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TWO COMMON FIXED POINT THEOREMS FOR COMPATIBLE
MAPPINGS

A. RAZANI1 AND M. YAZDI2∗

Abstract. Recently, Zhang and Song [Q. Zhang, Y. Song, Fixed point theory
for generalized ϕ-weak contractions, Appl. Math. Lett. 22(2009) 75-78] proved
a common fixed point theorem for two maps satisfying generalized ϕ-weak con-
tractions. In this paper, we prove a common fixed point theorem for a family of
compatible maps. In fact, a new generalization of Zhang and Song’s theorem is
given.

1. Introduction and preliminaries

Let X be a metric space. A map T : X → X is a contraction if there exists a
constant k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X.
A map T : X → X is a ϕ-weak contraction if there exists a function ϕ : [0,+∞)→
[0,+∞) such that ϕ is positive on (0,+∞), ϕ(0) = 0 and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)). (1.1)

The concept of the weak contraction was defined by Alber and Guerre-Delabriere
[1] in 1997. Actually in [1], the authors defined such mappings for single-valued
maps on Hilbert spaces and proved the existence of fixed points. Rhoades [20]
showed that most results of [1] are still true for any Banach spaces. Also, Rhoades
[20] proved an interesting fixed point theorem which is one of generalizations of
the Banach contraction principle because it contains contractions as special cases
(ϕ(t) = (1− k)t).

Theorem 1.1. [20] Let (X, d) be a complete metric space and A be a ϕ− weak
contraction on X. If ϕ is continuous and nondecreasing function, then A has a
unique fixed point.

In fact, the weak contractions are also closely related to maps of Boyd and Wong’s
type [4] and Reich’s type [19]. Namely, if ϕ is a lower semi-continuous function
from the right, then ψ(t) = t− ϕ(t) is an upper semi-continuous function from the
right and moreover, (1.1) turns into d(Tx, Ty) ≤ ψ(d(x, y)). Therefore, the ϕ-weak

contraction with a function ϕ is of Boyd and Wong [4]. if we define K(t) = ϕ(t)
t

for
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t > 0 and K(0) = 0, then (1.1) is replaced by d(Tx, Ty) ≤ K(d(x, y))d(x, y). Thus
the ϕ-weak contraction becomes a Reich type one.

During the last few decades, a number of hybrid contractive mapping results
have been obtained by many mathematical researchers. For example, Song [25, 26],
Al-Thagafi and Shahzad [2], Shahzad [21] and Hussain and Junck [11] obtained
the common fixed pint theorems of f -contraction (T (d(Tx, Ty) ≤ kd(fx, fy))),
generalized f -contraction

(T (d(Tx, Ty) ≤ kmax{d(fx, fy), d(Tx, fx), d(Ty, fy),
1

2
[d(fx, Ty) + d(Tx, fy)]}))

and generalized (f, g)-contraction

(T (d(Tx, Ty) ≤ kmax{d(fx, gy), d(Tx, fx), d(Ty, gy),
1

2
[d(fx, Ty) + d(Tx, gy)]})),

respectively.
Song [24] extended the above results to f -weak contraction (d(Tx, Ty) ≤ d(fx, fy)−
ϕ(d(fx, fy))).

Recently, Zhang and Song [30] proved the following theorem.

Theorem 1.2. [30] Let (X, d) be a complete metric space and T, S : X → X two
mappings such that for all x, y ∈ X,

d(Tx, Sy) ≤M(x, y)− ϕ(M(x, y)),

where ϕ : [0,+∞)→ [0,+∞) is a lower semi-continuous function with ϕ(t) > 0 for
t > 0, ϕ(0) = 0 and

M(x, y) = max{d(x, y), d(Tx, x), d(Sy, y),
1

2
[d(y, Tx) + d(x, Sy)]}.

Then, there exists a unique point u ∈ X such that Tu = Su = u.

The object of this paper is to prove a common fixed point theorem for a family
of compatible maps in a metric space.

2. Main result

In this section, we shall prove a common fixed point theorem for any even number
of compatible maps in a complete metric space. In fact, it is a generalization of Zhang
and Song’s common fixed point theorem (Theorem 1.2).

Let (X, d) be a metric space and T a self-mapping on X. In [7], Ćirić introduced
and investigated a class of self-mappings on X satisfying the following condition:

d(Tx, Ty) ≤ kmax{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]}, (c)

where 0 < k < 1. In [8] Ćirić proved the following common fixed point theorem.

Theorem 2.1. Let (X, d) be a complete metric space and let {Tα}α∈J be a family
of self-mappings on X. If there exists a fixed β ∈ J such that for each α ∈ J and
all x, y ∈ X

d(Tαx, Tβy) ≤ λmax{d(x, y), d(x, Tαx), d(y, Tβy),
1

2
[d(x, Tβy) + d(y, Tαx)]},

where λ = λ(α) ∈ (0, 1), then all Tα have a unique common fixed point in X.
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The class of mappings satisfying the contractive definition of type of (c), as well
as its generalization, has proved useful in fixed and common fixed point theory (see
[3, 18, 23]).

Definition 2.2. [13] Self-maps A and S of a metric space (X, d) are said to be
compatible if d(ASpn, SApn) → 0 whenever {pn} is a sequence in X such that
Apn, Spn → u, for some u ∈ X, as n→∞.

Definition 2.3. [15] Self-maps A and S of a metric space (X, d) are said to be
weakly compatible if they commute at their coincidence points; i.e. if Ap = Sp for
some p ∈ X, then ASp = SAp.

This concept is most general among all the commutativity concepts in this field, as
every pair of weakly commuting self-maps is compatible and each pair of compatible
self-maps is weakly compatible, but the reverse is not true always. Many authors
have proved common fixed point theorems for a variety of commuting self-mappings
on usual metric, as well as on different kinds of generalized metric spaces([3, 5, 6,
8],[9]-[17], [22, 23],[27]-[29]).

Theorem 2.4. [22] Let A,B,S,T,L and M be self-maps of a complete metric space
(X, d), satisfying the conditions:
(1) L(X) ⊆ ST (X),M(X) ⊆ AB(X);
(2) AB = BA, ST = TS, LB = BL,MT = TM ;
(3) For all x, y ∈ X and for some k ∈ (0, 1),

d(Lx,My) ≤ kmax{d(Lx,ABx), d(My, STy), d(ABx, STy),
1
2
[d(Lx, STy) + d(My,ABx)]};

(4) The pair (L,AB) is compatible and the pair (M,ST ) is weakly compatible;
(5) Either AB or L is continuous.
Then, A,B, S, T, L and M have a unique common fixed point.

Define Φ = {ϕ : [0,+∞) → [0,+∞)} where each ϕ ∈ Φ satisfies the following
conditions:
(a) ϕ is lower semi-continuous on [0,+∞),
(b) ϕ is non-decreasing,
(c) ϕ(0) = 0, and
(d) ϕ(t) > 0 for each t > 0.

Now, we prove our main result.

Theorem 2.5. Let P1, P2, · · · , P2n, Q0 and Q1 be self-maps on a complete metric
space (X,d), satisfying conditions:
(1) Q0(X) ⊆ P1P3, · · ·P2n−1(X), Q1(X) ⊆ P2P4, · · ·P2n(X);
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(2)
P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,

P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,
...

P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,
Q0(P4 · · ·P2n) = (P4 · · ·P2n)Q0,
Q0(P6 · · ·P2n) = (P6 · · ·P2n)Q0,

...
Q0P2n = P2nQ0,

P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,
P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,

...
P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,
Q1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)Q1,
Q1(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Q1,

...
Q1P2n−1 = P2n−1Q1;

(3) P2 · · ·P2n or Q0 is continuous;
(4) The pair (Q0, P2 · · ·P2n) is compatible and the pair (Q1, P1 · · ·P2n−1) is weakly
compatible;
(5) There exists ϕ ∈ Φ such that

d(Q0u,Q1v) ≤M(u, v)− ϕ(M(u, v)), ∀u, v ∈ X,
where

M(u, v) = max{d(P2P4 · · ·P2nu,Q0u), d(P1P3 · · ·P2n−1v,Q1v),
d(P2P4 · · ·P2nu, P1P3 · · ·P2n−1v),
1
2
[d(P1P3 · · ·P2n−1v,Q0u) + d(P2P4 · · ·P2nu,Q1v)]}

for all u, v ∈ X. Then P1, P2, · · · , P2n, Q0 and Q1 have a unique common fixed point
in X.

Proof. Let x0 ∈ X, from condition (1) there exist x1, x2 ∈ X such that Q0x0 =
P1P3 · · ·P2n−1x1 = y0 and Q1x1 = P2P4 · · ·P2nx2 = y1. Inductively we can construct
sequences {xn} and {yn} in X:

Q0x2k = P1P3 · · ·P2n−1x2k+1 = y2k

and
Q1x2k+1 = P2P4 · · ·P2nx2k+2 = y2k+1,

for k ∈ N.
Putting u = xp = x2k, v = xq+1 = x2m+1, G1 = P2P4 · · ·P2n and

G2 = P1P3 · · ·P2n−1 in condition (5), we have

d(Q0x2k, Q1x2m+1) ≤ M(x2k, x2m+1)− ϕ(M(x2k, x2m+1))
≤ M(x2k, x2m+1)
= max{d(G1x2k, Q0x2k), d(G2x2m+1, Q1x2m+1),

d(G1x2k, G2x2m+1),
1
2
[d(G2x2m+1, Q0x2k) + d(G1x2k, Q1x2m+1)]}
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i.e.,

d(y2k, y2m+1) ≤ max{d(y2k−1, y2k), d(y2m, y2m+1), d(y2k−1, y2m),
1
2
[d(y2m, y2k) + d(y2k−1, y2m+1)]}.

Thus

d(yp, yq+1) ≤ max{d(yp−1, yp), d(yq, yq+1), d(yp−1, yq),
1

2
[d(yq, yp) + d(yp−1, yq+1)]}.

If q = p, then

1
2
[d(yp, yp) + d(yp−1, yp+1)] ≤ 1

2
[d(yp−1, yp) + d(yp, yp+1)]

≤ max{d(yp−1, yp), d(yp, yp+1)}.

Thus (yp, yp+1) ≤ d(yp−1, yp) as the inequality d(yp, yp+1) > d(yp−1, yp) implies
M(xp, xp+1) = d(yp, yp+1) and furthermore,

d(yp, yp+1) ≤ d(yp, yp+1)− ϕ(d(yp, yp+1)).

So ϕ(d(yp, yp+1)) = 0. This is a contradiction. Hence

d(y2k, y2k+1) ≤M(x2k, x2k+1) ≤ d(y2k, y2k−1).

Similarly,

d(y2k+1, y2k+2) ≤M(x2k+1, x2k+2) ≤ d(y2k, y2k+1).

Therefore, for all n ∈ N , even or odd,

d(yn, yn+1) ≤M(xn, xn+1) ≤ d(yn−1, yn).

Thus {d(yn, yn+1)} is a decreasing and bounded below sequence. So, there exists
r ≥ 0 such that

lim
n→∞

d(yn, yn+1) = lim
n→∞

M(xn, xn+1) = r.

Then ( by semi-continuity of ϕ )

ϕ(r) ≤ lim inf
n→∞

ϕ(M(xn, xn+1)).

We claim that r = 0. We know

d(yn, yn+1) ≤M(xn, xn+1)− ϕ(M(xn, xn+1)).

So

r ≤ r − lim inf
n→∞

ϕ(M(xn, xn+1)) ≤ r − ϕ(r),

i.e., ϕ(r) ≤ 0. Thus ϕ(r) = 0 by the property of the function ϕ and furthermore,

lim
n→∞

d(yn, yn+1) = 0.

Next, we show that {yn} is a cauchy sequence. Let

Cn = sup{d(yj, yk) : k, j ≥ n}.

Then {Cn} is decreasing. If limn→∞Cn = 0, then we are done. Assume that
limn→∞Cn = C > 0. Choose ε < C

8
small enough and select N such that for all

n ≥ N ,

d(yn, yn+1) < ε and Cn < C + ε.
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By the definition of CN+1, there exist m,n ≥ N + 1 such that d(ym, yn) > Cn− ε ≥
C − ε. Replace ym by ym+1 if necessary. We may assume that m is even, n is odd
and d(ym, yn) > C − 2ε. Then d(ym−1, yn−1) > C − 4ε and

d(ym, yn) ≤ M(xm, xn)− ϕ(M(xm, xn))
≤ max{d(ym−1, ym), d(yn−1, yn), d(ym−1, yn−1),

1
2
[d(yn−1, ym) + d(ym−1, yn)]} − ϕ(C

2
).

i.e.,

C − 2ε < d(ym, yn) ≤ max{ε, ε, d(ym−1, yn−1), CN} − ϕ(
C

2
).

So

C − 2ε < CN − ϕ(
C

2
) ≤ C + ε− ϕ(

C

2
).

This is impossible if ε be small enough. Thus, we must have c = 0. Therefore, the
sequence {yn} is a cauchy sequence. Since X is complete, there exists some z ∈ X
such that yn → z. Also, for it’s subsequence we have

Q0x2k → z, P2P4 · · ·P2nx2k → z

and
Q1x2k+1 → z, P1P3 · · ·P2n−1x2k+1 → z.

Case 1. P2P4 · · ·P2n is continuous.
Define G1 = P2P4 · · ·P2n. Since G1 is continuous, G2

1x2k → G1z and G1Q0x2k →
G1z. Also, as (Q0, G1) is compatible, this implies that Q0G1x2k → G1z.

(a) Putting u = P2P4 · · ·P2nx2k = G1x2k, v = x2k+1 and G2 = P1P3 · · ·P2n−1 in
condition (5), we have

d(Q0G1x2k, Q1x2k+1) ≤ M(G1x2k, x2k+1)− ϕ(M(G1x2k, x2k+1))
= max{d(G1

2x2k, Q0G1x2k), d(G2x2k+1, Q1x2k+1),
d(G2

1x2k, G2x2k+1),
1
2
[d(G2x2k+1, Q0G1x2k) + d(G2

1x2k, Q1x2k+1)]}
−ϕ(M(G1x2k, x2k+1)).

Letting k →∞ (taking lower limit), we get

d(G1z, z) ≤ max{d(Gz,Gz), d(z, z), d(z,G1z), 1
2
[d(G1z, z) + d(G1z, z)]}

− lim infn→∞ ϕ(M(G1x2k, x2k+1))
≤ d(G1z, z)− ϕ(d(G1z, z)).

So G1z = z. Thus P2P4 · · ·P2nz = z.
(b) Putting u = z, v = x2k+1, G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1 in

condition (5), we have

d(Q0z,Q1x2k+1) ≤ M(z, x2k+1)− ϕ(M(z, x2k+1))
= max{d(G1z,Q0z), d(G2x2k+1, Q1x2k+1), d(G1z,G2x2k+1),

1
2
[d(G2x2k+1, Q0z) + d(G1z,Q1x2k+1)]} − ϕ(M(z, x2k+1)).

Letting k →∞ (taking lower limit), we get

d(Q0z, z) ≤ max{d(z,Q0z), d(z, z), d(z, z), 1
2
d(z,Q0z)}

−ϕ(M(z,Q0z)).

So d(Q0z, z) ≤ d(z,Q0z) − ϕ(M(z,Q0z)). Hence Q0z = z. Therefore Q0z =
P2P4 · · ·P2nz = z.
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(c) Putting u = P4 · · ·P2nz, v = x2k+1, G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1
in condition (5) and using the condition P2(P4 · · ·P2n) = (P4 · · ·P2n)P2 and
Q0(P4 · · ·P2n) = (P4 · · ·P2n)Qo in condition (2), we get

d(Q0P4 · · ·P2nz,Q1x2k+1) ≤ M(P4 · · ·P2nz, x2k+1)− ϕ(M(P4 · · ·P2nz, x2k+1))
= max{d(G1P4 · · ·P2nz,G2x2k+1), d(G2x2k+1, Q1x2k+1),

d(G1P4 · · ·P2nz,Q0P4 · · ·P2n),
1
2
[d(G2x2k+1, Q0P4 · · ·P2nz) + d(G1P4 · · ·P2nz,
Q1x2k+1)]} − ϕ(M(P4 · · ·P2nz, x2k+1)).

Letting k →∞, (taking lower limit) we get

d(P4 · · ·P2nz, z) ≤ max{d(P4 · · ·P2nz, P4 · · ·P2nz), d(z, z), d(P4 · · ·P2nz, z),
1
2
[d(z, P4 · · ·P2nz) + d(P4 · · ·P2nz, z)]}

−ϕ(M(P4 · · ·P2nz, z)).

Hence, it follows that P4 · · ·P2nz = z. Then P2(P4 · · ·P2n)z = P2z = z. Continuing
this procedure, we obtain Q0z = P2z = P4z = · · · = P2nz = z.

(d) AsQ0(X) ⊆ P1P3 · · ·P2n−1(X), there exists v ∈ X such that P1P3 · · ·P2n−1v =
Q0z = z. Putting u = x2k, G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1 in condition
(5), we have

d(Q0x2k, Q1v) ≤ M(x2k, v)− ϕ(M(x2k, v))
= max{d(G1x2k, Q0x2k), d(G2v,Q1v), d(G1x2k, G2v),

1
2
[d(G2v,Q0x2k) + d(G1x2k, Q1v)]} − ϕ(M(x2k, v)).

Letting k →∞, (taking lower limit) we get

d(z,Q1v) ≤ max{d(z, z), d(z,Q1v), d(z, z), 1
2
[d(z, z) + d(z,Q1v)]}

−ϕ(d(z,Q1v)).

So Q1v = z. Hence P1P3 · · ·P2n−1v = Q1v = z. As (Q1, P1P3 · · ·P2n−1) is weakly
compatible, we have

P1P3 · · ·P2n−1Q1v = Q1P1P3 · · ·P2n−1v.

Thus P1P3 · · ·P2n−1z = Q1z.
(e) Putting u = x2k, v = z,G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1 in condition

(5), we have

d(Q0x2k, Q1z) ≤ M(x2k, z)− ϕ(M(x2k, z))
= max{d(G1x2k, Q0x2k), d(G2z,Q1z), d(G1x2k, G2z),

1
2
[d(G2z,Q0x2k) + d(G1x2k, Q1z)]} − ϕ(M(x2k, z)).

Letting k →∞, (taking lower limit) we get

d(z,Q1z) ≤ max{d(z, z), d(Q1z,Q1z), d(z,Q1z), 1
2
[d(Q1z, z) + d(z,Q1z)]}

−ϕ(d(Q1z, z)).

Therefore Q1z = z. Hence P1P3 · · ·P2n−1z = Q1z = z.
(f) Putting u = x2k, v = P3 · · ·P2n−1z,G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1

in condition (5) and using the conditions P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1 and
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Q1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)Q1 in condition (2), we get

d(Q0x2k, Q1P3 · · ·P2n−1z) ≤ M(x2k, P3 · · ·P2n−1z)− ϕ(M(x2k, P3 · · ·P2n−1z))
= max{d(G1x2k, Q0x2k), d(G1x2k, G2P3 · · ·P2n−1z),

d(G2P3 · · ·P2n−1z,Q1P3 · · ·P2n−1z),
1
2
[d(G2P3 · · ·P2n−1z,Q0x2k) + d(G1x2k,
Q1P3 · · ·P2n−1z)]

−ϕ(M(x2k, P3 · · ·P2n−1z)).

Letting k →∞, (taking lower limit) we get

d(z, P3 · · ·P2n−1z) ≤ max{d(P3 · · ·P2n−1z, P3 · · ·P2n−1z), d(z, P3 · · ·P2n−1z),
d(z, z), 1

2
[d(P3 · · ·P2n−1z, z) + d(z, P3 · · ·P2n−1z)]}

−ϕ(d(z, P3 · · ·P2n−1z)).

So P3 · · ·P2n−1z = z. Therefore P1(P3 · · ·P2n−1z) = P1z = z. Continuing this
procedure, we have

Q1z = P1z = P3z = · · · = P2n−1z = z.

Thus, we have proved

Q0z = Q1z = P1z = P2z = · · · = P2n−1z = P2nz = z.

Case 2. Q0 is continuous.
Since Q0 is continuous, Q2

0x2k → Q0z. As (Q0, P2P4 · · ·P2n) is compatible, we
have

P2P4 · · ·P2nQ0x2k → Q0z.

(g) Putting u = Q0x2k, v = x2k+1, G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1 in
condition (5), we have

d(Q2
0x2k, Q1x2k+1) ≤ M(Q0x2k, x2k+1)− ϕ(M(Q0x2k, x2k+1))

= max{d(G1Q0x2k, Q
2
0x2k), d(G2x2k+1, Q1x2k+1),

d(G1Q0x2kG2x2k+1),
1
2
[d(G2x2k+1, Q

2
0x2k) + d(G1oQ0x2k, Q1x2k+1)]}

−ϕ(M(Q0x2k, x2k+1)).

Letting k →∞, (taking lower limit) we get

d(Q0z, z) ≤ max{d(Q0z,Q0z), d(z, z), d(Q0z, z), 1
2
[d(z,Q0z) + d(Q0z, z)]}

−ϕ(d(Q0z, z)).

Therefore Q0z = z. Now using step (d), (e), (f) and continuing step (f) gives us
Q1z = P1z = P3z = · · · = P2n−1z = z

(h) As Q1(X) ⊆ P2P4 · · ·P2n(X), there exists w ∈ X such that P2P4 · · ·P2nw =
Q1z = z. Putting u = w, v = x2k+1, G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1 in
condition (5), we have

d(Q0w,Q1x2k+1) ≤ M(w, x2k+1)− ϕ(M(w, x2k+1))
= max{d(G1w,Q0w), d(G2x2k+1, Q1x2k+1), d(G1w,G2x2k+1),

1
2
[d(G2x2k+1, Q0w) + d(G1w,Q1x2k+1)]}

−ϕ(M(w, x2k+1)).
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Letting k →∞, (taking lower limit) we get

d(Q0w, z) ≤ max{d(z,Q0w), d(z, z), d(z, z), 1
2
[d(z,Q0w) + d(z, z)]}

−ϕ(M(z,Q0w)).

So Q0w = z. Hence Q0w = P2P4 · · ·P2nw = z. As (Q0, P2P4 · · ·P2n) is weakly
compatible, we have

Q0P2P4 · · ·P2nw = P2P4 · · ·P2nQ0w.

Hence Q0z = P2P4 · · ·P2nz = z. Similarly to in step (c) it can be shown that
Q0z = P2z = · · · = P2nz = z. Thus, we have proved that

Q0z = Q1z = P1z = P2z = · · · = P2n−1z = P2nz = z.

To prove the uniqueness property of z, let z′ be another common fixed point of
the aforementioned maps; then

Q0z
′ = Q1z

′ = P1z
′ = P2z

′ = · · · = P2n−1z
′ = P2nz

′ = z′.

Putting u = z, v = z′, G1 = P2P4 · · ·P2n and G2 = P1P3 · · ·P2n−1 in condition (5),
we have

d(Q0z,Q1z
′) ≤ M(z, z′)− ϕ(M(z, z′))

= max{d(G1z,Q0z), d(G2z
′, Q1z

′), d(G1z,G2z
′),

1
2
[d(G2z

′, Q0z) + d(G1z,Q1z
′)]} − ϕ(M(z, z′)).

Then d(z, z′) ≤ d(z, z′) − ϕ(d(z, z′)). So z = z′ and this shows that z is a unique
common fixed point of the maps. �

Remark 2.6. Theorem 1.2 is a special case of Theorem 2.5 with Q0 = S,Q1 = T
and Pi = I(identity map) for all 1 ≤ i ≤ 2n. Also, Theorem 2.5 is a generalization
of Theorem 2.4 with ϕ(t) = (1− k)t.

Theorem 2.7. Let (X, d) be a complete metric space and let {Tα}α∈J and {Pi}2ni=1

be two families of self-mappings on X. Suppose, there exists a fixed β ∈ J such that
(1) Tα(X) ⊆ P2P4, · · ·P2n(X) for each α ∈ J and Tβ(X) ⊆ P1P3, · · ·P2n−1(X);
(2)
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P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,
P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,

...
P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,

Tβ(P4 · · ·P2n) = (P4 · · ·P2n)Tβ,
Tβ(P6 · · ·P2n) = (P6 · · ·P2n)Tβ,

...
TβP2n = P2nTβ,

P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,
P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,

...
P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,

Tα(P3 · · ·P2n−1) = (P3 · · ·P2n−1)Tα,
Tα(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Tα,

...
TαP2n−1 = P2n−1Tα, (∀α ∈ J);

(3) P2 · · ·P2n or Tβ is continuous;
(4) The pair (Tβ, P2 · · ·P2n) is compatible and the pairs (Tα, P1 · · ·P2n−1) are weakly
compatible;
(5) There exists ϕ ∈ Φ such that
d(Tβu, Tαv) ≤M(u, v)− ϕ(M(u, v)), for all u, v ∈ X and for all α ∈ J,where

M(u, v) = max{d(P2P4 · · ·P2nu, Tβu), d(P1P3 · · ·P2n−1v, Tαv),
d(P2P4 · · ·P2nu, P1P3 · · ·P2n−1v),
1
2
[d(P1P3 · · ·P2n−1v, Tβu) + d(P2 · · ·P2nu, Tαv)]}

Then, all Pi and Tα have a unique common fixed point in X.

Proof. Let Tα0 be a fixed element of {Tα}α∈J . By Theorem 2.5 with Q0 = Tβ
and Q1 = Tα0 it follows that there exists some z ∈ X such that Tβz = Tα0z =
P1P3 · · ·P2n−1z = P2P4 · · ·P2nz = z. Let α ∈ J be arbitrary. Then from condition
(5),

d(Tβz, Tαz) ≤ max{d(P2P4 · · ·P2nz, Tβz), d(P1P3 · · ·P2n−1z, Tαz),
d(P2P4 · · ·P2nz, P1P3 · · ·P2n−1z),
1
2
[d(P1P3 · · ·P2n−1z, Tβz) + d(P2 · · ·P2nz, Tαz)]} − ϕ(M(z, z)).

So d(z, Tαz) ≤ d(z, Tαz) − ϕ(d(z, Tαz)). Thus Tαz = z for each α ∈ J . Since
condition (5) implies the uniqueness of the common fixed point, Theorem 2.7 is
proved. �

Remark 2.8. Theorem 2.1 is a special case of Theorem 2.7 with Pi = I (identity
map), for all 1 ≤ i ≤ 2n and ϕ(t) = (1− λ)t.

Now, we prove a common fixed point for any number of mappings.

Corollary 2.9. Let P0, P1, P2, · · · , Pn be self-maps on a complete metric space (X, d)
satisfying conditions:
(1) P0(X) ⊆ P1P2, · · ·Pn(X);
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(2)

P1(P2 · · ·Pn) = (P2 · · ·Pn)P1,
P1P2(P3 · · ·Pn) = (P3 · · ·Pn)P1P2,

...
P1 · · ·Pn−1(Pn) = (Pn)P1 · · ·Pn−1;

(3) There exists ϕ ∈ Φ such that
d(P0u, v) ≤M(u, v)− ϕ(M(u, v)), for all u, v ∈ X where

M(u, v) = max{d(u, P0u), d(P1P2 · · ·Pnv, v),
d(u, P1P2 · · ·Pnv), 1

2
[d(P1P2 · · ·Pnv, P0u) + d(u, v)]}.

Then, P0, P1, P2, · · · , Pn have a unique common fixed point in X.
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