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Abstract

In this paper, we introduce the concept of orthogonal contractive mappings and prove some fixed
point theorems for such contractions. We establish our results in orthogonal bounded complete
metric spaces via the notion of τ -distances. Moreover, an application to a differential equation is
given.
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1. Introduction

Over the years many authors have improved, extend and generalized Banach’s fixed point in many
directions.
In 2003, Aamri and El Moutwakil [1] introduced the concept of τ -distances in general topological
spaces which extend many known spaces in the literature. Moreover, they proved a version of the
Banach’s fixed point in this setting.
On the other hand, in 2017, Eshaghi Gordji et al [4] introduced the notion of orthogonal sets and
gave an extension of Banach’s fixed point. Since then, many results have appeared in the literature
concerning this notion [5, 6, 7, 9].
On the other hand, Eivazi Damirchi Darsi Olia et al [3] introduced the concept of orthogonal cone
metric spaces and established some versions of fixed point theorems in incomplete orthogonal cone
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metric spaces. Khalehoghli et al, in [8] defined R-topological spaces and SR-topological spaces and
showed that this type of spaces is very powerful and applicable to many cases for example in the
context of fixed point theory, functional analysis...
Also, Hosseini et al [6] established some fixed point theorems for Banach’s contraction and Suzuki
type θ-contraction in the setting of orthogonal modular metric spaces.
Very recently, in 2019, Touail et al [11] proved, some fixed point theorems for contractive mappings in
bounded complete metric spaces via τ -distances without using the compactness, some related results
can be found in [12, 13, 14, 15].
In this paper, we modify some concepts defined in [11] to orthogonal sets and establish some fixed
point theorems via two technical lemmas in this direction. Our results generalize and improve the
proven results in [11] and many known results in the literature. Furthermore, we apply our results
to prove the existence and the uniqueness of a solution for a differential equation.

2. Preliminaries

The aim of this section is to present some notions and results used in the paper.
Let (X, τ) be a topological space and p : X × X → [0,∞) be a function. For any ε > 0 and any
x ∈ X, let Bp(x, ε) = {y ∈ X : p(x, y) < ε}.
Definition 2.1. (Definition 2.1 [1]) The function p is said to be τ−distance if for each x ∈ X and
any neighborhood V of x, there exists ε > 0 such that Bp(x, ε) ⊂ V .

Definition 2.2. A sequence {xn} in a Hausdorff topological space X is a p−Cauchy if it satisfies
the usual metric condition with respect to p, in other words, if limn,m→∞ p(xn, xm) = 0.

Definition 2.3. (Definition 3.1 [1])
Let (X, τ) be a topological space with a τ -distance p.

1. X is S-complete if for every p-Cauchy sequence (xn), there exists x in X with lim p(x, xn) = 0.
2. X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists x in X with limxn = x

with respect to τ .
3. X is said to be p-bounded if sup{p(x, y)/x, y ∈ X} <∞.

Lemma 2.4. (Lemma 3.1[1])
Let (X, τ) be a Hausdorff topological space with a τ−distance p, then

1. Let (xn) be an arbitrary sequence in X, x ∈ X and (αn) be a sequence in R+ converging to 0
such that p(x, xn) ≤ αn for all n ∈ N. Then (xn) converges to x with respect to the topology τ .

2. p(x, y) = 0 implies x = y.
3. Let (xn) be a sequence in X such that limn→∞ p(x, xn) = 0 and limn→∞ p(y, xn) = 0, then
x = y.

Definition 2.5. ([1]) Ψ is the class of all functions ψ : [0,+∞) −→ [0,+∞) satisfying:
i) ψ is nondecreasing,
ii) limψn(t) = 0, for all t ∈ [0,∞).

Theorem 2.6. (Theorem 4.1 [1])
Let (X, τ) be a Hausdorff topological space with a τ−distance p. Suppose that X is p−bounded and
S−complete. Let T be a selfmapping of X such that

p(Tx, Ty) ≤ ψ(p(x, y)),

for all x, y ∈ X, where ψ ∈ Ψ. Then T has a unique fixed point.



Fixed point theorems on orthogonal complete metric spaces 12 (10) No. 2, 1801-1809 1803

Now, we recall the definition of an orthogonal set and some related basic notions.

Definition 2.7. [4]. Let X ̸= ∅ and let ⊥⊂ X×X be a binary relation. If ⊥ satisfies the following
hypothesis:

∃x0 : (∀y, y ⊥ x0) or (∀y, x0 ⊥ y), (2.1)

then it called an orthogonal set (briefly O−set). we denote this O − set by (X,⊥).

Note that in the above Definition, x0 is said to be an orthogonal element.

Remark 2.8. In general, x0 is not unique, otherwise, (X,⊥) is called unique orthogonal set and the
element x0 is said to be a unique orthogonal element.

Definition 2.9. [4]. Let (X,⊥) be an O-set. A sequence {xn} is called an orthogonal sequence
(briefly, O-sequence) if

(∀n, xn ⊥ xn+1) or (∀n, xn+1 ⊥ xn).

Definition 2.10. [4] The triplet (X,⊥, d) is called an orthogonal metric space if (X, d) is a metric
space and (X,⊥) is an O-set.

Definition 2.11. [4] Let (X,⊥, d) be an Orthogonal metric space. Then, a mapping T : X → X is
said to be orthogonally continuous (briefly ⊥-continuous) in x ∈ X, if for each O-sequence {xn} ⊂ X
such that xn → x as n→ ∞, we obtain Txn → Tx as n→ ∞. Also, T is said to be ⊥ −continuous
on X if T is ⊥ −continuous in each x ∈ X.

Definition 2.12. [4] Let (X,⊥, d) be an Orthogonal metric space. Then, X is said to be orthogo-
nally complete (or ⊥ −complete) if every Cauchy O−sequence is convergent.

Definition 2.13. [4] Let (X,⊥) be an O-set. A mapping T : X → X is said to be ⊥ −preserving
if Tx ⊥ Ty whenever x ⊥ y.

Remark 2.14. [4] Every complete metric space (continuous mapping) is O-complete metric space
(⊥ −continuous mapping) and the converse is not true.

Theorem 2.15. [4]. Let (X,⊥, d) O-complete metric space and T a selfmapping on X which is
⊥ −preserving and ⊥ −continuous. If there exists k ∈ [0, 1) such that for all x, y ∈ X

x ⊥ y implies d(Tx, Ty) ≤ kd(x, y).

Then T has a unique fixed point.

Now, we give some examples of orthogonal spaces

Example 2.16. [4] Let X = Z. Define the binary relation ⊥ on X by m ⊥ n if there exists k ∈ Z
such that m = kn. It is easy to see that 0 ⊥ n for all n ∈ Z. Hence, (X,⊥) is an O-set.

Example 2.17. [4] Let X be an inner product space with the inner product (., .). Define the binary
relation ⊥ on X by x ⊥ y if (x, y) = 0. It is easy to see that 0 ⊥ x for all x ∈ X. Hence, (X,⊥) is
an O-set.
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For more details, we refer the reader to see [4].
At the end of this section, we recall the proven results in [11]

Theorem 2.18. (Theorem 3 [11]) Let T : X → X be a mapping of a bounded complete metric space
(X, d) such that

inf
x ̸=y∈X

{d(x, y)− d(Tx, Ty)} > 0. (2.2)

Then T has a unique fixed point.

Definition 2.19. Definition 8 [11]) Let T : X → X be a mapping of a metric space (X, d). T will
be said an E-weakly contractive map if for all x, y ∈ X

d(Tx, Ty) ≤ d(x, y)− ϕ[1 + d(x, y)],

where ϕ : [1,∞) → [0,∞) is a function satisfying
i) ϕ(1) = 0,
ii) inf

t>1
ϕ(t) > 0.

Theorem 2.20. (Theorem 9 [11]) Let T : X → X be an E-weakly contractive map of a bounded
complete metric space (X, d). Then T has a unique fixed point.

3. Main results

In this section, we start the following definitions and lemmas.

Definition 3.1. The triplet (X, τ,⊥) is called an orthogonal Hausdorff topological space with a
τ−distance p if (X, τ) is a Hausdorff topological space with a τ−distance p and (x,⊥) is an orthogonal
set.

Definition 3.2. Let (X, τ,⊥) be an orthogonal Hausdorff topological space with a τ−distance p.

� Let {xn} an O-sequence in X. If {xn} is p-Cauchy then it is called orthogonal p-Cauchy
sequence (O-p-Cauchy sequence).

� X is said to be orthogonal S-complete if for every O-p-Cauchy sequence {xn} there exists u ∈ X
such that lim p(u, xn) = 0.

Lemma 3.3. Let (X, τ,⊥) be an orthogonal Hausdorff topological space with a τ−distance p. Sup-
pose that X is p-bounded and orthogonal S-complete. Let T be a ⊥-continuous and ⊥-preserving
selfmapping of X such that, for all x, y ∈ X

x ⊥ y implies p(Tx, Ty) ≤ ψ(p(x, y)), (3.1)

where ψ ∈ Ψ. Then T has a unique fixed point.
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Proof . Since X is an orthogonal set, there exists at least x0 ∈ X such that

∀y ∈ X x0 ⊥ y or ∀ y ∈ Xy ⊥ x0 (3.2)

This implies that x0 ⊥ Tx0 or Tx0 ⊥ x0. Consider the iterated sequence {xn} such that xn = T nx0
for all n ∈ N. As T is a ⊥ −perserving, we obtain either T nx0 ⊥ T n+1x0 or T n+1x0 ⊥ T nx0 for all
n ∈ N. Then {xn} is a O-sequence. Now, let n,m ∈ N, we obtain from (3.2) x0 ⊥ xm or xm ⊥ x0,
using the fact that T is ⊥-preserving, we get xn ⊥ xn+m or xn+m ⊥ xn, which implies by (3.1) that

p(xn, xn+m) ≤ ψ[p(xn−1, xn+m−1)]

...

≤ ψn[p(x0, xm)]

≤ ψn[M ]

(3.3)

or

p(xn+m, xn) ≤ ψ[p(xn+m−1, xn−1)]

...

≤ ψ[p(xm, x0)]

≤ ψn[M ],

(3.4)

where M = sup{p(x, y)/x, y ∈ X}.
It can be seen that lim p(xn, xn+m) = 0, then (xn) is an O-p-Cauchy sequence. Since X is orhtogonal
S-complete, we deduce that there exists u ∈ X such that lim(u, xn) = 0, and hence by Lemma 2.4
we obtain that (xn) converges to u with respect to u. On the other hand, T is O-continuous, hence
,(Txn) converges to Tu. By the uniqueness of the limit, we obtain Tu = u.
For uniqueness, let v ∈ X a fixed point of T , hence we have either x0 ⊥ v or v ⊥ x0. From the
orthogonality preserving, we get xn ⊥ v or v ⊥ xn for all n ∈ N. So,

p(v, xn) ≤ ψ(p(v, xn−1))

≤ ψn(p(v, x0)).
(3.5)

Using Lemma 2.4 and letting n→ ∞ in (3.5), we obtain u = v. □

Corollary 3.4. (Theorem 4.1 [1])
Let (X, τ) be a Hausdorff topological space with a τ−distance p. Suppose that X is p−bounded and
S−complete. Let T be a selfmapping of X such that

p(Tx, Ty) ≤ ψ(p(x, y)),

for all x, y ∈ X, where ψ ∈ Ψ. Then T has a unique fixed point.

Lemma 3.5. Let (X, d) be a metric space and p : X ×X → R+ be a function defined by

p(x, y) = ed(x,y) − 1. (3.6)

Then p is a τd-distance on X where τd is the metric topology.
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Proof . Let (X, τd) be the topological space with the metric topology τd, let x ∈ X and V an
arbitrary neighborhood of x, then there exists ε > 0 such that Bd(x, ε) ⊂ V , where Bd(x, ε) = {y ∈
X, d(x, y) < ε} is the open ball.
It easy to see that Bp(x, e

ε − 1) ⊂ Bd(x, ε), indeed:
Let y ∈ Bp(x, e

ε − 1), then p(x, y) < eε − 1, which implies that ed(x,y) < eε, and hence d(x, y) < ε. □

Definition 3.6. Let (X,⊥, d) be an orthogonal metric space and T : X −→ X be a mapping.
Suppose that T is ⊥-preserving and ⊥-continuous such that

inf
x⊥y,x̸=y∈X

{d(x, y)− d(Tx, Ty)} > 0. (3.7)

Then T is called orthogonal contractive mapping.

Now, we give the first fixed point theorem.

Theorem 3.7. Let (X,⊥, d) be an O-complete orthogonal bounded metric space and T : X −→ X
be an orthogonal contractive mapping. Then T has a unique fixed point.

Proof . Let α = inf
x⊥y,x̸=y∈X

{d(x, y)− d(Tx, Ty)} which implies that for all x ̸= y ∈ X, with x ⊥ y

d(Tx, Ty) ≤ d(x, y)− α.

Then
ed(Tx,Ty) ≤ ked(x,y),

where k = e−α < 1. Also,
p(Tx, Ty) ≤ kp(x, y), (3.8)

for all x, y ∈ X such that x ⊥ y, with p(x, y) = ed(x,y) − 1 is the function mentioned in Lemma 3.5.
Now , if we take ψ(t) = kt for all t ∈ [0,∞) in Lemma 3.3, we deduce that T has a unique fixed
point. □

Corollary 3.8. (Theorem 3 [11]) Let T : X → X be a mapping of a bounded complete metric space
(X, d) such that

inf
x ̸=y∈X

{d(x, y)− d(Tx, Ty)} > 0. (3.9)

Then T has a unique fixed point.

Example 3.9. Let X = {0, 1, 2} endowed with the usual metric d(x, y) = |x − y|. Consider the
mapping T : X → X defined as

T0 = 0, T1 = 0 and T2 = 1.

Define a relation ⊥ on X by

x ⊥ y if and only if xy ∈ {0, 1}.

Let x ̸= y ∈ X, then xy ∈ {0}, and hence, it easy to see that T is ⊥-continuous and T is ⊥-
preserving. So we have the following cases:
Case 1: d(0, 1)− d(T0, T1) = 1.
Case 2: d(0, 2)− d(T0, T2) = 1.
Therefore, all conditions of Theorem 3.7 are satisfied and so T has the unique fixed point 0. On the
other hand, since d(1, 2)− d(T1, T2) = 0, so Corollary 3.8 does not ensure the existence of the fixed
point.
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Now, motivated by [2, 10, 11], we define a new class of weakly contractive maps and we use Theorem
3.7 to prove a fixed point theorem for this type of maps.

Definition 3.10. Let T : X → X be a mapping of an orthogonal metric space (X,⊥, d). Suppose
that T is ⊥-preserving and ⊥-continuous, then T will be said an orthogonal E-weakly contractive map
(⊥-E-weakly contractive map) if for all x, y ∈ X

x ⊥ y implies d(Tx, Ty) ≤ d(x, y)− ϕ[1 + d(x, y)],

where ϕ : [1,∞) → [0,∞) is a function satisfying
i) ϕ(1) = 0,
ii) inf

t>1
ϕ(t) > 0.

Theorem 3.11. Let T : X → X be an ⊥-E-weakly contractive map of a bounded ⊥-complete metric
space (X,⊥, d). Then T has a unique fixed point.

Proof . Let x ̸= y ∈ X such that x ⊥ y, using Definition 3.10, we obtain

0 < inf
t>1

ϕ(t)

≤ ϕ[d(x, y) + 1]

≤ d(x, y)− d(Tx, Ty),

(3.10)

and hence, inf
x⊥y,x̸=y∈X

{d(x, y)−d(Tx, Ty)}. Now, from Theorem 3.7, we conclude that T has a unique

fixed point. □

Corollary 3.12. (Theorem 9 [11]) Let T : X → X be an E-weakly contractive map of a bounded
complete metric space (X, d). Then T has a unique fixed point.

Example 3.13. Let X = {0}∪ [1, 4]. Suppose that x ⊥ y if and only if xy ≤ 1, it is easy to see that
(X,⊥) is an O-set. Define T : X → X by

Tx =


0, if x ∈ {0, 1}
2x if x ∈ (1, 2]
x
2

if x ∈ (2, 4]

Let x, y ∈ X, x ⊥ y implies x, y ∈ {0, 1}, so for all x, y ∈ X

x ⊥ y implies d(Tx, Ty) ≤ d(x, y)− ϕ[1 + d(x, y)],

where ϕ : [1,∞) → [0,∞) is a function defined by

ϕ(t) =

{
0 if t = 1
1 if t > 1

.

Then T satisfies all conditions of Theorem 3.11 and 0 is the unique fixed point. Note that T does
not satisfy all conditions of Corollary 3.12, indeed, d(T1, T2) = 4 > 0 = d(1, 2)− ϕ[1 + d(1, 2)].
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4. Application

In this section, we prove the existence and uniqueness of a solution of the following differential
equation: {

x′(t) = f(t, x(t)), t ∈ I := [1, τ ], τ ∈ [1,∞);
x(0) = a, a ≥ 2,

(4.1)

where x ∈ X = C(I) the space of all continuous functions from I into R and f : I × R→ R+ is a
continuous function satisfying the following assumptions:
There exists M > 0, for any x, y ∈ X with
x(s)y(s) ≥ y(s) or x(s)y(s) ≥ x(s), we have

|f(s, x(s))− f(s, y(s))| ≤ 1

τ
[|x(s)− y(s)| −M ], (4.2)

where x(s) ̸= y(s) for all s ∈ I.

Theorem 4.1. Under the above assumptions the differential equation (4.1) has a unique solution.

Proof . We define an orthogonal relation ⊥ on X by

x ⊥ y ⇐⇒ x(s)y(s) ≥ y(s) or x(s)y(s) ≥ x(s) for all s ∈ I. (4.3)

From (4.3), it is easy to see that ⊥ is an orthogonal relation on X. We endow X with the metric
d : X ×X → [0,∞) defined by

d(x, y) = sup
t∈I

|x(t)− y(t)|

for all x, y ∈ X. Therefore, (X,⊥, d) is an O-complete orthogonal metric space. Define a mapping
T : X → X as follows:

Tx(t) := a+

∫ t

0

f(s, x(s))ds. (4.4)

Now, we will show the other conditions of Theorem (3.7):
T is generalized ⊥ preserving. Let x, y ∈ X such that x ⊥ y and t ∈ I, we obtain

Tx(t) := a+

∫ t

0

f(s, x(s))ds ≥ 2,

and hence Tx(t)Ty(t) ≥ Ty(t), then
Tx ⊥ Ty.

T is ⊥ continuous. It is clear to see From the fact Tx(t) := a +
∫ t

0
f(s, x(s))ds. that T is an

orthogonal continuous mapping.
Note that (4.1) has a unique solution if only if T has a unique fixed point.
Now, let x, y ∈ X such that x ⊥ y and x ̸= y, it follows from (4.2) that for any t ∈ I

|T (x)(t)− T (y)(t)| =
∣∣∣∣∫ t

0

f(s, x(s))ds−
∫ t

0

f(s, y(s))ds

∣∣∣∣
=

∣∣∣∣∫ t

0

[f(s, x(s))− f(s, y(s))]ds

∣∣∣∣
≤

∫ t

0

|f(s, x(s))− f(s, y(s))| ds

≤ d(x, y)−M
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hence
d(Tx, Ty) ≤ d(x, y)−M

for all x, y ∈ X. Then inf
x⊥y,x̸=y

{d(x, y) − d(Tx, Ty)} ≥ M > 0, which implies by Theorem 3.7 that

there exists a unique solution of (4.1). □
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