitting a nonzero right  $\Gamma$ -n-derivation h of G and  $a \in G$ . If  $h(G, G, ..., G)\gamma a = \{0\}$ , then a = 0.

**Proof**. Suppose that  $h(x_1, x_2, \ldots, x_n)\gamma a = 0$ , for all  $x_1, x_2, \ldots, x_n \in G$  and  $\gamma \in \Gamma$ .

Putting  $x_1\beta s$  instead of  $x_1$  where  $s \in G$  and  $\beta \in \Gamma$  in pervious equation we get  $h(x_1\beta s, x_2, \ldots, x_n)\gamma a = 0$ . So we get  $h(s, x_2, \ldots, x_n)\Gamma G\Gamma a = \{0\}$ . Since  $h \neq 0$  and G is a prime  $\Gamma$ -near-ring, we conclude that a = 0.  $\Box$ 

**Lemma 2.4.** Let G be a prime  $\Gamma$ -near-ring and let h be a nonzero right  $\Gamma$ -derivation of G and  $a \in G$ . If  $h(G)\gamma a = \{0\}$ , then a = 0.

#### 3. Main results

**Theorem 3.1.** Let G be a prime  $\Gamma$ -near-ring and h be a nonzero right  $\Gamma$ -n-derivation of G. If  $h(G, G, \ldots, G) \subseteq Z$ , then G is a commutative ring.

**Proof**. Since  $h(G, G, \ldots, G) \subseteq Z$  and h is a nonzero right  $\Gamma$ -n-derivation, there exist nonzero elements  $x_1, x_2, ..., x_n \in G$ , such that  $h(x_1, x_2, ..., x_n) \in Z \setminus \{0\}$ . We have  $h(x_1 + x_1, x_2, ..., x_n) =$  $h(x_1, x_2, \ldots, x_n) + h(x_1, x_2, \ldots, x_n) \in \mathbb{Z}$ . By Lemma 2.1 we obtain that (G, +) is abelian.

By hypothesis we get  $h(y_1, y_2, \ldots, y_n)\gamma y = y\gamma h(y_1, y_2, \ldots, y_n)$ , for all  $y, y_1, y_2, \ldots, y_n \in G$  and  $\gamma \in \Gamma$ . Now replacing  $y_1$  by  $y_1\beta s$  where  $s \in G$  in previous equation, we get

$$(h(y_1, y_2, \dots, y_n)\beta s + h(s, y_2, \dots, y_n)\beta y_1)\gamma y = y\gamma(h(y_1, y_2, \dots, y_n)\beta s + h(s, y_2, \dots, y_n)\beta y_1)$$
(1)

By definition of h we get  $h(y_1\beta y'_1, y_2, ..., y_n) = h(y_1, y_2, ..., y_n)\beta y'_1 + h(y'_1, y_2, ..., y_n)\beta y_1$ (2).Thus  $h(y'_1\beta y_1, y_2, \dots, y_n) = h(y'_1, y_2, \dots, y_n)\beta y_1 + h(y_1, y_2, \dots, y_n)\beta y'_1$ (3).Since (G, +) is abelian, from equation (2) and (3) we conclude that

$$h(y_1\beta y'_1, y_2, \dots, y_n) = h(y'_1\beta y_1, y_2, \dots, y_n)$$

for all  $y_1, y'_1, y_2, \ldots, y_n \in G$  and  $\beta \in \Gamma$ .

So we get  $h([y_1, y'_1]_{\beta}, y_2, \dots, y_n) = 0$  for all  $y_1, y'_1, y_2, \dots, y_n \in G$  and  $\beta \in \Gamma$ . Replacing  $y'_1$  by  $y_1\gamma y'_1$  in previous equation and using it again, we get  $h(y_1, y_2, \dots, y_n)\Gamma G\Gamma[y_1, y'_1]_{\beta} = 0$  $\{0\}$  for all  $y_1, y_1, y_2, \ldots, y_n \in G$ .

Primeness of G implies that for each  $y_1 \in G$ . either  $h(y_1, y_2, \ldots, y_n) = 0$  for all  $y_2, \ldots, y_n \in G$  or  $y_1 \in Z$ . If  $h(y_1, y_2, ..., y_n) = 0$ , then equation (1) takes the form  $h(y'_1, y_2, ..., y_n) \Gamma G \Gamma[y, y_1] \beta = \{0\}$ . Since  $h \neq 0$ , primeness of G implies that  $y_1 \in Z$ . Hence we find that G = Z, we conclude that G is a commutative ring.  $\Box$ 

**Corollary 3.2.** Let G be a prime  $\Gamma$ - near-ring and h be a nonzero right  $\Gamma$ -derivation of G. If  $h(G) \subseteq Z$ , then G is a commutative ring.

**Theorem 3.3.** Let G be a prime  $\Gamma$ -near-ring then G admit no nonzero right  $\Gamma$ -n-derivation h such that  $x_1 \gamma h(y_1, y_2, \dots, y_n) = h(x_1, x_2, \dots, x_n) \gamma y_1$ , for all  $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in G$  and  $\gamma \in \Gamma$ , then h = 0.

**Proof**. Assume that there is a nonzero right  $\Gamma$ -n-derivation h of G such that  $x_1\gamma h(y_1, y_2, \ldots, y_n) =$  $h(x_1, x_2, \ldots, x_n)\gamma y_1$ , for all  $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in G$  and  $\gamma \in \Gamma$ (4).

Substituting  $y_1\beta z_1$  for  $y_1$ , where  $z_1 \in G$  in equation (4), we get

$$x_1\gamma h(y_1\beta z_1, y_2, \dots, y_n) = h(x_1, x_2, \dots, x_n)\gamma y_1\beta z_1.$$

Thus,  $x_1\gamma h(y_1, y_2, \dots, y_n)\beta z_1 + x_1\gamma h(z_1, y_2, \dots, y_n)\beta y_1 = h(x_1, x_2, \dots, x_n)\gamma y_1\beta z_1$ .

Using equation (4) in previous equation we get  $x_1\gamma h(z_1, y_2, \ldots, y_n)\beta y_1 = 0$ .

By primeness of G implies that  $h(z_1, y_2, \ldots, y_n)\beta y_1 = 0$ . Now replacing  $y_1$  by  $y_1\gamma h(z_1, y_2, \ldots, y_n)$ in previous equation we get  $h(z_1, y_2, \ldots, y_n)\Gamma G\Gamma h(z_1, y_2, \ldots, y_n) = \{0\}$ . Since G is prime  $\Gamma$ -near-ring implies that h = 0.  $\Box$ 

**Corollary 3.4.** Let G be a prime  $\Gamma$ -near-ring and h be a right  $\Gamma$ -derivation such that  $x\gamma h(y) =$  $h(x)\gamma y$  for all  $x, y \in G$  and  $\gamma \in \Gamma$ , then h = 0.

**Theorem 3.5.** Let G be a prime  $\Gamma$ - near-ring admitting a nonzero right  $\Gamma$ -n-derivation h on G. If  $h([x, y]_{\gamma}, x_2, \dots, x_n) = 0$  for all  $x, y, x_2, \dots, x_n \in G$  and  $\gamma \in \Gamma$  then G is a commutative ring.

**Proof**. By hypothesis, we have  $h([x, y]_{\gamma}, x_2, \ldots, x_n) = 0$  for all  $x, y, x_2, \ldots, x_n \in G$  and  $\gamma \in G$  $\Gamma$ . Replace y by  $x\beta y$  in previous equation and using it again we get  $h(x, x_2, \ldots, x_n)\beta[x, y]_{\gamma} =$ 0. Replacing y by  $y\mu z$  in pervious equation, we get  $h(x, x_2, \ldots, x_n)\mu[x, z]_{\gamma} = 0$  Hence we get  $h(x, x_2, \ldots, x_n)\Gamma G\Gamma[x, z]_{\gamma} = \{0\}$ . For each fixed  $x \in G$ , primeness of G yields either  $x \in Z$  or  $h(x, x_2, \ldots, x_n) = 0$  for all  $x_2, \ldots, x_n G$  (5).

- If first case holds then
- $h(x\gamma t, x_2, \ldots, x_n) = h(t\gamma x, x_2, \ldots, x_n)$ , for all  $t, x_2, \ldots, x_n \in G$  and  $\gamma \in \Gamma$ .
- $h(x, x_2, \dots, x_n)\gamma t + h(t, x_2, \dots, x_n)\gamma x = h(t, x_2, \dots, x_n)\gamma x + h(x, x_2, \dots, x_n)\gamma t.$

Its mean  $h(x, x_2, ..., x_n) \in Z$ . And second case implies  $h(x, x_2, ..., x_n) = 0$  that is  $h(x, x_2, ..., x_n) = 0 \in Z$ . Including both the cases we get  $h(x, x_2, ..., x_n) \in Z$  for all  $x, x_2, ..., x_n \in G$ . That is  $h(G, G, ..., G) \subseteq Z$ , Hence, by Theorem 3.1 then G is a commutative ring.  $\Box$ 

**Corollary 3.6.** Let G be a prime  $\Gamma$ -near-ring admitting a right  $\Gamma$ -derivations h, If  $h([x, y]_{\Gamma}) = 0$  for all  $x, y \in G$ , then G is a commutative ring.

**Theorem 3.7.** Let G be a prime  $\Gamma$ -near-ring and h be a no nonzero right  $\Gamma$ -n-derivation on G such that  $h((x \circ y)_{\gamma}, x_2, \ldots, x_n) = 0$  for all  $x, y, x_2, \ldots, x_n \in G$  and  $\gamma \in \Gamma$  then G is commutative ring. **Proof**. Assume that  $h((x \circ y)_{\gamma}, x_2, \ldots, x_n) = 0$  for all  $x, y, x_2, \ldots, x_n \in G$  and  $\gamma \in \Gamma$  (6).

Replace y by  $x\beta y$  in equation (6) we get  $h((x \circ (x\gamma y))_{\gamma}, x_2, \ldots, x_n) = 0$  Which implies that  $h(x, x_2, \ldots, x_n)\beta(x \circ y) \gamma + h((x \circ y)_{\gamma}, x_2, \ldots, x_n)\beta x = 0.$ 

Using equation (6) in previous equation we get  $h(x, x_2, ..., x_n)\beta(x \circ y)_{\gamma} = 0$ .

$$h(x, x_2, \dots, x_n)\beta y\gamma x = -h(x, x_2, \dots, x_n)\beta x\gamma y \qquad (7)$$

Replacing y by  $y\mu z$ , where  $z \in G$ , we get  $h(x, x_2, \ldots, x_n)\beta y\mu z\gamma x = -h(x, x_2, \ldots, x_n)\beta x\gamma y\mu z$ .

Now substituting the values from equation (7) in the preceding relation we get

$$h(x, x_2, \dots, x_n)\beta y\mu z\gamma x = -h(x, x_2, \dots, x_n)\beta y\gamma yx\mu z$$

Hence we get  $h(x, x_2, ..., x_n)\Gamma G\Gamma[x, z]_{\gamma} = \{0\}$ . Since G is a prime  $\Gamma$ -near-ring we get either  $x \in Z$  or  $h(x, x_2, ..., x_n) = 0$  for all  $x_2, ..., x_n \in G$ , for each fixed  $x \in G$ .

Which is identical with the equation (5) in Theorem 3.5 Now arguing in the same way in the Theorem 3.5. We conclude that G is a commutative ring.  $\Box$ 

**Corollary 3.8.** Let G be a prime  $\Gamma$ -near-ring and let h be a no nonzero right  $\Gamma$ -derivation on G such that  $h(x \circ y)_{\gamma} = 0$  for all  $x, y \in G$  and  $\gamma \in \Gamma$  then G is a commutative ring.

**Theorem 3.9.** Let G be a prime 
$$\Gamma$$
-near-ring admitting a right  $\Gamma$ -n-derivation h of G. If

 $[h(x, x_2, \ldots, x_n), y]_{\gamma} \in Z$  for all  $x, y, x_2, \ldots, x_n G$  and  $\gamma \in \Gamma$  and  $c\gamma x\beta y = c\beta x\gamma y$  for all  $c, x, y \in G$ and  $\gamma, \beta \in \Gamma$ , then G is a commutative ring.

**Proof**. Assume that  $[h(x, x_2, ..., x_n), y]_{\gamma} \in Z$  for all  $x, y, x_2, ..., x_n \in G$  and  $\gamma \in \Gamma$  (8). Therefore,  $[[h(x, x_2, ..., x_n), y]_{\gamma}, t]_{\beta} = 0$  for all  $x, y, t, x_2, ..., x_n \in G$  and  $\gamma, \beta \in \Gamma$  (9). Replacing y by  $h(x, x_2, ..., x_n) \mu y$  in equation (9), we get

by  $m(x, x_2, \dots, x_n)\mu g$  in equation (5), we get

 $[h(x, x_2, \dots, x_n)\mu[h(x, x_2, \dots, x_n), y]_{\gamma}, t]_{\beta} = 0 \quad (10)$ 

In view of equation (8), equation (10) assures that

$$[h(x, x_2, \dots, x_n), y]\gamma \Gamma G \Gamma [h(x, x_2, \dots, x_n), t]_{\beta} = \{0\}$$

Primeness of G implies that  $[h(x, x_2, \ldots, x_n), y]_{\gamma} = 0$  for all  $x, y, x_2, \ldots, x_n \in G$ .

Hence  $h(G, G, \ldots, G) \subseteq Z$  and application of Theorem 3.1 assures that G is a commutative ring.  $\Box$ 

**Corollary 3.10.** Let G be a prime  $\Gamma$ -near-ring and let h be a right  $\Gamma$ -n-derivation of G. If  $[h(x), y]_{\gamma} \in Z$  for all  $x, y \in G$ , then G is a commutative ring.

**Theorem 3.11.** Let G be a prime  $\Gamma$ -near-ring,  $h_1$  and  $h_2$  be any two nonzero right  $\Gamma$ -n-derivations. If  $[h_1(G, G, \ldots, G), h_2(G, G, \ldots, G)]_{\gamma} = \{0\}$  then (G, +) is abelian.

**Proof**. Assume that  $[h_1(G, G, ..., G), h_2(G, G, ..., G)]_{\gamma} = \{0\}.$ 

If both z and z + z commute element wise with  $h_2(G, G, \ldots, G)$ , then

$$z\gamma h_2(x_1, x_2, \dots, x_n) = h_2(x_1, x_2, \dots, x_n)\gamma z$$
 (11)

And  $(z+z)\gamma h_2(x_1, x_2, \dots, x_n) = h_2(x_1, x_2, \dots, x_n)\gamma(z+z)$  (12). Substituting  $x_1 + x'_1$  instead of  $x_1$  in equation (12), we get

$$(z + z) \gamma h_2(x_1 + x'_1, x_2, \dots, x_n) = h_2(x_1 + x'_1, x_2, \dots, x_n \gamma(z + z))$$

From equation (11) and (12) the previous equation can be reduced to

$$z\gamma h_2(x_1 + x'_1 - x_1 - x'_1, x_2, \dots, x_n) = 0.$$
 (i.e.)  $z\gamma h_2((x_1, x'_1), x_2, \dots, x_n) = 0$ 

Putting  $z = h_1(y_1, y_2, ..., y_n)$ , we get  $h_1(y_1, y_2, ..., y_n)\gamma h_2((x_1, x'_1), x_2, ..., x_n) = 0$ . By Lemma 2.3 we conclude that  $h_2((x_1, x'_1), x_2, ..., x_n) = 0$  (13). Since we know that for each  $w \in G$ ,

$$w\gamma(x_1, x_1') = w\gamma(x_1 + x_1' - x_1 - x_1') = w\gamma x_1 + w\gamma x_1' - w\gamma x_1 - w\gamma x_1' = (w\gamma x_1, w\gamma x_1')$$

Which is again an additive commutator. Putting  $w\gamma(x_1, x'_1)$  instead of  $(x_1, x'_1)$  in equation (13) we get  $h_2(w\gamma(x_1, x'_1), x_2, \ldots, x_n) = 0$ , for all  $w, x_1, x'_1, x_2, \ldots, x_n \in G$  and  $\gamma \in \Gamma$ . i.e.;

$$h_2(w, x_2, \dots, x_n)\gamma(x_1, x_1') + h_2((x_1, x_1'), x_2, \dots, x_n)\gamma w = 0$$

Using equation (13) in previous equation yields  $h_2(w, x_2, \ldots, x_n)\gamma(x_1, x'_1) = 0$ .

Using Lemma 2.3 we conclude that  $(x_1, x'_1) = 0$ . Hence (G, +) is abelain.  $\Box$ 

**Corollary 3.12.** Let G be a prime  $\Gamma$ -near-ring and  $h_1, h_2$  be any two nonzero right  $\Gamma$ -derivations. If  $[h_1(G), h_2(G)]_{\gamma} = \{0\}$  then (G, +) is abelian.

**Theorem 3.13.** Let G be a prime  $\Gamma$ -near-ring and  $h_1$  and  $h_2$  be any two nonzero right  $\Gamma$ -nderivations. If  $h_1(x_1, x_2, \ldots, x_n)\gamma h_2(y_1, y_2, \ldots, y_n) + h_2(x_1, x_2, \ldots, x_n)\gamma h_1(y_1, y_2, \ldots, y_n) = 0$  for all  $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in G$  and  $\gamma \in \Gamma$ , then (G, +) is abelian.

**Proof**. By our hypothesis we have

$$h_1(x_1, x_2, \dots, x_n)\gamma h_2(y_1, y_2, \dots, y_n) + h_2(x_1, x_2, \dots, x_n)\gamma h_1(y_1, y_2, \dots, y_n) = 0 \quad (14)$$

Substituting  $y_1 + y'_1$  instead of  $y_1$  in equation (14) we get

$$h_1(x_1, x_2, \dots, x_n)\gamma h_2(y_1 + y'_1, y_2, \dots, y_n) + h_2(x_1, x_2, \dots, x_n)\gamma h_1(y_1 + y'_1, y_2, \dots, y_n) = 0, \text{ for all } x_1, x_2, \dots, x_n, y_1, y'_1, y_2, \dots, y_n \in G \text{ and } \gamma \in \Gamma$$

.Therefore

$$h_1(x_1, x_2, \dots, x_n)\gamma h_2(y_1, y_2, \dots, y_n) + h_1(x_1, x_2, \dots, x_n)\gamma h_2(y'_1, y_2, \dots, y_n) + h_2(x_1, x_2, \dots, x_n)\gamma h_1(y_1, y_2, \dots, y_n) + h_2(x_1, x_2, \dots, x_n)\gamma h_1(y'_1, y_2, \dots, y_n) = 0$$

Using equation (14) again in preceding equation, we get

$$h_1(x_1, x_2, \dots, x_n)\gamma h_2(y_1, y_2, \dots, y_n) + h_1(x_1, x_2, \dots, x_n)\gamma h_2(y_1, y_2, \dots, y_n) + h_1(x_1, x_2, \dots, x_n)\gamma h_2(-y_1, y_2, \dots, y_n) + h_1(x_1, x_2, \dots, x_n)\gamma h_2(-y_1', y_2, \dots, y_n) = 0$$

Which means that  $h_1(x_1, x_2, ..., x_n)\gamma h_2((y_1, y'_1), y_2, ..., y_n) = 0.$ 

By Lemma 2.3 we obtain  $h_2((y_1, y'_1), y_2, ..., y_n) = 0$ , for all  $y_1, y'_1, y_2, ..., y_n \in G$  and  $\gamma \in \Gamma$ . Now putting  $w\gamma(y_1, y'_1)$  instead of  $(y_1, y'_1)$ , where  $w \in G$  in previous equation and using it again, we get  $h_2(w, y_2, ..., y_n)\gamma(y_1, y'_1) = 0$ , for all  $w, y_1, y'_1, y_2, ..., y_n \in G$  and  $\gamma \in \Gamma$ . Using Lemma 2.3 as used in the Theorem 3.11 we conclude that (G, +) is abelain.  $\Box$ 

**Corollary 3.14.** Let G be a prime  $\Gamma$ -near-ring and  $h_1, h_2$  be any two nonzero right  $\Gamma$ -derivations. If  $h_1(x)\gamma h_2(y) + h_2(x)\gamma h_1(y) = 0$ , for all  $x, y \in G$ , then (G, +) is abelian.

#### References

- [1] M. Ashraf. A. Ali and S. Ali,  $(\sigma, \tau)$ -derivations on prime near rings, Arch. Math. (Brno), 40(3) (2004)281–286.
- [2] M. Asraf. and M.A. Siddeeque, On permuting n-derivations in near-rings, Commun.Kor. Math. Soc.28 (4) (2013) 697-707.
- [3] M. Asraf, M.A. Siddeeque and N. Parveen, On semigroup ideals and n-derivations in near-rings, Science Direct Journal of Taibah University for Science, 9 (2015) 126-132.
- [4] M. Asraf and M.A. Siddeeque, On generalized n-derivations in near-rings, Palestine journal of mathematics, 3 (2004) 468-480.
- [5] M. Asci.  $\Gamma (\sigma, \tau)$ -derivation on Gamma Near Ring, International Math Forum, 2 (3) (2007) 97-102.
- [6] H. E. Bell, On derivations in near-rings. II. In Near rings, near fields and K-loops (Hamburg, 1995), Kluwer Acad. Publ., volume 426 of Math. (1997) 191–197.
- [7] Y. U. Cho. and Y. B. Jun., Gamma-derivations in prime and semiprime gamma-near rings, Indian J. Pure Appl. Math., 33(10) (2002) 1489–1494.
- [8] L. Madhuchelvi, On Generalized Derivations in Γ Near Ring Int Jr. of Mathematical sciences and Applications, ISSN N0, 6 (1) (2016) 2230-9888.
- [9] R. Ravi, V.K. Bhat and k. Neetu , Commutativity of prime  $\Gamma$ -Near Rings with  $\Gamma$ - $(\sigma, \tau)$ -derivation, Math , 25 (2009) 165-173.