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Abstract

We consider the following two-dimensional differential system:

{ ẋ = ax2 + bxy + cy2 +Φ(x, y) ,
ẏ = dx2 + exy + fy2 +Ψ(x, y) ,

in which lim(x,y)→(0,0)
Φ(x,y)
x2+y2 = lim(x,y)→(0,0)

Ψ(x,y)
x2+y2 = 0 and ∆ = (af − cd)2 − (ae − bd)(bf − ce) ≠ 0.

By calculating Poincare index and using Bendixson formula we will find all the possibilities under
definite conditions for classifying the system by means of kinds of sectors around the origin which is
an equilibrium point of degree two.
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1. Introduction and preliminaries

The subject of classification of singular points of second order homogeneous ODE’s was initiated
for the first time in [4] without any explicit criteria. Another approach based on analyzing the integral
curves can be found in [6]. Also some applications and related results can be find in ([1, 2, 3, 5, 7, 8]).
Almost all of them are about the systems of equations without perturbations. In this paper, we
present a complete characterization of singular points for a more general class of quadratic systems
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with perturbations. Preliminary results, definitions and terminologies come from [9].
Consider the following second order system of equations

{ ẋ = ax2 + bxy + cy2 ,
ẏ = dx2 + exy + fy2 .

(1.1)

It is not hard to see that (1.1) has not a critical point (x, y) ≠ (0,0), with y ≠ 0 if and only if the
following equations hold

{ am2 + bm + c = 0 ,
dm2 + em + f = 0

and with x ≠ 0 if and only if the following ones, have not a common root.

{ cm2 + bm + a = 0 ,
fm2 + em + d = 0 .

Each case is equivalent to
∆ = (af − cd)2 − (ae − bd)(bf − ce) ≠ 0.

In the system

{ ẋ = ax2 + bxy + cy2 +Φ(x, y) ,
ẏ = dx2 + exy + fy2 +Ψ(x, y) ,

(1.2)

with the additional condition lim(x,y)→(0,0)
Φ(x,y)
x2+y2 = lim(x,y)→(0,0)

Ψ(x,y)
x2+y2 = 0 the origin is an isolated

critical point. To see this, note that the following system

{ ax2 + bxy + cy2 +Φ(x, y) = 0 ,
dx2 + exy + fy2 +Ψ(x, y) = 0 ,

when x2 + y2 ≠ 0 can be rewritten in the form of

⎧⎪⎪⎨⎪⎪⎩

aX2 + bXY + cY 2 + Φ(x,y)
x2+y2 = 0 ,

dX2 + eXY + fY 2 + Ψ(x,y)
x2+y2 = 0 ,

in which X = x√
x2+y2

and Y = y
√
x2+y2

or

Ð→
S (X,Y ) +Ð→F (x, y) = 0,

in which
Ð→
S (X,Y ) = (aX2 + bXY + cY 2, dX2 + eXY + fY 2) and Ð→F (x, y) = (Φ(x,y)x2+y2 ,

Ψ(x,y)
x2+y2

). When

x2 + y2 ≠ 0 we have X2 + Y 2 = 1, therefore min ∥S(X,Y )∥ = k > 0. Since lim(x,y)→(0,0)F (x, y) = 0,
implies ∥F (x, y)∥ < k in 0 < x2 + y2 < δ, for some δ > 0, then the above equation has not any solution
in 0 < x2 + y2 < δ. So we have proved the following proposition.

Proposition 1.1. The following set of conditions

lim(x,y)→(0,0)
Φ(x,y)
x2+y2 = 0 ,

lim(x,y)→(0,0)
Ψ(x,y)
x2+y2 = 0,

∆ = (af − cd)2 − (ae − bd)(bf − ce) ≠ 0 .

implies that origin is an isolated equilibrium point for the system

{ ẋ = ax2 + bxy + cy2 +Φ(x, y) ,
ẏ = dx2 + exy + fy2 +Ψ(x, y) .
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Lemma 1.2. The Poincare index of (1.2) is

J =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−2 ae − bd < 0 and ∆ < 0
0 ∆ > 0
2 ae − bd > 0 and ∆ < 0

Proof . First note that the Poincare index of following system

{ ẋ = ax2 + bxy + cy2,
ẏ = dx2 + exy + fy2 .

is calculated by

J = 1
2π ∮c d[arctan(

ax2+bxy+cy2

dx2+exy+fy2 )]

= 1
π ∫

+∞

−∞
d[arctan( aξ2+bξ+cdξ2+eξ+f )] ,

which has only the values 2,−2,0 when ∆ ≠ 0. On the other hand

J = J(a, b, c, d, e, f) = 1

π ∫
+∞

−∞

(ae − bd)ξ2 − 2(af − cd)ξ + (bf − ce)
(aξ2 + bξ + c)2 + (dξ2 + eξ + f)2 dξ

is continuous on R6 − {∆ = 0}. This set has three disjoint open connected subsets:

R6 − {∆ = 0} = {∆ > 0} ∪ {∆ < 0, ae − bd < 0} ∪ {∆ < 0, ae − bd > 0}.

Therefore the proof is complete for system (1.1). By the Roche theorem we have the same conclusion
for (1.2). ◻

2. Main results

The orbits of system (1.2) in polar coordinates satisfy the following equation

r
dθ

dr
= G(θ) + o(1)
H(θ) + o(1) as r → 0

in which

G(θ) = cosθ(d cos2 θ + e sin θ cos θ + f sin2 θ) − sin θ(a cos2 θ + b sin θ cos θ + c sin2 θ)

and
H(θ) = sin θ(d cos2 θ + e sin θ cos θ + f sin2 θ) + cos θ(a cos2 θ + b sin θ cos θ + c sin2 θ).

It is clear that the equations G(θ) = 0 and H(θ) = 0 have not a common root. Therefore the necessary
condition for θ = θ0 to be a critical direction is G(θ0) = 0. By some elementary calculations, we can
find that there are two, four, or six roots forG(θ) = 0, which at least two of them have odd multiplicity,
then we have at least two orbit which tends to zero along these directions. So the origin is not a
focus or center. Let θ = θk be a real root of the characteristic equation G(θ) = 0 and consider the
sectors

△ÐOAkBk ∶ ∣θ − θk∣ ⩽ ε, r ⩽ r0,
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such that they have no points in common except the origin. In the outside of these sectors, all orbits
move from one radial side to another radial side and cannot tend to the critical points in there.
When θ = θk the real roots of the characteristic equation G(θ) = 0, have odd multiplicity l and if
G(l)(θk)H(θk) > 0 then all orbits in the sector tend to the critical point along the direction θ = θk.
In this case, we call the sector, normal region of the first type. Also, if G(l)(θk)H(θk) < 0, then
there exist a point or closed subarc in ÏAkBk such that any orbit starting from there will tend to
the critical point along the direction θ = θk, we call the sector in this case a normal region of the
second type. The problem of determining whether there is one or infinitely many orbits tending to
the critical point O along θ = θk, will be called the first classification problem. When l is even, there
is no orbit in ÏAkBk tending to the critical point O or there exists a P ∈ OBk or ÏAkBk, such that for
any R ∈ OP or R ∈ OBk ∪ÏBkP , hence the orbit stating from R must tend to the critical point O
along the direction θ = θk, then in this case, we call the sector a normal region of the third type. The
problem that there may be infinitely many orbits or no orbit tending to the critical point O along
θ = θk, will be called the second classification problem.

Theorem 2.1. Suppose ∆ = (af − cd)2 − (ae − bd)(bf − ce) < 0, ae − bd < 0 and

lim
(x,y)→(0,0)

Φ(x, y)
x2 + y2 = lim

(x,y)→(0,0)

Ψ(x, y)
x2 + y2 = 0.

Then the origin is the isolated equilibrium point of (1.2) with six hyperbolic sectors.

Proof . By Lemma (1.2), we have J = −2, then the Poincare-Bendixson formula

J = 1 + e − h
2

gives that e = 0 and h = 6. Thus (1.1) has six straight line orbits and the characteristic equation
G(θ) = 0 has exactly six simple roots in which around each of them there is a normal region of the
second type. Therefore, we have six hyperbolic sectors for (1.2). ◻

Theorem 2.2. Suppose ∆ = (af − cd)2 − (ae − bd)(bf − ce) > 0 and

lim
(x,y)→(0,0)

Φ(x, y)
x2 + y2 = lim

(x,y)→(0,0)

Ψ(x, y)
x2 + y2 = 0.

Then the origin is the isolated equilibrium point of (1.2) with two hyperbolic sectors, no elliptic sector
and the others are parabolic.

Proof . By Lemma (1.2), we have J = 0, then Poincare-Bendixson formula

J = 1 + e − h
2

gives that (e, h) = (0,2) , (1,3) or (2,4). In (1.1) because of symmetry, e and h are even numbers,
therefore the second case is impossible. Also if we have e = 2 and h = 4 we must have six sectors and
six straight line orbits which normal regions about two of them are of the third type. Therefore the
related directions must have even multiplicity in characteristic equation. This contradicts that the
characteristic equation has at most six roots, with calculation of multiplicities, therefore in (1.1) we
must have e = 0 and h = 2, and the proof is completed for (1.1). Now we will prove for (1.2). When
the characteristic equation G(θ) = 0 has two roots, then in (1.1) there are two straight line orbits
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and two hyperbolic sectors therefore the sectors about the roots are normal regions of the second
type and there are two hyperbolic sectors for (1.2) and no elliptic and parabolic sector. When we
have four roots, because two of them are of the multiplicity two we have two normal regions of the
third type and because we have two hyperbolic sectors in (1.1), the other two roots have normal
regions of the second type therefore we have in (1.2) two hyperbolic sectors, no elliptic sector and
by the second classification problem may or may not have prabolic sectors. When we have six roots,
since all of them are simple, the normal regions about each of them are of the first and second type,
because we have two hyperbolic sectors in (1.1), there are consecutive roots θ1, θ2 and θ1 + π, θ2 + π
such that the normal regions about them are of the second type. Therefore, the other two directions
have normal region of the first type about themselves. Then we have two hyperbolic sectors, four
parabolic sectors and no elliptic sector in (1.2). ◻

Theorem 2.3. Suppose ∆ = (af − cd)2 − (ae − bd)(bf − ce) < 0 and ae − bd > 0 and

lim
(x,y)→(0,0)

Φ(x, y)
x2 + y2 = lim

(x,y)→(0,0)

Ψ(x, y)
x2 + y2 = 0.

Then the origin is the isolated equilibrium point of (1.2) with two elliptic sectors, no hyperbolic sector
and the others are parabolic.

Proof . By Lemma (1.2), we have J = 2, then Poincare-Bendixson formula

J = 1 + e − h
2

gives that (e, h) = (2,0) , (3,1) or (4,2). In system (1.1), because of the symmetry, e and h are even
numbers, therefore the second case is impossible. Also if we have e = 4 and h = 2 we must have six
sectors and six straight line orbits which normal regions around two of them are of the third type.
Hence, the related directions must have even multiplicity in characteristic equation. This contradicts
with the fact that the characteristic equation has at most six roots, with algebraic multiplicity,
therefore in (1.1) we must have e = 2 and h = 0, and the proof is completed for (1.1). Now we will
prove the result for the system (1.2). When the characteristic equation G(θ) = 0 has two roots, then
in (1.1) there are two straight line orbits and two elliptic sectors, thus the sectors around the roots
are normal regions of the first type and there are two elliptic sectors for (1.2) and no hyperbolic or
parabolic sector. When we have four roots, since two of them are of the multiplicity two we have two
normal regions of the third type, and since we have two elliptic sectors in (1.1), the other two roots
have normal regions of the first type. Therefore, we have in (1.2), two elliptic sectors, no hyperbolic
sector, and by the second classification problem may or may not have parabolic sectors. When we
have six roots, since all of them are simple, the normal regions around each of them are of the first
and second type, because we have two elliptic sectors in (1.1), there are consecutive roots θ1, θ2 and
θ1 + π, θ2 + π such that the normal regions around them are of the first type. Therefore, the other
two directions have normal region of the second type around themselves. Then we have two elliptic
sectors, four parabolic sectors and no hyperbolic sector in (1.2) ◻

3. Applications and examples

The method that we employed for the proofs of main results in the previous section also classify
the system by means of behavior of orbits in the vicinity of the origin, as we shall see in the following
examples.
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Example 3.1. Consider the system

{ ẋ = −x2 + y2 ,
ẏ = 2xy ,

which is a special case of (1.1) with a = −1, b = 0, c = 1, d = 0, e = 2, f = 0. Therefore ∆ = (af − cd)2 −
(ae − bd)(bf − ce) < 0 and ae − bd < 0, then by Theorem (2.1) there are six hyperbolic sectors. Also
G(θ) = 3 sin θ cos2 θ − sin3 θ, then there are six critical directions and along each direction we have
one straight line orbit which tends to the origin, correspond to θ1 = 0, θ2 = π

3 , θ3 = 2π
3 θ4 = π, θ5 = 4π

3

and θ6 = 5π
3 . Moreover, we have H(θ) = 3 sin2 θ cos θ − cos3 θ and G′(θ) = 3 cos3 θ − 9 sin2 θ cos θ. Then

G′(θi)H(θi) < 0 for i = 1,2, ...,6, therefore we have six isolated rays or six normal regions of the
second type. (Figure 1)

Figure 1:

Example 3.2. Now consider the system

{ ẋ = y2,
ẏ = x2.

Here we have a = 0, b = 0, c = 1, d = 1, e = 0, f = 0. Therefore ∆ = (af − cd)2 − (ae − bd)(bf − ce) > 0,
then by Theorem (2.2) there are two hyperbolic sectors. Also G(θ) = cos3 θ − sin3 θ, so there are
two critical directions and along each direction we have one straight line orbit which tends to the
origin, correspond to θ1 = π

4 and θ2 = 5π
4 . Moreover, we have H(θ) = sin θ cos θ(cos θ + sin θ) and

G′(θ) = −3 sin θ cos2 θ − 3 cos θ sin2 θ. Then G′(π4 )H(π4 ) < 0 and G′(5π4 )H(5π4 ) < 0, thus we have two
isolated rays or two normal regions of the second type. (Figure 2)

Example 3.3. Consider the system

{ ẋ = x2,
ẏ = xy + y2.

Here we have a = 1, b = 0, c = 0, d = 0, e = 1, f = 1 therefore ∆ = (af − cd)2 − (ae − bd)(bf − ce) > 0,
then by Theorem (2.2) there are two hyperbolic sectors. Also G(θ) = sin2θcosθ, then there are
four critical directions and along each direction we have one straight line orbit which tends to the
origin, correspond to θ1 = 0, θ2 = π

2 , θ3 = π and θ4 = 3π
2 . Here, the roots θ1 = 0, θ3 = π are of

multiplicity two. Then the normal reign around them are of the third type. Moreover, we have H(θ) =
sin2 θ cos θ+sin3 θ+cos3 θ and G′(θ) = 2 sin θ cos2 θ−sin3 θ. Then G′(π2 )H(π2 ) < 0 and G′(3π2 )H(3π2 ) < 0,
imply that we have two isolated rays or two normal regions of the second type. (Figure 3)
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Figure 2:

Figure 3:

Example 3.4. Now consider the system

{ ẋ = x2,
ẏ = −xy + 2y2.

We have a = 1, b = 0, c = 0, d = 0, e = −1, f = 2. Therefore ∆ = (af − cd)2 − (ae − bd)(bf − ce) > 0,
then by the Theorem (2.2) there are two hyperbolic sectors. Also G(θ) = sinθcosθ(2sinθ − 2cosθ),
then there are six critical directions and along each direction we have one straight line orbit which
tends to the origin (correspond to θ1 = 0, θ2 = π

4 , θ3 = π
2 θ4 = π, θ5 = 5π

4 , θ6 = 3π
2 ). Moreover, we have

H(θ) = − sin2 θ cos θ+2 sin3 θ+ cos3 θ and G′(θ) = −2 cos3 θ−2 sin3 θ+4 sin2 θ cos θ+4 sin θ cos2 θ. Then
G′(θi)H(θi) < 0 for i = 1,3,4,6, therefore we have four isolated ray or four normal region of second
type and G′(θi)H(θi) > 0 for i = 2,5, therefore we have two nodal rays or two normal regions of the
first type. (Figure 4)

Figure 4:

Example 3.5. Consider the system

{ ẋ = x2 − y2,
ẏ = 2xy.
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We have a = 1, b = 0, c = −1, d = 0, e = 2, f = 0. Therefore ∆ = (af − cd)2 − (ae − bd)(bf − ce) < 0 and
ae − bd > 0, then by the Theorem (2.3) there are two elliptic sectors.
Also G(θ) = sin θ cos2 θ+sin3 θ, then there are two critical directions and along each direction we have
one straight line orbit which tends to the origin (correspond to θ1 = 0, θ2 = π). Moreover, we have
H(θ) = cos3 θ + cos θ sin2 θ and G′(θ) = cos3 θ + cos θ sin2 θ. Then G′(0)H(0) > 0 and G′(π)H(π) > 0,
therefore we have two nodal rays or two normal regions of the first type. (Figure 5)

Figure 5:

Example 3.6. Consider the system

{ ẋ = x2 + xy,
ẏ = xy + 1

2y
2.

We have a = 1, b = 1, c = 0, d = 0, e = 1, f = 1
2 . Therefore ∆ = (af − cd)2 − (ae − bd)(bf − ce) < 0 and

ae − bd > 0, then by the Theorem (2.3) there are two elliptic sectors. Also, G(θ) = −1
2sin

2θcosθ then
there are four critical directions and along each direction we have one straight line orbit which tends
to the origin, θ1 = 0, θ2 = π

2 , θ3 = π, θ4 = 3π
2 . Here, the roots θ1 = 0, θ3 = π are of multiplicity two. Then

the normal reign about them are of the third type. Moreover, we have H(θ) = sin2 θ cos θ+sin θ cos2 θ+
cos3 θ + 1

2 sin
3 θ and G′(θ) = − sin θ cos2 θ + 1

2 sin
3 θ. Then G′(π2 )H(π2 ) > 0 and G′(3π2 )H(3π2 ) > 0,

therefore we have two nodal ray or two normal region of the first type. (Figure 6)

Figure 6:

Example 3.7. Consider the system

{ ẋ = 2x2 − 2y2,
ẏ = xy,

we have a = 2, b = 0, c = −2, d = 0, e = 1, f = 0. Therefore ∆ = (af − cd)2 − (ae − bd)(bf − ce) < 0 and
ae− bd > 0, then by the Theorem (2.3) there are two elliptic sectors. Also G(θ) = −sinθcos2θ+2sin3θ
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then there are six critical directions and along each direction we have one straight line orbit which
tends to the origin, θ1 = 0, θ2 = arctg( 1√

2
), θ3 = π − arctg( 1√

2
) θ4 = π, θ5 = π + arctg( 1√

2
), θ6 =

2π − arctg( 1√
2
). Moreover, we have H(θ) = − sin2 θ cos θ + 2 cos3 θ and G′(θ) = − cos3 θ + 8 sin2 θ cos θ.

Then G′(θi)H(θi) < 0 for i = 1,4, therefore we have two isolated ray or two normal region of the
second type, also G′(θi)H(θi) > 0 for i = 2,3,5,6, therefore we have four nodal rays or four normal
regions of the first type. (Figure 7)

Figure 7:
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