TWO COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS

A. RAZANI ${ }^{1}$ AND M. YAZDI ${ }^{2 *}$

Abstract. Recently, Zhang and Song [Q. Zhang, Y. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett. 22(2009) 75-78] proved a common fixed point theorem for two maps satisfying generalized φ-weak contractions. In this paper, we prove a common fixed point theorem for a family of compatible maps. In fact, a new generalization of Zhang and Song's theorem is given.

1. Introduction and preliminaries

Let X be a metric space. A map $T: X \rightarrow X$ is a contraction if there exists a constant $k \in(0,1)$ such that $d(T x, T y) \leq k d(x, y)$, for all $x, y \in X$.
A map $T: X \rightarrow X$ is a φ-weak contraction if there exists a function $\varphi:[0,+\infty) \rightarrow$ $[0,+\infty)$ such that φ is positive on $(0,+\infty), \varphi(0)=0$ and

$$
\begin{equation*}
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) \tag{1.1}
\end{equation*}
$$

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. Actually in [1], the authors defined such mappings for single-valued maps on Hilbert spaces and proved the existence of fixed points. Rhoades [20] showed that most results of [1] are still true for any Banach spaces. Also, Rhoades [20] proved an interesting fixed point theorem which is one of generalizations of the Banach contraction principle because it contains contractions as special cases $(\varphi(t)=(1-k) t)$.

Theorem 1.1. [20] Let (X, d) be a complete metric space and A be a φ-weak contraction on X. If φ is continuous and nondecreasing function, then A has a unique fixed point.

In fact, the weak contractions are also closely related to maps of Boyd and Wong's type [4] and Reich's type [19]. Namely, if φ is a lower semi-continuous function from the right, then $\psi(t)=t-\varphi(t)$ is an upper semi-continuous function from the right and moreover, (1.1) turns into $d(T x, T y) \leq \psi(d(x, y))$. Therefore, the φ-weak contraction with a function φ is of Boyd and Wong [4]. if we define $K(t)=\frac{\varphi(t)}{t}$ for

[^0]$t>0$ and $K(0)=0$, then (1.1) is replaced by $d(T x, T y) \leq K(d(x, y)) d(x, y)$. Thus the φ-weak contraction becomes a Reich type one.

During the last few decades, a number of hybrid contractive mapping results have been obtained by many mathematical researchers. For example, Song [25, 26], Al-Thagafi and Shahzad [2], Shahzad [21] and Hussain and Junck [11] obtained the common fixed pint theorems of f-contraction $(T(d(T x, T y) \leq k d(f x, f y)))$, generalized f-contraction

$$
\left(T\left(d(T x, T y) \leq k \max \left\{d(f x, f y), d(T x, f x), d(T y, f y), \frac{1}{2}[d(f x, T y)+d(T x, f y)]\right\}\right)\right)
$$

and generalized (f, g)-contraction

$$
\left(T\left(d(T x, T y) \leq k \max \left\{d(f x, g y), d(T x, f x), d(T y, g y), \frac{1}{2}[d(f x, T y)+d(T x, g y)]\right\}\right)\right)
$$

respectively.
Song [24] extended the above results to f-weak contraction $(d(T x, T y) \leq d(f x, f y)-$ $\varphi(d(f x, f y)))$.

Recently, Zhang and Song [30] proved the following theorem.
Theorem 1.2. [30] Let (X, d) be a complete metric space and $T, S: X \rightarrow X$ two mappings such that for all $x, y \in X$,

$$
d(T x, S y) \leq M(x, y)-\varphi(M(x, y))
$$

where $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is a lower semi-continuous function with $\varphi(t)>0$ for $t>0, \varphi(0)=0$ and

$$
M(x, y)=\max \left\{d(x, y), d(T x, x), d(S y, y), \frac{1}{2}[d(y, T x)+d(x, S y)]\right\}
$$

Then, there exists a unique point $u \in X$ such that $T u=S u=u$.
The object of this paper is to prove a common fixed point theorem for a family of compatible maps in a metric space.

2. Main result

In this section, we shall prove a common fixed point theorem for any even number of compatible maps in a complete metric space. In fact, it is a generalization of Zhang and Song's common fixed point theorem (Theorem 1.2).

Let (X, d) be a metric space and T a self-mapping on X. In [7], Ćirić introduced and investigated a class of self-mappings on X satisfying the following condition:

$$
\begin{equation*}
d(T x, T y) \leq k \max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T y)+d(y, T x)]\right\} \tag{c}
\end{equation*}
$$

where $0<k<1$. In [8] Ćirić proved the following common fixed point theorem.
Theorem 2.1. Let (X, d) be a complete metric space and let $\left\{T_{\alpha}\right\}_{\alpha \in J}$ be a family of self-mappings on X. If there exists a fixed $\beta \in J$ such that for each $\alpha \in J$ and all $x, y \in X$

$$
d\left(T_{\alpha} x, T_{\beta} y\right) \leq \lambda \max \left\{d(x, y), d\left(x, T_{\alpha} x\right), d\left(y, T_{\beta} y\right), \frac{1}{2}\left[d\left(x, T_{\beta} y\right)+d\left(y, T_{\alpha} x\right)\right]\right\}
$$

where $\lambda=\lambda(\alpha) \in(0,1)$, then all T_{α} have a unique common fixed point in X.

The class of mappings satisfying the contractive definition of type of (c), as well as its generalization, has proved useful in fixed and common fixed point theory (see [3, 18, 23]).

Definition 2.2. [13] Self-maps A and S of a metric space (X, d) are said to be compatible if $d\left(A S p_{n}, S A p_{n}\right) \rightarrow 0$ whenever $\left\{p_{n}\right\}$ is a sequence in X such that $A p_{n}, S p_{n} \rightarrow u$, for some $u \in X$, as $n \rightarrow \infty$.

Definition 2.3. [15] Self-maps A and S of a metric space (X, d) are said to be weakly compatible if they commute at their coincidence points; i.e. if $A p=S p$ for some $p \in X$, then $A S p=S A p$.

This concept is most general among all the commutativity concepts in this field, as every pair of weakly commuting self-maps is compatible and each pair of compatible self-maps is weakly compatible, but the reverse is not true always. Many authors have proved common fixed point theorems for a variety of commuting self-mappings on usual metric, as well as on different kinds of generalized metric spaces([3, 5, 6, 8],[9]-[17], [22, 23],[27]-[29]).

Theorem 2.4. [22] Let A, B, S, T, L and M be self-maps of a complete metric space (X, d), satisfying the conditions:
(1) $L(X) \subseteq S T(X), M(X) \subseteq A B(X)$;
(2) $A B=B A, S T=T S, L B=B L, M T=T M$;
(3) For all $x, y \in X$ and for some $k \in(0,1)$,

$$
\begin{gathered}
d(L x, M y) \leq k \max \{d(L x, A B x), d(M y, S T y), d(A B x, S T y), \\
\left.\frac{1}{2}[d(L x, S T y)+d(M y, A B x)]\right\} ;
\end{gathered}
$$

(4) The pair $(L, A B)$ is compatible and the pair $(M, S T)$ is weakly compatible;
(5) Either $A B$ or L is continuous.

Then, A, B, S, T, L and M have a unique common fixed point.

Define $\Phi=\{\varphi:[0,+\infty) \rightarrow[0,+\infty)\}$ where each $\varphi \in \Phi$ satisfies the following conditions:
(a) φ is lower semi-continuous on $[0,+\infty)$,
(b) φ is non-decreasing,
(c) $\varphi(0)=0$, and
(d) $\varphi(t)>0$ for each $t>0$.

Now, we prove our main result.

Theorem 2.5. Let $P_{1}, P_{2}, \cdots, P_{2 n}, Q_{0}$ and Q_{1} be self-maps on a complete metric space (X, d), satisfying conditions:
(1) $Q_{0}(X) \subseteq P_{1} P_{3}, \cdots P_{2 n-1}(X), Q_{1}(X) \subseteq P_{2} P_{4}, \cdots P_{2 n}(X)$;
(2)

$$
\begin{aligned}
P_{2}\left(P_{4} \cdots P_{2 n}\right) & =\left(P_{4} \cdots P_{2 n}\right) P_{2}, \\
P_{2} P_{4}\left(P_{6} \cdots P_{2 n}\right) & =\left(P_{6} \cdots P_{2 n}\right) P_{2} P_{4}, \\
& \vdots \\
P_{2} \cdots P_{2 n-2}\left(P_{2 n}\right) & =\left(P_{2 n}\right) P_{2} \cdots P_{2 n-2}, \\
Q_{0}\left(P_{4} \cdots P_{2 n}\right) & =\left(P_{4} \cdots P_{2 n}\right) Q_{0}, \\
Q_{0}\left(P_{6} \cdots P_{2 n}\right) & =\left(P_{6} \cdots P_{2 n}\right) Q_{0}, \\
& \vdots \\
Q_{0} P_{2 n} & =P_{2 n} Q_{0}, \\
P_{1}\left(P_{3} \cdots P_{2 n-1}\right) & =\left(P_{3} \cdots P_{2 n-1}\right) P_{1}, \\
P_{1} P_{3}\left(P_{5} \cdots P_{2 n-1}\right) & =\left(P_{5} \cdots P_{2 n-1}\right) P_{1} P_{3}, \\
& \vdots \\
P_{1} \cdots P_{2 n-3}\left(P_{2 n-1}\right) & =\left(P_{2 n-1}\right) P_{1} \cdots P_{2 n-3}, \\
Q_{1}\left(P_{3} \cdots P_{2 n-1}\right) & =\left(P_{3} \cdots P_{2 n-1}\right) Q_{1}, \\
Q_{1}\left(P_{5} \cdots P_{2 n-1}\right) & =\left(P_{5} \cdots P_{2 n-1}\right) Q_{1}, \\
& \vdots \\
Q_{1} P_{2 n-1} & =P_{2 n-1} Q_{1} ;
\end{aligned}
$$

(3) $P_{2} \cdots P_{2 n}$ or Q_{0} is continuous;
(4) The pair $\left(Q_{0}, P_{2} \cdots P_{2 n}\right)$ is compatible and the pair $\left(Q_{1}, P_{1} \cdots P_{2 n-1}\right)$ is weakly compatible;
(5) There exists $\varphi \in \Phi$ such that

$$
d\left(Q_{0} u, Q_{1} v\right) \leq M(u, v)-\varphi(M(u, v)), \forall u, v \in X,
$$

where

$$
\begin{aligned}
& M(u, v)=\max \left\{d\left(P_{2} P_{4} \cdots P_{2 n} u, Q_{0} u\right), d\left(P_{1} P_{3} \cdots P_{2 n-1} v, Q_{1} v\right),\right. \\
& d\left(P_{2} P_{4} \cdots P_{2 n} u, P_{1} P_{3} \cdots P_{2 n-1} v\right), \\
&\left.\frac{1}{2}\left[d\left(P_{1} P_{3} \cdots P_{2 n-1} v, Q_{0} u\right)+d\left(P_{2} P_{4} \cdots P_{2 n} u, Q_{1} v\right)\right]\right\}
\end{aligned}
$$

for all $u, v \in X$. Then $P_{1}, P_{2}, \cdots, P_{2 n}, Q_{0}$ and Q_{1} have a unique common fixed point in X.

Proof. Let $x_{0} \in X$, from condition (1) there exist $x_{1}, x_{2} \in X$ such that $Q_{0} x_{0}=$ $P_{1} P_{3} \cdots P_{2 n-1} x_{1}=y_{0}$ and $Q_{1} x_{1}=P_{2} P_{4} \cdots P_{2 n} x_{2}=y_{1}$. Inductively we can construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X :

$$
Q_{0} x_{2 k}=P_{1} P_{3} \cdots P_{2 n-1} x_{2 k+1}=y_{2 k}
$$

and

$$
Q_{1} x_{2 k+1}=P_{2} P_{4} \cdots P_{2 n} x_{2 k+2}=y_{2 k+1},
$$

for $k \in \mathbb{N}$.
Putting $u=x_{p}=x_{2 k}, v=x_{q+1}=x_{2 m+1}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{aligned}
d\left(Q_{0} x_{2 k}, Q_{1} x_{2 m+1}\right) \leq & M\left(x_{2 k}, x_{2 m+1}\right)-\varphi\left(M\left(x_{2 k}, x_{2 m+1}\right)\right) \\
\leq & M\left(x_{2 k}, x_{2 m+1}\right) \\
= & \max \left\{d\left(G_{1} x_{2 k}, Q_{0} x_{2 k}\right), d\left(G_{2} x_{2 m+1}, Q_{1} x_{2 m+1}\right),\right. \\
& d\left(G_{1} x_{2 k}, G_{2} x_{2 m+1}\right), \\
& \left.\left.\frac{1}{2} d d\left(G_{2} x_{2 m+1}, Q_{0} x_{2 k}\right)+d\left(G_{1} x_{2 k}, Q_{1} x_{2 m+1}\right)\right]\right\}
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
d\left(y_{2 k}, y_{2 m+1}\right) \leq \max \left\{d\left(y_{2 k-1}, y_{2 k}\right), d\left(y_{2 m}, y_{2 m+1}\right), d\left(y_{2 k-1}, y_{2 m}\right)\right. \\
\left.\frac{1}{2}\left[d\left(y_{2 m}, y_{2 k}\right)+d\left(y_{2 k-1}, y_{2 m+1}\right)\right]\right\}
\end{gathered}
$$

Thus
$d\left(y_{p}, y_{q+1}\right) \leq \max \left\{d\left(y_{p-1}, y_{p}\right), d\left(y_{q}, y_{q+1}\right), d\left(y_{p-1}, y_{q}\right), \frac{1}{2}\left[d\left(y_{q}, y_{p}\right)+d\left(y_{p-1}, y_{q+1}\right)\right]\right\}$.
If $q=p$, then

$$
\begin{aligned}
\frac{1}{2}\left[d\left(y_{p}, y_{p}\right)+d\left(y_{p-1}, y_{p+1}\right)\right] & \leq \frac{1}{2}\left[d\left(y_{p-1}, y_{p}\right)+d\left(y_{p}, y_{p+1}\right)\right] \\
& \leq \max \left\{d\left(y_{p-1}, y_{p}\right), d\left(y_{p}, y_{p+1}\right)\right\}
\end{aligned}
$$

Thus $\left(y_{p}, y_{p+1}\right) \leq d\left(y_{p-1}, y_{p}\right)$ as the inequality $d\left(y_{p}, y_{p+1}\right)>d\left(y_{p-1}, y_{p}\right)$ implies $M\left(x_{p}, x_{p+1}\right)=d\left(y_{p}, y_{p+1}\right)$ and furthermore,

$$
d\left(y_{p}, y_{p+1}\right) \leq d\left(y_{p}, y_{p+1}\right)-\varphi\left(d\left(y_{p}, y_{p+1}\right)\right)
$$

So $\varphi\left(d\left(y_{p}, y_{p+1}\right)\right)=0$. This is a contradiction. Hence

$$
d\left(y_{2 k}, y_{2 k+1}\right) \leq M\left(x_{2 k}, x_{2 k+1}\right) \leq d\left(y_{2 k}, y_{2 k-1}\right) .
$$

Similarly,

$$
d\left(y_{2 k+1}, y_{2 k+2}\right) \leq M\left(x_{2 k+1}, x_{2 k+2}\right) \leq d\left(y_{2 k}, y_{2 k+1}\right)
$$

Therefore, for all $n \in \mathbb{N}$, even or odd,

$$
d\left(y_{n}, y_{n+1}\right) \leq M\left(x_{n}, x_{n+1}\right) \leq d\left(y_{n-1}, y_{n}\right) .
$$

Thus $\left\{d\left(y_{n}, y_{n+1}\right)\right\}$ is a decreasing and bounded below sequence. So, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=\lim _{n \rightarrow \infty} M\left(x_{n}, x_{n+1}\right)=r
$$

Then (by semi-continuity of φ)

$$
\varphi(r) \leq \liminf _{n \rightarrow \infty} \varphi\left(M\left(x_{n}, x_{n+1}\right)\right) .
$$

We claim that $r=0$. We know

$$
d\left(y_{n}, y_{n+1}\right) \leq M\left(x_{n}, x_{n+1}\right)-\varphi\left(M\left(x_{n}, x_{n+1}\right)\right) .
$$

So

$$
r \leq r-\liminf _{n \rightarrow \infty} \varphi\left(M\left(x_{n}, x_{n+1}\right)\right) \leq r-\varphi(r)
$$

i.e., $\varphi(r) \leq 0$. Thus $\varphi(r)=0$ by the property of the function φ and furthermore,

$$
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0
$$

Next, we show that $\left\{y_{n}\right\}$ is a cauchy sequence. Let

$$
C_{n}=\sup \left\{d\left(y_{j}, y_{k}\right): k, j \geq n\right\}
$$

Then $\left\{C_{n}\right\}$ is decreasing. If $\lim _{n \rightarrow \infty} C_{n}=0$, then we are done. Assume that $\lim _{n \rightarrow \infty} C_{n}=C>0$. Choose $\varepsilon<\frac{C}{8}$ small enough and select N such that for all $n \geq N$,

$$
d\left(y_{n}, y_{n+1}\right)<\varepsilon \text { and } C_{n}<C+\varepsilon
$$

By the definition of C_{N+1}, there exist $m, n \geq N+1$ such that $d\left(y_{m}, y_{n}\right)>C_{n}-\varepsilon \geq$ $C-\varepsilon$. Replace y_{m} by y_{m+1} if necessary. We may assume that m is even, n is odd and $d\left(y_{m}, y_{n}\right)>C-2 \varepsilon$. Then $d\left(y_{m-1}, y_{n-1}\right)>C-4 \varepsilon$ and

$$
\begin{aligned}
& d\left(y_{m}, y_{n}\right) \leq M\left(x_{m}, x_{n}\right)-\varphi\left(M\left(x_{m}, x_{n}\right)\right) \\
& \leq \max \left\{d\left(y_{m-1}, y_{m}\right), d\left(y_{n-1}, y_{n}\right), d\left(y_{m-1}, y_{n-1}\right),\right. \\
&\left.\frac{1}{2}\left[d\left(y_{n-1}, y_{m}\right)+d\left(y_{m-1}, y_{n}\right)\right]\right\}-\varphi\left(\frac{C}{2}\right) .
\end{aligned}
$$

i.e.,

$$
C-2 \varepsilon<d\left(y_{m}, y_{n}\right) \leq \max \left\{\varepsilon, \varepsilon, d\left(y_{m-1}, y_{n-1}\right), C_{N}\right\}-\varphi\left(\frac{C}{2}\right)
$$

So

$$
C-2 \varepsilon<C_{N}-\varphi\left(\frac{C}{2}\right) \leq C+\varepsilon-\varphi\left(\frac{C}{2}\right)
$$

This is impossible if ε be small enough. Thus, we must have $c=0$. Therefore, the sequence $\left\{y_{n}\right\}$ is a cauchy sequence. Since X is complete, there exists some $z \in X$ such that $y_{n} \rightarrow z$. Also, for it's subsequence we have

$$
Q_{0} x_{2 k} \rightarrow z, P_{2} P_{4} \cdots P_{2 n} x_{2 k} \rightarrow z
$$

and

$$
Q_{1} x_{2 k+1} \rightarrow z, P_{1} P_{3} \cdots P_{2 n-1} x_{2 k+1} \rightarrow z
$$

Case 1. $P_{2} P_{4} \cdots P_{2 n}$ is continuous.
Define $G_{1}=P_{2} P_{4} \cdots P_{2 n}$. Since G_{1} is continuous, $G_{1}^{2} x_{2 k} \rightarrow G_{1} z$ and $G_{1} Q_{0} x_{2 k} \rightarrow$ $G_{1} z$. Also, as $\left(Q_{0}, G_{1}\right)$ is compatible, this implies that $Q_{0} G_{1} x_{2 k} \rightarrow G_{1} z$.
(a) Putting $u=P_{2} P_{4} \cdots P_{2 n} x_{2 k}=G_{1} x_{2 k}, v=x_{2 k+1}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{gathered}
d\left(Q_{0} G_{1} x_{2 k}, Q_{1} x_{2 k+1}\right) \leq M\left(G_{1} x_{2 k}, x_{2 k+1}\right)-\varphi\left(M\left(G_{1} x_{2 k}, x_{2 k+1}\right)\right) \\
=\max \left\{d\left(G_{1}^{2} x_{2 k}, Q_{0} G_{1} x_{2 k}\right), d\left(G_{2} x_{2 k+1}, Q_{1} x_{2 k+1}\right),\right. \\
d\left(G_{1}^{2} x_{2 k}, G_{2} x_{2 k+1}\right), \\
\left.\frac{1}{2}\left[d\left(G_{2} x_{2 k+1}, Q_{0} G_{1} x_{2 k}\right)+d\left(G_{1}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right)\right]\right\} \\
-\varphi\left(M\left(G_{1} x_{2 k}, x_{2 k+1}\right)\right) .
\end{gathered}
$$

Letting $k \rightarrow \infty$ (taking lower limit), we get

$$
\begin{aligned}
d\left(G_{1} z, z\right) \leq & \max \left\{d(G z, G z), d(z, z), d\left(z, G_{1} z\right), \frac{1}{2}\left[d\left(G_{1} z, z\right)+d\left(G_{1} z, z\right)\right]\right\} \\
& -\liminf _{n \rightarrow \infty} \varphi\left(M\left(G_{1} x_{2 k}, x_{2 k+1}\right)\right) \\
\leq & d\left(G_{1} z, z\right)-\varphi\left(d\left(G_{1} z, z\right)\right) .
\end{aligned}
$$

So $G_{1} z=z$. Thus $P_{2} P_{4} \cdots P_{2 n} z=z$.
(b) Putting $u=z, v=x_{2 k+1}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{aligned}
d\left(Q_{0} z, Q_{1} x_{2 k+1}\right) \leq & M\left(z, x_{2 k+1}\right)-\varphi\left(M\left(z, x_{2 k+1}\right)\right) \\
= & \max \left\{d\left(G_{1} z, Q_{0} z\right), d\left(G_{2} x_{2 k+1}, Q_{1} x_{2 k+1}\right), d\left(G_{1} z, G_{2} x_{2 k+1}\right),\right. \\
& \left.\frac{1}{2}\left[d\left(G_{2} x_{2 k+1}, Q_{0} z\right)+d\left(G_{1} z, Q_{1} x_{2 k+1}\right)\right]\right\}-\varphi\left(M\left(z, x_{2 k+1}\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$ (taking lower limit), we get

$$
\begin{aligned}
d\left(Q_{0} z, z\right) \leq & \max \left\{d\left(z, Q_{0} z\right), d(z, z), d(z, z), \frac{1}{2} d\left(z, Q_{0} z\right)\right\} \\
& -\varphi\left(M\left(z, Q_{0} z\right)\right) .
\end{aligned}
$$

So $d\left(Q_{0} z, z\right) \leq d\left(z, Q_{0} z\right)-\varphi\left(M\left(z, Q_{0} z\right)\right)$. Hence $Q_{0} z=z$. Therefore $Q_{0} z=$ $P_{2} P_{4} \cdots P_{2 n} z=z$.
(c) Putting $u=P_{4} \cdots P_{2 n} z, v=x_{2 k+1}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5) and using the condition $P_{2}\left(P_{4} \cdots P_{2 n}\right)=\left(P_{4} \cdots P_{2 n}\right) P_{2}$ and $Q_{0}\left(P_{4} \cdots P_{2 n}\right)=\left(P_{4} \cdots P_{2 n}\right) Q_{o}$ in condition (2), we get

$$
\begin{aligned}
d\left(Q_{0} P_{4} \cdots P_{2 n} z, Q_{1} x_{2 k+1}\right) \leq & M\left(P_{4} \cdots P_{2 n} z, x_{2 k+1}\right)-\varphi\left(M\left(P_{4} \cdots P_{2 n} z, x_{2 k+1}\right)\right) \\
= & \max \left\{d\left(G_{1} P_{4} \cdots P_{2 n} z, G_{2} x_{2 k+1}\right), d\left(G_{2} x_{2 k+1}, Q_{1} x_{2 k+1}\right),\right. \\
& d\left(G_{1} P_{4} \cdots P_{2 n} z, Q_{0} P_{4} \cdots P_{2 n}\right), \\
& \frac{1}{2}\left[d\left(G_{2} x_{2 k+1}, Q_{0} P_{4} \cdots P_{2 n} z\right)+d\left(G_{1} P_{4} \cdots P_{2 n} z,\right.\right. \\
& \left.\left.\left.Q_{1} x_{2 k+1}\right)\right]\right\}-\varphi\left(M\left(P_{4} \cdots P_{2 n} z, x_{2 k+1}\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$, (taking lower limit) we get

$$
\begin{gathered}
d\left(P_{4} \cdots P_{2 n} z, z\right) \leq \max \left\{d\left(P_{4} \cdots P_{2 n} z, P_{4} \cdots P_{2 n} z\right), d(z, z), d\left(P_{4} \cdots P_{2 n} z, z\right),\right. \\
\left.\frac{1}{2}\left[d\left(z, P_{4} \cdots P_{2 n} z\right)+d\left(P_{4} \cdots P_{2 n} z, z\right)\right]\right\} \\
-\varphi\left(M\left(P_{4} \cdots P_{2 n} z, z\right)\right) .
\end{gathered}
$$

Hence, it follows that $P_{4} \cdots P_{2 n} z=z$. Then $P_{2}\left(P_{4} \cdots P_{2 n}\right) z=P_{2} z=z$. Continuing this procedure, we obtain $Q_{0} z=P_{2} z=P_{4} z=\cdots=P_{2 n} z=z$.
(d) As $Q_{0}(X) \subseteq P_{1} P_{3} \cdots P_{2 n-1}(X)$, there exists $v \in X$ such that $P_{1} P_{3} \cdots P_{2 n-1} v=$ $Q_{0} z=z$. Putting $u=x_{2 k}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{aligned}
d\left(Q_{0} x_{2 k}, Q_{1} v\right) \leq & M\left(x_{2 k}, v\right)-\varphi\left(M\left(x_{2 k}, v\right)\right) \\
& =\max \left\{d\left(G_{1} x_{2 k}, Q_{0} x_{2 k}\right), d\left(G_{2} v, Q_{1} v\right), d\left(G_{1} x_{2 k}, G_{2} v\right),\right. \\
& \left.\frac{1}{2}\left[d\left(G_{2} v, Q_{0} x_{2 k}\right)+d\left(G_{1} x_{2 k}, Q_{1} v\right)\right]\right\}-\varphi\left(M\left(x_{2 k}, v\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$, (taking lower limit) we get

$$
\begin{gathered}
d\left(z, Q_{1} v\right) \leq \max \left\{d(z, z), d\left(z, Q_{1} v\right), d(z, z), \frac{1}{2}\left[d(z, z)+d\left(z, Q_{1} v\right)\right]\right\} \\
-\varphi\left(d\left(z, Q_{1} v\right)\right) .
\end{gathered}
$$

So $Q_{1} v=z$. Hence $P_{1} P_{3} \cdots P_{2 n-1} v=Q_{1} v=z$. As $\left(Q_{1}, P_{1} P_{3} \cdots P_{2 n-1}\right)$ is weakly compatible, we have

$$
P_{1} P_{3} \cdots P_{2 n-1} Q_{1} v=Q_{1} P_{1} P_{3} \cdots P_{2 n-1} v .
$$

Thus $P_{1} P_{3} \cdots P_{2 n-1} z=Q_{1} z$.
(e) Putting $u=x_{2 k}, v=z, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{aligned}
d\left(Q_{0} x_{2 k}, Q_{1} z\right) \leq & M\left(x_{2 k}, z\right)-\varphi\left(M\left(x_{2 k}, z\right)\right) \\
= & \max \left\{d\left(G_{1} x_{2 k}, Q_{0} x_{2 k}\right), d\left(G_{2} z, Q_{1} z\right), d\left(G_{1} x_{2 k}, G_{2} z\right),\right. \\
& \left.\frac{1}{2}\left[d\left(G_{2} z, Q_{0} x_{2 k}\right)+d\left(G_{1} x_{2 k}, Q_{1} z\right)\right]\right\}-\varphi\left(M\left(x_{2 k}, z\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$, (taking lower limit) we get

$$
\begin{aligned}
d\left(z, Q_{1} z\right) \leq & \max \left\{d(z, z), d\left(Q_{1} z, Q_{1} z\right), d\left(z, Q_{1} z\right), \frac{1}{2}\left[d\left(Q_{1} z, z\right)+d\left(z, Q_{1} z\right)\right]\right\} \\
& -\varphi\left(d\left(Q_{1} z, z\right)\right) .
\end{aligned}
$$

Therefore $Q_{1} z=z$. Hence $P_{1} P_{3} \cdots P_{2 n-1} z=Q_{1} z=z$.
(f) Putting $u=x_{2 k}, v=P_{3} \cdots P_{2 n-1} z, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5) and using the conditions $P_{1}\left(P_{3} \cdots P_{2 n-1}\right)=\left(P_{3} \cdots P_{2 n-1}\right) P_{1}$ and
$Q_{1}\left(P_{3} \cdots P_{2 n-1}\right)=\left(P_{3} \cdots P_{2 n-1}\right) Q_{1}$ in condition (2), we get

$$
\begin{aligned}
& d\left(Q_{0} x_{2 k}, Q_{1} P_{3} \cdots P_{2 n-1} z\right) \leq M\left(x_{2 k}, P_{3} \cdots P_{2 n-1} z\right)-\varphi\left(M\left(x_{2 k}, P_{3} \cdots P_{2 n-1} z\right)\right) \\
&= \max \left\{d\left(G_{1} x_{2 k}, Q_{0} x_{2 k}\right), d\left(G_{1} x_{2 k}, G_{2} P_{3} \cdots P_{2 n-1} z\right),\right. \\
& d\left(G_{2} P_{3} \cdots P_{2 n-1} z, Q_{1} P_{3} \cdots P_{2 n-1} z\right), \\
& \frac{1}{2}\left[d\left(G_{2} P_{3} \cdots P_{2 n-1} z, Q_{0} x_{2 k}\right)+d\left(G_{1} x_{2 k},\right.\right. \\
&\left.\left.Q_{1} P_{3} \cdots P_{2 n-1} z\right)\right] \\
&-\varphi\left(M\left(x_{2 k}, P_{3} \cdots P_{2 n-1} z\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$, (taking lower limit) we get

$$
\begin{gathered}
d\left(z, P_{3} \cdots P_{2 n-1} z\right) \leq \max \left\{d\left(P_{3} \cdots P_{2 n-1} z, P_{3} \cdots P_{2 n-1} z\right), d\left(z, P_{3} \cdots P_{2 n-1} z\right),\right. \\
\left.d(z, z), \frac{1}{2}\left[d\left(P_{3} \cdots P_{2 n-1} z, z\right)+d\left(z, P_{3} \cdots P_{2 n-1} z\right)\right]\right\} \\
-\varphi\left(d\left(z, P_{3} \cdots P_{2 n-1} z\right)\right) .
\end{gathered}
$$

So $P_{3} \cdots P_{2 n-1} z=z$. Therefore $P_{1}\left(P_{3} \cdots P_{2 n-1} z\right)=P_{1} z=z$. Continuing this procedure, we have

$$
Q_{1} z=P_{1} z=P_{3} z=\cdots=P_{2 n-1} z=z .
$$

Thus, we have proved

$$
Q_{0} z=Q_{1} z=P_{1} z=P_{2} z=\cdots=P_{2 n-1} z=P_{2 n} z=z .
$$

Case 2. Q_{0} is continuous.
Since Q_{0} is continuous, $Q_{0}^{2} x_{2 k} \rightarrow Q_{0} z$. As $\left(Q_{0}, P_{2} P_{4} \cdots P_{2 n}\right)$ is compatible, we have

$$
P_{2} P_{4} \cdots P_{2 n} Q_{0} x_{2 k} \rightarrow Q_{0} z
$$

(g) Putting $u=Q_{0} x_{2 k}, v=x_{2 k+1}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{gathered}
d\left(Q_{0}^{2} x_{2 k}, Q_{1} x_{2 k+1}\right) \leq M\left(Q_{0} x_{2 k}, x_{2 k+1}\right)-\varphi\left(M\left(Q_{0} x_{2 k}, x_{2 k+1}\right)\right) \\
=\max \left\{d\left(G_{1} Q_{0} x_{2 k}, Q_{0}^{2} x_{2 k}\right), d\left(G_{2} x_{2 k+1}, Q_{1} x_{2 k+1}\right)\right. \\
d\left(G_{1} Q_{0} x_{2 k} G_{2} x_{2 k+1}\right), \\
\left.\frac{1}{2}\left[d\left(G_{2} x_{2 k+1}, Q_{0}^{2} x_{2 k}\right)+d\left(G_{1} o Q_{0} x_{2 k}, Q_{1} x_{2 k+1}\right)\right]\right\} \\
-\varphi\left(M\left(Q_{0} x_{2 k}, x_{2 k+1}\right)\right)
\end{gathered}
$$

Letting $k \rightarrow \infty$, (taking lower limit) we get

$$
\begin{gathered}
d\left(Q_{0} z, z\right) \leq \max \left\{d\left(Q_{0} z, Q_{0} z\right), d(z, z), d\left(Q_{0} z, z\right), \frac{1}{2}\left[d\left(z, Q_{0} z\right)+d\left(Q_{0} z, z\right)\right]\right\} \\
-\varphi\left(d\left(Q_{0} z, z\right)\right) .
\end{gathered}
$$

Therefore $Q_{0} z=z$. Now using step (d), (e), (f) and continuing step (f) gives us $Q_{1} z=P_{1} z=P_{3} z=\cdots=P_{2 n-1} z=z$
(h) As $Q_{1}(X) \subseteq P_{2} P_{4} \cdots P_{2 n}(X)$, there exists $w \in X$ such that $P_{2} P_{4} \cdots P_{2 n} w=$ $Q_{1} z=z$. Putting $u=w, v=x_{2 k+1}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{aligned}
d\left(Q_{0} w, Q_{1} x_{2 k+1}\right) \leq & M\left(w, x_{2 k+1}\right)-\varphi\left(M\left(w, x_{2 k+1}\right)\right) \\
= & \max \left\{d\left(G_{1} w, Q_{0} w\right), d\left(G_{2} x_{2 k+1}, Q_{1} x_{2 k+1}\right), d\left(G_{1} w, G_{2} x_{2 k+1}\right),\right. \\
& \left.\frac{1}{2}\left[d\left(G_{2} x_{2 k+1}, Q_{0} w\right)+d\left(G_{1} w, Q_{1} x_{2 k+1}\right)\right]\right\} \\
& -\varphi\left(M\left(w, x_{2 k+1}\right)\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$, (taking lower limit) we get

$$
\begin{gathered}
d\left(Q_{0} w, z\right) \leq \max \left\{d\left(z, Q_{0} w\right), d(z, z), d(z, z), \frac{1}{2}\left[d\left(z, Q_{0} w\right)+d(z, z)\right]\right\} \\
-\varphi\left(M\left(z, Q_{0} w\right)\right) .
\end{gathered}
$$

So $Q_{0} w=z$. Hence $Q_{0} w=P_{2} P_{4} \cdots P_{2 n} w=z$. As $\left(Q_{0}, P_{2} P_{4} \cdots P_{2 n}\right)$ is weakly compatible, we have

$$
Q_{0} P_{2} P_{4} \cdots P_{2 n} w=P_{2} P_{4} \cdots P_{2 n} Q_{0} w
$$

Hence $Q_{0} z=P_{2} P_{4} \cdots P_{2 n} z=z$. Similarly to in step (c) it can be shown that $Q_{0} z=P_{2} z=\cdots=P_{2 n} z=z$. Thus, we have proved that

$$
Q_{0} z=Q_{1} z=P_{1} z=P_{2} z=\cdots=P_{2 n-1} z=P_{2 n} z=z .
$$

To prove the uniqueness property of z, let z^{\prime} be another common fixed point of the aforementioned maps; then

$$
Q_{0} z^{\prime}=Q_{1} z^{\prime}=P_{1} z^{\prime}=P_{2} z^{\prime}=\cdots=P_{2 n-1} z^{\prime}=P_{2 n} z^{\prime}=z^{\prime}
$$

Putting $u=z, v=z^{\prime}, G_{1}=P_{2} P_{4} \cdots P_{2 n}$ and $G_{2}=P_{1} P_{3} \cdots P_{2 n-1}$ in condition (5), we have

$$
\begin{aligned}
d\left(Q_{0} z, Q_{1} z^{\prime}\right) \leq & M\left(z, z^{\prime}\right)-\varphi\left(M\left(z, z^{\prime}\right)\right) \\
= & \max \left\{d\left(G_{1} z, Q_{0} z\right), d\left(G_{2} z^{\prime}, Q_{1} z^{\prime}\right), d\left(G_{1} z, G_{2} z^{\prime}\right),\right. \\
& \left.\frac{1}{2}\left[d\left(G_{2} z^{\prime}, Q_{0} z\right)+d\left(G_{1} z, Q_{1} z^{\prime}\right)\right]\right\}-\varphi\left(M\left(z, z^{\prime}\right)\right) .
\end{aligned}
$$

Then $d\left(z, z^{\prime}\right) \leq d\left(z, z^{\prime}\right)-\varphi\left(d\left(z, z^{\prime}\right)\right)$. So $z=z^{\prime}$ and this shows that z is a unique common fixed point of the maps.

Remark 2.6. Theorem 1.2 is a special case of Theorem 2.5 with $Q_{0}=S, Q_{1}=T$ and $P_{i}=I$ (identity map) for all $1 \leq i \leq 2 n$. Also, Theorem 2.5 is a generalization of Theorem 2.4 with $\varphi(t)=(1-k) t$.

Theorem 2.7. Let (X, d) be a complete metric space and let $\left\{T_{\alpha}\right\}_{\alpha \in J}$ and $\left\{P_{i}\right\}_{i=1}^{2 n}$ be two families of self-mappings on X. Suppose, there exists a fixed $\beta \in J$ such that (1) $T_{\alpha}(X) \subseteq P_{2} P_{4}, \cdots P_{2 n}(X)$ for each $\alpha \in J$ and $T_{\beta}(X) \subseteq P_{1} P_{3}, \cdots P_{2 n-1}(X)$;

$$
\begin{aligned}
P_{2}\left(P_{4} \cdots P_{2 n}\right)= & \left(P_{4} \cdots P_{2 n}\right) P_{2}, \\
P_{2} P_{4}\left(P_{6} \cdots P_{2 n}\right)= & \left(P_{6} \cdots P_{2 n}\right) P_{2} P_{4}, \\
\vdots & \\
P_{2} \cdots P_{2 n-2}\left(P_{2 n}\right)= & \left(P_{2 n}\right) P_{2} \cdots P_{2 n-2}, \\
T_{\beta}\left(P_{4} \cdots P_{2 n}\right)= & \left(P_{4} \cdots P_{2 n}\right) T_{\beta}, \\
T_{\beta}\left(P_{6} \cdots P_{2 n}\right)= & \left(P_{6} \cdots P_{2 n}\right) T_{\beta}, \\
\vdots & \\
T_{\beta} P_{2 n} & =P_{2 n} T_{\beta}, \\
P_{1}\left(P_{3} \cdots P_{2 n-1}\right)= & \left(P_{3} \cdots P_{2 n-1}\right) P_{1}, \\
P_{1} P_{3}\left(P_{5} \cdots P_{2 n-1}\right)= & \left(P_{5} \cdots P_{2 n-1}\right) P_{1} P_{3}, \\
\vdots & \\
P_{1} \cdots P_{2 n-3}\left(P_{2 n-1}\right)= & \left(P_{2 n-1}\right) P_{1} \cdots P_{2 n-3}, \\
T_{\alpha}\left(P_{3} \cdots P_{2 n-1}\right)= & \left(P_{3} \cdots P_{2 n-1}\right) T_{\alpha}, \\
T_{\alpha}\left(P_{5} \cdots P_{2 n-1}\right)= & \left(P_{5} \cdots P_{2 n-1}\right) T_{\alpha}, \\
\vdots & \\
T_{\alpha} P_{2 n-1}= & P_{2 n-1} T_{\alpha},(\forall \alpha \in J) ;
\end{aligned}
$$

(3) $P_{2} \cdots P_{2 n}$ or T_{β} is continuous;
(4) The pair $\left(T_{\beta}, P_{2} \cdots P_{2 n}\right)$ is compatible and the pairs $\left(T_{\alpha}, P_{1} \cdots P_{2 n-1}\right)$ are weakly compatible;
(5) There exists $\varphi \in \Phi$ such that
$d\left(T_{\beta} u, T_{\alpha} v\right) \leq M(u, v)-\varphi(M(u, v))$, for all $u, v \in X$ and for all $\alpha \in J$, where

$$
\begin{aligned}
M(u, v)=\max \{ & \left(P_{2} P_{4} \cdots P_{2 n} u, T_{\beta} u\right), d\left(P_{1} P_{3} \cdots P_{2 n-1} v, T_{\alpha} v\right), \\
& d\left(P_{2} P_{4} \cdots P_{2 n} u, P_{1} P_{3} \cdots P_{2 n-1} v\right), \\
& \left.\frac{1}{2}\left[d\left(P_{1} P_{3} \cdots P_{2 n-1} v, T_{\beta} u\right)+d\left(P_{2} \cdots P_{2 n} u, T_{\alpha} v\right)\right]\right\}
\end{aligned}
$$

Then, all P_{i} and T_{α} have a unique common fixed point in X.
Proof. Let $T_{\alpha_{0}}$ be a fixed element of $\left\{T_{\alpha}\right\}_{\alpha \in J}$. By Theorem 2.5 with $Q_{0}=T_{\beta}$ and $Q_{1}=T_{\alpha_{0}}$ it follows that there exists some $z \in X$ such that $T_{\beta} z=T_{\alpha_{0}} z=$ $P_{1} P_{3} \cdots P_{2 n-1} z=P_{2} P_{4} \cdots P_{2 n} z=z$. Let $\alpha \in J$ be arbitrary. Then from condition (5),

$$
\begin{aligned}
d\left(T_{\beta} z, T_{\alpha} z\right) \leq \max \{ & d\left(P_{2} P_{4} \cdots P_{2 n} z, T_{\beta} z\right), d\left(P_{1} P_{3} \cdots P_{2 n-1} z, T_{\alpha} z\right), \\
& d\left(P_{2} P_{4} \cdots P_{2 n} z, P_{1} P_{3} \cdots P_{2 n-1} z\right), \\
& \left.\frac{1}{2}\left[d\left(P_{1} P_{3} \cdots P_{2 n-1} z, T_{\beta} z\right)+d\left(P_{2} \cdots P_{2 n} z, T_{\alpha} z\right)\right]\right\}-\varphi(M(z, z)) .
\end{aligned}
$$

So $d\left(z, T_{\alpha} z\right) \leq d\left(z, T_{\alpha} z\right)-\varphi\left(d\left(z, T_{\alpha} z\right)\right)$. Thus $T_{\alpha} z=z$ for each $\alpha \in J$. Since condition (5) implies the uniqueness of the common fixed point, Theorem 2.7 is proved.

Remark 2.8. Theorem 2.1 is a special case of Theorem 2.7 with $P_{i}=I$ (identity map), for all $1 \leq i \leq 2 n$ and $\varphi(t)=(1-\lambda) t$.

Now, we prove a common fixed point for any number of mappings.
Corollary 2.9. Let $P_{0}, P_{1}, P_{2}, \cdots, P_{n}$ be self-maps on a complete metric space (X, d) satisfying conditions:
(1) $P_{0}(X) \subseteq P_{1} P_{2}, \cdots P_{n}(X)$;
(2)

$$
\begin{aligned}
P_{1}\left(P_{2} \cdots P_{n}\right)= & \left(P_{2} \cdots P_{n}\right) P_{1}, \\
P_{1} P_{2}\left(P_{3} \cdots P_{n}\right)= & \left(P_{3} \cdots P_{n}\right) P_{1} P_{2}, \\
& \vdots \\
P_{1} \cdots P_{n-1}\left(P_{n}\right)= & \left(P_{n}\right) P_{1} \cdots P_{n-1} ;
\end{aligned}
$$

(3) There exists $\varphi \in \Phi$ such that
$d\left(P_{0} u, v\right) \leq M(u, v)-\varphi(M(u, v))$, for all $u, v \in X$ where

$$
\begin{aligned}
M(u, v)= & \max \left\{d\left(u, P_{0} u\right), d\left(P_{1} P_{2} \cdots P_{n} v, v\right)\right. \\
& \left.d\left(u, P_{1} P_{2} \cdots P_{n} v\right), \frac{1}{2}\left[d\left(P_{1} P_{2} \cdots P_{n} v, P_{0} u\right)+d(u, v)\right]\right\}
\end{aligned}
$$

Then, $P_{0}, P_{1}, P_{2}, \cdots, P_{n}$ have a unique common fixed point in X.

References

1. Ya.L. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, in: I.Gohberg, Yu.Lyubich(Eds.), New results in operator theory, in: Advances and Appl. 98 (1997) 7-22. 1
2. M.A. Al-thagafi and N. Shahzad, Noncommuting selfmaps and invariant approximations, Nonlinear Anal. 64 (2006) 2778-2786. 1
3. G.V.R. Babu and K.N.V.V. Vara Prasad, Common fixed point theorems of different compatible type mappings using Ćirić's contraction type condition, Math. Commun. 11 (1) (2006) 87-102. 2, 2.3
4. D.W. Boyd and T.S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969) 458-464. 1
5. R. Chen and Y.Y. Song, Convergence to common fixed point of nonexpansive semigroups, J. Comput. Appl. Math. 200 (2) (2007) 566-575. 2.3
6. R. Chen and H.M. He, Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space, Appl. Math. Lett. 20 (7) (2007) 751-757. 2.3
7. L.B. Ćirić, Generalized contractions and fixed point theorems, Publ. Inst. Math. 26 (1971) 19-26. 2
8. L.B. Ćirić, On a family of contractive maps and fixed points, Publ. Inst. Math. 31 (1974) 45-51. 2, 2.3
9. L.B. Ćirić, A. Razani, S. Radenovic and J.S. Ume, Common fixed point theorems for families of weakly compatible maps, Comput. Math. Appl. 55 (2008) 2533-2543. 2.3
10. L.B. Ćirić and J.S. Ume, Some common fixed point theorems for weakly compatible mappings, J. Math. Anal. Appl. 314 (2006) 488-499.
11. N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321 (2006) 851-861. 1
12. M. Imdad and S. Kumar, Rhoades-type fixed point theorem for a pair of nonself mappings, Comput. Math. Appl. 46 (2003) 919-927.
13. G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988) 977-983. 2.2
14. G. Jungck and N. Hussain, Compatible maps and invariant approximation, J. Math. Anal. Appl. 325 (2007) 1003-1012.
15. G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998) 227-238. 2.3
16. H.K. Pathak, M.S. Khan and R. Tiwari, A common fixed point theorem and its application to nonlinear integral equations, Comput. Math. Appl. 53 (2007) 961-971.
17. A. Razani and M. Shirdaryazdi, A common fixed point theorem of compatible maps in Menger space, Chaos, Solitons and Fractals. 32 (2007) 26-34. 2.3
18. B.K. Ray, On Ćirić's fixed point theorem, Fund. Math. 94 (3)(1977) 221-229. 2
19. S. Reich, Some fixed point problems, Atti. Accad. Naz. Lincei. 57 (1974) 194-198. 1
20. B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001) 26832693. 1, 1.1
21. N. Shahzad, Invariant approximations, generalized I-contraction, and R-subweakly commuting maps, Fixed Point Theory Appl. 1 (2005) 79-86. 1
22. B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005) 439-448. 2.3, 2.4
23. S.L. Singh and S.N. Mishra, On a ljubomir Ćirić's fixed point theorem for nonexpansive type maps with applications, Indian J. Pure Appl. Math. 33 (2002) 531-542. 2, 2.3
24. Y. Song, Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Comput. Appl. Math.(IJCAM) 2 (1) (2007) 51-57. 1
25. Y. Song, Common fixed points and invariant approximations for generalized (f, g) nonexpansive mappings, Commun. Math. Anal. 2 (2007) 17-26. 1
26. Y. Song and S. Xu, A note on common fixed points for Banach operator pairs, Int. J. Contemp. Math. Sci. 2 (2007) 1163-1166. 1
27. S.N. Wu and L. Debnath, Inequalities for convex sequences and their applications, Comput. Math. Appl. 54 (2007) 525-534. 2.3
28. Y.H. Yao, J.C. Yao and H.Y. Zhou, Approximation methodes for common fixed points of infinite countable family of nonexpansive mappings, Comput. Math. Appl. 53 (2007) 1380-1389.
29. J.N. Zhu, Y.J. Cho and S.M. Kang, Equivalent contractive conditions in symmetric spaces, Comput. Math. Appl. 50 (2005) 1621-1628. 2.3
30. Q. Zhang and Y. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Lett. 22 (2009) 75-78.
${ }^{1}$ Department of Mathematics, Faculty of Science, I. Kh. International UniverSity, P.O. Box: 34149-16818, Qazvin, Iran.

E-mail address: razani@ikiu.ac.ir
${ }^{2}$ Department of Mathematics, Faculty of Science, I. Kh. International UniverSity, P.O. Box: 34149-16818, Qazvin, Iran.

E-mail address: msh_yazdi@ikiu.ac.ir

[^0]: Date: Received: March 2011; Revised: July 2011.
 2000 Mathematics Subject Classification. 47H10.
 Key words and phrases. Common fixed point, Compatible mappings, Weakly Compatible mappings, φ-weak contraction, Complete metric space.
 *: Corresponding author.

