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Abstract

In this article, an ecology toxicant food chain system with Lotka-Volterra functional response for
predator population includes prey protection zone has been suggested and studied. Toxins are
excreted by all organisms as a form of defence. The prey follows the logistic growth law. The
equilibrium points have been established. The analytic approach has been used to investigate the
local stability for each acceptable equilibrium point. The global dynamics of this model was studied
using the Lyapunov function. Lastly, numerical simulations and graphical illustrations were used to
back up our analytic results.
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1. Introduction

The dynamical a link between predators and they’re prey is a major topic in ecological and mathe-
matical ecology because of it is universality and significance [3, 24]. They are used to tackle a variety
of difficult and unpredictable problems. As a result, it is regarded as an alternative approach for
enhancing our understanding of environmental physical and biological processes [16]. Mathematics
was a major influence on the modeling and understanding of biological phenomena over the last few
decades. In contrast, biologists have posed a number of difficult problems to mathematicians, which
have mirrored advances in the theory of nonlinear differential equations. In the field of theoreti-
cal population dynamics, differential equations of this type have long been important. One of the
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most well-known applications of mathematics to biology is differential equation models for species
interactions [18].

From the beginning, ecological science has been interested in prey–predator models. It was quickly
discovered that depending on the model parameters, the prey–predator system would exhibit a variety
of dynamical behaviors, including steady states, oscillations, and bifurcations. Many mathematicians
and ecologists have researched the population dynamics [28]. In (1925) Lotka and Volterra in (1931)
suggested the first the prey predator model on this a framework in which to describe the interaction
of species, but in (1992) the first step was taken by Berryman [23]. Predation is a fundamental
form of interaction that has an effect on all organisms’ population dynamics. The predator–prey
relationship is ubiquitous in nature, so it’s no surprise that it’s one of mathematical biology’s most
popular topics [4].

The effects of toxic contaminants on ecosystem dynamics are one of the most significant issues.
Any anthropogenic toxic agent released into the atmosphere as a result of human activities is classified
as a toxin. A toxin, unlike poisonous agents, is a poison that is formed naturally within an organism
[19]. From an environmental standpoint, the impact of toxic materials on ecological are a significant
issue [5]. Various researchers have studied effects of toxicants on biological species using mathematical
models suggested by Hallam and Clark [11], Hallam [12, 13], Hallam and De Luna [14], De Luna
and Hallam [6], Freedman and Shukla (1991), Huaping and Ma (1991), Shukla and Dubey [32].
However, the majority of these models focus on single-species or two-species ecological communities
in general, with no particular emphasis on terrestrial or aquatic ecosystems. Eco-toxicological issues
in the marine world have begun to be studied mathematically. In more recent years, eco-toxicological
effects of toxicants released by marine biological organisms themselves are of particular interest to
researchers [20]. The toxin produced by one species may have an effect not only on that species’
growth but also on that of other species [7]. Similarly, as human needs develop, factories create
massive amounts of toxic chemicals, which are then released into marine waters. Toxic compounds
have a negative impact on the ocean climate [30].

A food chain is a series of links in the food web that starts with producer organisms and ends with
predator, insectivorous or decomposing species at the apex, few of them are associated with living
in a wild environment, unlike the vast majority of research on the aquatic environment, which will
be the subject of our study [21]. Many applied mathematicians and ecologists have been studying
three species food chain systems in recent years. Hang and colleagues, analyzed and founded an
experimental marine food chain of three levels ’microalgae - zooplankton - fish’ to study the effect of
feeding selection on the convey of methyl mercury ’MeHg’ through the food chain system [25].

Migration occurs in a prey-predator system with multiple patches Due to many reasons such
as competition, age, sex; shortage of food, climate, and season, a species may relocate from one
patch to another. Making it one of the most common phenomena in nature [29]. Many zooplankton
species, for example, travel vertically every day due to light and food in aquatic environments.
Some species migrate downward during the day to avoid fish predation, while others migrate upward
at night to eat phytoplankton [1, 27]. The interaction between patches has important effects for
population stability and lifespan., according to empirical studies, for example [9, 33, 34]. The impact
of these interactions, such as migration, has received considerable attention from researchers in
ecosystems. Different migration rates were considered by some researchers both predators and prey.
For example, the researchers created a two patches model with predator and prey migration [2]. The
predator’s migration is assumed to be dependent based on the prey population in each patch, while
prey migration is assumed to be constant. They determined upper and lower population bounds
as well positive and border equilibrium points’ stability and instability [10]. A model was created
of two -patches in which The predator in the higher density patch migrates to the lower density
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area, whereas the prey does not migrate [17]. The authors demonstrated the existence of a purely
positive equilibrium in which the predator migrates at a constant rate while the prey migration
is dependent on the predator density [26]. The prey (predator) migration rate was presumed to
be dependent on the predator (prey) density, and it was shown that for a broad class of density-
dependent migration laws, there exists a special and stable migration equilibrium [8]. Migration is
also a critical demographic event that occurs in all animals. Migration is the physical transfer from
one place to another [22].

Therefore, the appropriate example for the conditions of the eco-toxicant model with migration
proposed is (Blue-ringed octopus, Moray eel, Grouper) where the (Moray eel) represents the first
predator feeding on the (Blue-ringed octopus) represented by prey where there are some areas that
(Moray eel) cannot enter to her. Therefore, the (Blue-ringed octopus) is safe in that area, which can
be considered a refuge area, and the (Grouper) feeds only on the first predator, which means that it
is the top predator.

Roy and Roy in [31] studied a predator- prey system with a Holling type two functional response
was analyzed for predator populations including prey shelter area. Harvesting efforts were also taken
into account for predators. While in this article, an ecology toxicant food chain system is suggested to
investigate the effects of toxics excreted by these organisms as a protection in the food chain system
of four species under the influence of migration. The law of logistic growth governs the behavior of
prey. The consequences of migration and toxins are discussed, on prey and predators.

2. Model formulation:

In this portion an eco-toxicant model with migration consists of three species (prey-first predator
- top predator) and the total prey population can be divided into two regions: first in protection zone
with density Z1( T) at time T and second in predatory zone with density Z2( T) at time T, the first
and top predator populations symbol by Z3( T) and Z4( T) at time T respectively. Interpretation of
the parameters used to study the dynamic system is as follows:

� The prey species grows logistically with carrying capacity (L1, L2) > 0 and the intrinsic growth
rate symbol by (s1, s2) > 0 of a prey in the protection zone and predatory zone respectively.

� The migration and emigration must take place between two regions at time t, δ1 is the prey
unit migration, δ2 and is the prey unit emigration of the prey population in protection zone.

� Each species secretes a toxic substance on the other as a defense (prey-first predator-top preda-
tor) according to the rate of toxins symbol by (b1, b2, b3, b4) > 0.

� The natural mortality rate of the prey in refuge zone and predatory zone symbol by (m1, m2 > 0)
and mortality rate of first and top predator in absence of it is feeding respectively symbol by
(m3, m4 > 0).

� The first- predator consumes the prey in predatory zone according to type Lotka -Volttra
functional response with consumption rates γ1 > 0,and the uptake rates of food from the prey
by first- predator in the predatory zone 0 < β1 < 1.

� Finally, the top- predator consumes the first -predator according to type Lotka -Volttra func-
tional response with the consumption of rates γ2 > 0, and the uptake rates of food from the
first -predator by top- predator 0 < β2 < 1.



1886 Radie, Majeed

We can now describe the dynamics of the above-mentioned assumption model by using a number of
non -linear differential equations:

dZ1

dT
= s1Z1

(
1− z1

L1

)
− δ1Z1 + δ2Z2 −m1Z1,

dZ2

dT
= s2Z2

(
1− z2

L2

)
+ δ1Z1 − δ2Z2 − γ1Z2Z3 − b1Z

2
2Z3 −m2Z2, (2.1)

dZ3

d T
= β1Z2Z3 − γ2Z3Z4 − b2Z

2
3Z2 − b3Z

2
3Z4 −m3Z3,

dZ4

d T
= β2Z3Z4 − b4Z

2
4Z3 −m4Z4.

The system (2.1) contains eighteen parameters; the system (2.1) can be dimensionless using the
relationship:

t = s1 T,z1 =
Z1

L1

, z2 =
Z2

L1

, z3 =
Z3

L1

, z4 =
Z4

L1

, r1 =
δ1
s1
, r2 =

δ2
s1
, r3 =

m1

s1
, r4 =

s2
s1
, r5 =

L1

L2

, r6 =
γ1 L1

s1
,

r7 =
b1 L1

2

s1
, r8 =

m2

s1
, r9 =

β1 L1

s1
, r10 =

γ2 L1

s1
, r11 =

b2 L1
2

s1
, r12 =

b3 L1
2

s1
, r13 =

m3

s1
, r14 =

β2 L1

s1
,

r15 =
b4 L1

2

s1
, r16 =

m4

s1
.

Then the dimensionless system is as follows:

dz1
dt

= z1

[
(1− z1)− r1 +

r2z2
z1

− r3

]
= z1f1 (z1, z2, z3, z4) ,

dz2
dt

= z2

[
r4 (1− r5z2) +

r1z1
z2

− r2 − r6z3 − r7z2z3 − r8

]
= z2f2 (z1, z2, z3, z4) ,

dz3
dt

= z3 [r9z2 − r10z4 − r11z3z2 − r12z3z4 − r13] = z3f3 (z1, z2, z3, z4) , (2.2)

dz4
dt

= z4 [r14z3 − r15z4z3 − r16] = z4f4 (z1, z2, z3, z4) .

It is noted that in the method, the number of parameters was reduced from eighteen in system (2.1)
to sixteen in system (2.2).Obviously right-hand side interaction functions are continuous and have
continuous partial derivatives in relation to the dependent variable z1, z2, z3 and z4 in the following
positive four-dimensional space:

R4
+ =

{
(z1, z2, z3, z4) ∈ R4 : z1(0) ≥ 0, z2(0) ≥ 0, z3(0) ≥ 0, z4(0) ≥ 0

}
.

As a result, these functions are Lipschitzian on R4
+, and the system (2.2) solution exists and is unique.

Furthermore, as shown in the theorem below, all solutions of the system (2.2) with non-negative initial
conditions are uniformly bounded.

Theorem 2.1. All the solutions of system (2.2) with initial condition in R4
+ are uniformly bounded.

Proof . Let (z1(t), z2(t), z3(t), z4(t)) be a solution of the system (2.2) with an initial non-negative
condition (z1(0), z2(0), z3(0), z4(0)) ∈ R4

+. Now define the function: N(t) = z1(t)+z2(t)+z3(t)+z4(t),
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and then, take the function time derivative along with the solution of the system (2.2), we get:

dN

dt
= z1 (1− z1) + r4z2 (1− r5z2)− r7z

2
2z3 − r11z

2
3z2 − r12z

2
3z4 − r15z

2
4z3

− (r6 − r9) z2z3 − (r10 − r14) z3z4 − r3z1 − r8z2 − r13z3 − r16z4.

So, according to the biological facts always r6 > r9, r10 > r14 and since the function f (z1) = z1 (1− z1)
and f (z2) = r4z2 (1− r5z2), the terms represents a logistic function with respect to z1, z2 respectively
and hence it is bounded above by the constants 1

4
and r4

4r5
respectively so,

dN

dt
≤ 1

4
+

r4
4r5

− (r3z1 + r8z2 + r13z3 + r16z4)

and, hence,
dN
dt

+ nN ≤ µ, where µ = 1
4
+ r4

4r5
and n = min (r3, r8, r13, r16).

So, by using the comparison theorem [15] on the above differential initial value inequalities N(0) = N0

we have:
N(t) ≤ µ

n
+
(
N0 − µ

n

)
e−nt, Then, limt→∞ N(t) ≤ µ

n
.

That is all solution of the system (2.2) necessary satisfies 0 ≤ N(t) ≤ µ
n
,∀t > 0.

Thus, all system solutions are bounded uniformly. □

3. The existence of equilibrium points:

In this portion, It is discussed whether model (2.2) has all potential equilibrium uses. As can
be observed, the model (2.2) takes into account four equilibrium points, which are represented as
follows:

� The trivial equilibrium point E0 = (0, 0, 0, 0), which is always exists.

� The planer equilibrium point E1 = (z̃1, z̃2, 0, 0) where ž1 is the unique positive root of the
following polynomial equation:

D1z
3
1 +D2z

2
1 +D3z1 +D4 = 0, (3.1)

where:

D1 = −r4r5 < 0,

D2 = 2r4r5 (1− (r1 + r3)) ,

D3 = r2 −
r4r5 (1− (r1 + r3))

2

r4 − (r2 + rg)
,

D4 = r2 [(1− (r1 + r3)) [−r4 + (r2 + r8)] + r1r2] ,

and z̆2 =
ž1[ž1−(1−(r1+r3))]

r2
.

So, E1 exists provided that:

(r1 + r3) < 1, (3.2)

r4 < (r2 + r8) , (3.3)

ž1 > (1− (r1 + r3)) . (3.4)
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� The top - predator free equilibrium point exists if and only if there is a positive root to the
following

equations:

z1 − z21 − r1z1 + r2z2 − r3z1 = 0, (3.5)

r4z2 − r4r5z
2
2 + r1z1 − r2z2 − r6z2z3 − r7z

2
2z3 − r8z2 = 0, (3.6)

r9z2 − r11z3z2 − r13 = 0, (3.7)

From Eq. (3.5) we get:

z2 =
z1 [z1 − (1− (r1 + r3))]

r2
(3.8)

From Eq. (3.7) we get:

z3 =
r9 [z1 [z1 − (1− (r1 + r3))]]− r2r13

r11 [[z1 − (1− (r1 + r3))]]
(3.9)

By substitute Eq. (3.8) and (3.9) in Eq. (3.6) we have:

R1z
4
1 +R2z

3
1 +R3z

2
1 +R4z1 +R5 = 0, (3.10)

where:

R1 = − (r4r5r11 + r7r9) < 0,

R2 = −2R1 (1− (r1 + r3)) ,

R3 =
[
R1 (1− (r1 + r3))

2 +M
]
,

R4 =
[
r1r

2
2r11 −M(1− (r1 + r3))

]
,

R5 = r22r6r13 > 0, and

M = [−r11 (−r4 + (r2 + r8))− r6r9 + r7r13] .

Obviously, according to the Descartes rule, eq. (3.10) either has three positive roots or no positive
roots, depending upon whether following conditions are hold or not R2 > 0,R3 < 0,R4 > 0
That is, there are three equilibrium pointsE2 = (ż1, ż2, ż3, 0), where ż2 = z2 (ż1) and ż3 = z3 (ż1) ,E3 =
(z1, z2, z3, 0) and E4 =

(
z1, z2, z3, 0

)
under conditions (3.2),(3.3) and the following conditions :

ż1 > (1− (r1 + r3)) , (3.11)

r2r13 < r9 [ż1 [ż1 − (1− (r1 + r3))]] , (3.12)

r11 (−r4 + (r2 + r8)) + r6r9 > r7r13. (3.13)

� The positive equilibrium point E5 = (z∗1 , z
∗
2 , z

∗
3 , z

∗
4) where z∗1 is the unique positive root of the

following polynomial equation:

C1z
8
1 + C2z

7
1 + C3z

6
1 + C4z

5
1 + C5z

4
1 + C6z

3
1 + C7z

2
1 + C8z1 + C9 = 0, (3.14)
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where:

C1 = −r15 A1 B1,C2 = −r15 ( A2 B1 +A1 B2) ,C3 = −B7 (r14 A1 − r16 A5)− r15 ( A3 B1 +A2 B2 +A1 B3) ,

C4 = r14 (A1B8 + A2B7)− r15 (A4B1 + A3B2 + A2B3 + A1B4)− r16 (A5B8 + A6B7) ,

C5 = r14 (A1B9 + A2B8 + A3B7)− r15 (A4B2 + A3B3 + A2B4 + A1B5)− r16 (A5B9 + A6B8 + A7B7) ,

C6 = r14 ( A1 B10 +A2 B9 +A3 B8 +A4 B7)− r15 ( A4 B3 +A3 B4 +A2 B5 +A1 B6)

− r16 ( A5 B10 +A6 B9 +A7 B8 +A8 B7) , C7 = r14 (A2B10 + A3B9 + A4B8)− r15 (A4B4 + A3B5 + A2B6)

− r16 (A6B10 + A7B9 + A8B8) ,C8 = r14 ( A3 B10 +A4 B9)− r15 ( A4 B5 +A3 B6)− r16 ( A7 B10 +A8 B9) ,

C9 = B10 (r14 A4 − r16 A8)− r15 A4 B6,

and z∗2 =
z∗1 [z

∗
1 − (1− (r1 + r3))]

r2
, z3 =

z∗2 [− (r2 + r8) + r4 (1− r5z
∗
2)] + r1z

∗
1

(r6 + r7z∗2) z
∗
2

=
A1z

4
1 +A2z

3
1 +A3z

2
1 +A4z1

A5z41 +A6z31 +A7z21 +A8z1
,

z4 =
(r9 − r11z

∗
3) z

∗
2 − r13

(r10 + r12z∗3)
=

B1z
6
1 + B2z

5
1 + B3z

4
1 + B4z

3
1 + B5z

2
1 + B6z1

B7z41 + B8z31 + B9z21 + B10z1
,

where

A1 = −r4r5, A2 = 2r4r5 (1− (r1 + r3)) , A3 = r4 −
[
r4r5 (1− (r1 + r3))

2 + (r2 + r8)
]
,

A4 = [−r4 + (r2 + r8)] (1− (r1 + r3)) + r1r2, A5 = r7, A6 = −2r7 (1− (r1 + r3)) ,

A7 = r2r6 + r7 (1− (r1 + r3))
2 , A8 = − [r2r6 (1− (r1 + r3))] ,

with

B1 = r9 A5 − r11 A1, B2 = r9 ( A6 − A5 (1− (r1 + r3)))− r11 ( A2 − A1 (1− (r1 + r3))) ,

B3 = r9 ( A7 − A6 (1− (r1 + r3)))− r11 ( A3 − A2 (1− (r1 + r3)))− r2r13 A5,

B4 = r9 (−A7 (1− (r1 + r3)) + A8) + r11 ( A3 (1− (r1 + r3))− r4)− r12r13 A6,

B5 = (1− (r1 + r3)) (−r9 A8 + r11 A4)− r2r13 A7, B6 = −r2r13 A8, B7 = r10 A5 + r12 A1,

B8 = r10 A6 + r12 A2, B9 = r10 A7 + r12 A3, B10 = r10 A8 + r12 A4
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Thus, E5 exists under conditions (3.2), (3.3) and the following conditions.

z∗1 > (1− (r1 + r3)) , (3.15)

r4 < r4r5 (1− (r1 + r3))
2 + (r2 + r8) , (3.16)

A2z
3
1 + A4z1 > A1z

4
1 + A3z

2
1 , (3.17)

A5z
4
1 + A7z

2
1 > A6z

3
1 + A8z1, (3.18)

A3 < min

{
A2B1,

r4
B1

}
, (3.19)

r9 ( A7 − A6 (1− (r1 + r3))) > r11 ( A3 − A2 (1− (r1 + r3)))− r2r13 A5, (3.20)

r9 (−A7 (1− (r1 + r3)) + A8) + r11 (A3 (1− (r1 + r3))− r4) < − (r12r13A6) , (3.21)

(1− (r1 + r3)) (−r9A8 + r11A4) > r2r13A7, (3.22)

r10 > max

{
r12

[
A1

A5

,
A3

A7

,
A4

A8

]}
, (3.23)

B1z
6
1 +B3z

4
1 +B4z

3
1 +B5z

2
1 +B6z1 > B2z

5
1 , (3.24)

B7z
4
1 +B9z

2
1 > B8z

3
1 +B10z1, (3.25)

−B7 (r14A1 − r16A5) > r15 (A3B1 + A2B2 + A1B3) , (3.26)

A4B1 + A3B2 + A2B3 > A1B4, (3.27)

A2B4 > A1B5 + A3B3 + A4B2, (3.28)

A4B3 + A2B5 > A1B6 + A3B4, (3.29)

A3 < min

{
A4B4 + A2B6

B5

,
A4B5

B6

}
, (3.30)

r15 > max

{
r14 (A1B8 + A2B7)− r16 (A5B8 + A6B7)

(A4B1 + A3B2 + A2B3 + A1B4)
,

r14 (A1B10 + A2B9 + A3B8 + A4B7)− r16 (A5B10 + A6B9 + A7B8 + A8B7)

(A4B3 + A3B4 + A2B5 + A1B6)
,

r14 (A3B10 + A4B9)− r16 (A7B10 + A8B9)

(A4B5 + A3B6)

}
. (3.31)

4. Local stability analysis:

In this portion, investigates the local stability analysis of the system (2.2) for each of equilibrium
points by computing the Jacobean matrix J (z1, z2, z3, z4) of the system (2.2) as bellow: J = [yij]4×4

where:

y11 = 1− 2z1 − (r1 + r3) , y12 = r2, y13 = 0, y14 = 0,

y21 = r1, y22 = r4 (1− 2r5z2)− (r2 + r8)− (r6 + 2r7z2) z3, y23 = − (r6 + r7z2) z2, y24 = 0,

y31 = 0, y32 = (r9 − r11z3) z3, y33 = (r9 − 2r11z3) z2 − (r10 + 2r12z3) z4 − r13,

y34 = − (r10 + r12z3) z3, y41 = 0, y42 = 0, y43 = (r14 − r15z4) z4, y44 = (r14 − 2r15z4) z3 − r16.
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4.1. Local stability analysis of E0 :

The Jacobean matrix at E0 is given by:
J0 = J (E0) = [yij]4×4 and can be written as:

J0 = J (E0) =


1− (r1 + r3) r2 0 0

r1 r4 − (r2 + r8) 0 0
0 0 −r13 0
0 0 0 −r16

 ,

Then the characteristic equation of J0 :[
λ2 − A1λ+ A2

]
(−r13 − λ) (−r16 − λ) = 0, (4.1)

So, either [λ2 − A1λ+A2] = 0, where
A1 = λ0z1 + λ0z2 = 1− (r1 + r3) + r4 − (r2 + r8) and,
A2 = λ0z1λ0z2 = [1− (r1 + r3)] [r4 − (r2 + r8)]− r1r2,
which gives the first two eigenvalues of J0 with negative real parts due to the reverse condition (3.2)
and (3.3) with the following condition:

[1− (r1 + r3)] [r4 − (r2 + r8)] > r1r2. (4.2)

Or
(−r13 − λ) (−r16 − λ) = 0, which gives:

λ0z3
= −r13 < 0, λ0z4 = −r16 < 0.

So, E0 is stable. It’s unstable point otherwise.

4.2. Local stability analysis of E1 :

The Jacobean matrix at E1 = (ž1, ž2, 0, 0) is given by:
J̆1 = J̆ (E1) = [y̆ij]4×4 and can be written as:

J̌1 = J̌ (E1) =


y̆11 y̆12 0 0
y̌21 y̆22 y̆23 0
0 0 y̌33 0
0 0 0 y̆44


where: y̆11 = 1− 2ž2 − (r1 + r3) , y̆12 = r2 > 0, y̆13 = 0, y̆14 = 0,
y̌21 = r1 > 0, y̌22 = r4 (1− 2r5ž2)− (r2 + r8) , y̆23 = − (r6 + r7ž2) ž2 < 0, y̆24 = 0,
y̆31 = 0, y̆32 = 0, y̆33 = r9ž2 − r13, y̆34 = 0, y̆41 = 0, y̆42 = 0, y̆43 = 0, y̆44 = −r16 < 0.
Then the characteristic equation of J̆1 :[

λ2 − Ã1λ+ Ã2

]
((r9ž2 − r13)− λ) (−r16 − λ) = 0, (4.3)

So, either
[
λ2 − Ǎ1λ+ Ǎ2

]
= 0, where
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Ǎ1 = λ1z1 + λ1z2 = 1− 2ž2 − (r1 + r3) + r4 (1− 2r5ž2)− (r2 + r8) and,
Ǎ2 = λ1z1λ1z2 = [1− 2ž2 − (r1 + r3)] [r4 (1− 2r5ž2)− (r2 + r8)]− r1r2.
which gives the first two eigenvalues of J̆1 with negative real parts due to the conditions:

1 < 2ž1 + (r1 + r3) , (4.4)

z̆2 >
1

2r5
, (4.5)

[1− 2ž2 − (r1 + r3)] [r4 (1− 2r5ž2)− (r2 + r8)] > r1r2. (4.6)

Or
((r9ž2 − r13)− λ) (−r16 − λ) = 0, which gives:

λ1z3 = r9ž2 − r13,

λ1z4 = −r16 < 0.

So, E1 is stable if the above-mentioned conditions are hold with condition:

ž2 <
r13
r9

. (4.7)

It’s unstable point otherwise.

4.3. Local stability analysis of E2 :

The Jacobean matrix of system (2.2) at the top− predator free equilibrium point E2 = (ż1, ż2, ż3, 0)
similarly for E3 = (z1, z2, z3, 0) and E4 =

(
z1, z2, z3, 0

)
is given by:

J̇2 = J̇ (E2) = [ẏij]4×4 and can be written as:

J̇2 = J̇ (E2) =


ẏ11 ẏ12 0 0
ẏ21 ẏ22 ẏ23 0
0 ẏ32 ẏ33 ẏ34
0 0 0 ẏ44

 ,

where: ẏ11 = 1− 2ż1 − (r1 + r3) , ẏ12 = r2 > 0, ẏ13 = 0, ẏ14 = 0,
ẏ21 = r1 > 0, ẏ22 = r4 (1− 2r5ż2)− (r2 + r8)− (r6 + 2r7ż2) ż3, ẏ23 = − (r6 + r7ż2) ż2 < 0, ẏ24 = 0,
ẏ31 = 0, ẏ32 = (r9 − r11ż3) ż3, ẏ33 = (r9 − 2r11ż3) ż2 − r13, ẏ34 = − (r10 + r12ż3) ż3 < 0,
ẏ41 = 0, ẏ42 = 0, ẏ43 = 0, ẏ44 = r14ż3 − r16.
Then the characteristic equation of J̇2 :

[
λ3 + Ȧ1λ

2 + Ȧ2λ+ Ȧ3

]
(ẏ44 − λ) = 0, (4.8)

So, either λ2z4 = r14ż3 − r16 which is negative under the condition

ż3 <
r16
r14

. (4.9)

Or [
λ3 + Ȧ1λ

2 + Ȧ2λ+ Ȧ3

]
= 0
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Where:

Ȧ1 = − [ẏ11 + ẏ22 + ẏ33] ,

Ȧ2 = ẏ11 (ẏ22 + ẏ33) + ẏ22ẏ33 − ẏ23ẏ32 − ẏ12ẏ21,

Ȧ3 = ẏ11ẏ23ẏ32 − ẏ33 (ẏ11ẏ22 − ẏ12ẏ21) .

Now, by utilizing of the Routh- Hurwitz criterion, eq. (4.8) has negative real parts roots, if and

only if Ȧ1 > 0, Ȧ3 > 0 and ∆ =
(
Ȧ1Ȧ2 − Ȧ3

)
Ȧ3 > 0.

Obviously, Ȧi > 0, i = 1 and 3 if the following conditions are hold:

1 < 2ż1 + (r1 + r3) , (4.10)

ż2 >
1

2r5
, (4.11)

r9
2r11

< ż3 <
r9
r11

, (4.12)

[1− 2ż1 − (r1 + r3)] [r4 (1− 2r5ż2)− (r2 + r8)− (r6 + 2r7ż2) ż3] > r1r2. (4.13)

Straightforward computation shows that:

∆̇ = Ȧ1Ȧ2 − Ȧ3 = −ẏ211 (ẏ22 + ẏ33)− ẏ11
[
(y22 + ẏ33)

2 − ẏ12ẏ21
]
+ ẏ23ẏ32 (ẏ22 + ẏ33)

− ẏ22 [ẏ33 (ẏ22 + ẏ33)− ẏ12ẏ21]

Consequently, ∆ =
(
Ȧ1Ȧ2 − Ȧ3

)
Ȧ3 > 0 if in addition of the conditions (4.10-4.13) the following

condition hold:

ẏ12ẏ21 < min
{
(ẏ22 + ẏ33)

2 , ẏ33 (ẏ22 + ẏ33)
}

(4.14)

So, E2 is stable. It’s unstable point otherwise.

4.4. Local stability of E5 :

The Jacobean matrix at E5 = (z∗1, z
∗
2, z

∗
3, z

∗
4) is given by:

J∗
5 = J∗ (E5) =

[
y∗ij
]
4×4

and can be written as:

J∗5 = J∗ (E5) =


y∗11 y∗12 0 0
y∗21 y∗22 y∗23 0
0 y∗32 y∗33 y∗34
0 0 y∗43 y∗44

 ,

where: y∗11 = 1− 2z∗1 − (r1 + r3) , y
∗
12 = r2 > 0, y∗13 = 0, y∗14 = 0, y∗21 = r1 > 0,

y∗22 = r4 (1− 2r5z
∗
2)− [(r2 + r8) + (r6 + 2r7z

∗
2) z

∗
3] , y

∗
23 = − (r6 + r7z

∗
2) z

∗
2 < 0, y∗24 = 0,

y∗31 = 0, y∗32 = (r9 − r11z
∗
3) z

∗
3, y

∗
33 = r9z

∗
2 − r10z

∗
4 − 2z∗3 (r11z

∗
2 + r12z

∗
4)− r13,

y∗34 = − (r10 + r12z
∗
3) z

∗
3 < 0, y∗41 = 0, y∗42 = 0,= (r14 − r15z

∗
4) z

∗
4, y

∗
43 = (r14 − 2r15z

∗
4) z

∗
3 − r16.

Then the characteristic equation of J∗
5 :

[
λ4 +A∗

1λ
3 +A∗

2λ
2 +A∗

3λ+A∗
4

]
= 0, (4.15)
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where:

A∗
1 = − [k0 + k1] ,

A∗
2 = k2 + k3 + k4 + k5 + k6 + k7 − (k8 + k9 + k10) ,

A∗
3 = k1 (−k2 + k10)− k0 (k7 − k9) + k8k11,

A∗
4 = (k2 − k10) (k7 − k9)− k4k8.

with

k0 = y∗11 + y∗22, k1 = y∗33 + y∗44, k2 = y∗11y
∗
22, k3 = y∗11y

∗
33, k4 = y∗11y

∗
44, k5 = y∗22y

∗
33, k6 = y∗22y

∗
44,

k7 = y∗33y
∗
44, k8 = y∗23y

∗
32, k9 = y∗34y

∗
43, k10 = y∗12y

∗
21, k11 = y∗11 + y∗44.

Now, by utilizing the Routh-Hurwitz criterion, eq. (4.15) has negative real parts roots, if and only
if A∗

1 > 0, A∗
3 > 0, A∗

4 > 0 and ∆ = (A∗
1 A∗

2 − A∗
3)A

∗
3 − A∗2

1 A∗
4 > 0.

Obviously, A∗
i > 0, i = 1, 3 and 4 if the following conditions are hold:

1 < 2z∗2 + (r1 + r3) , (4.16)

z∗2 >
1

2r5
, (4.17)

r9
2r11

< z∗3 <
r9
r11

, (4.18)

r14
2r15

< z∗4 <
r14
r15

, (4.19)

[1− z̆2 − (r1 + r3)] [r4 (1− 2r5z̆2)− [(r2 + r8) + (r6 + 2r7z̆2) z̆3] > r1r2 . (4.20)

Straightforward computation shows that:
∆ = G1 −G2, where

G1 = k20 (k7 − k9)− k21 (−k2 + k10)− k1 [−k0 (k7 − k9) + k8k11]− k0 [k1 (−k2 + k10) + k8k11]

(k2 + k3 + k4 + k5 + k6 + k7 − (k8 + k9 + k10)) ,

G2 = k2
1 (−k2 + k10)

2 + k2
0 (k7 − k9)

2 + k2
8k

2
11 + 2k1 (−k2 + k10) [−k0 (k7 − k9) + k8k11]

+ (k7 − k9)
[
−2k0k8k11 + (k0 + k1)

2 (k2 − k10)
]
− (k0 + k1)

2 k8k11.

Consequently, ∆ = (A∗
1A

∗
2 − A∗

3)A
∗
3 − A∗2

1 A∗
4 > 0 if in addition of the above conditions (4.16− 4.20)

the following conditions hold:

G1 > G2 (4.21)

So, E5 is stable. It’s unstable point otherwise.

5. Global stability analysis:

In this portion, the Lyapunov function method is used to scientifically concentrate the global
stability analysis for the equilibrium points of the system (2.2) that are locally asymptotically stable,
as shown below.
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Theorem 5.1. The equilibrium point E0 is globally asymptotically stable on a subregion ω0 ⊂ R4
+,

where ω0 =
{
(z1, z2, z3, z4) ∈ R4

+

}
, that satisfies the following conditions:

z1 > 1, (5.1)

z2 >
1

r5
, (5.2)

Proof . Consider the following function: F0 (z1, z2, z3, z4) = z1 + z2 + z3 + z4.
Obviously F0 : R

4
+ → R is a C1 positive definite function.

So, by differentiating F0 with respect to time t and performing various algebraic operations, the
following result is obtained:

dF0

dt
< z1 (1− z1) + r4z2 (1− r5z2)− (r6 − r9) z2z3 − (r10 − r14) z3z4 − r3z1 − r8z2 − r13z3 − r16z4.

Now, by the biological facts r6 > r9 and r10 > r14, we get:

dF0

dt
< z1 (1− z1) + r4z2 (1− r5z2)− (r3z1 + r8z2 + r13z3 + r16z4)

Consequently, F0 is negative definite under conditions (5.1) and (5.2) and then F0 is Lyapunov
function. As a result, we can conclude that F0 is globally asymptotically stable in the subregion
ω0, and our demonstration is complete. □

Theorem 5.2. The equilibrium point E1 is a globally asymptotically stable on a subregion ω1 ⊂ R4
+

that satisfies the following conditions:(
r2
z̆1

+
r1
z̆2

)
≤ 2

√(
1 +

r2z2
z1ž1

)(
r4r5 +

r1z1
z2ž2

)
, (5.3)

ǔ1 > ŭ2, (5.4)

where:

ŭ1 =

[√(
1 +

r2z2
z1ž1

)
(z1 − ž1)−

√(
r4r5 +

r1z1
z2ž2

)
(z2 − ž2)

]2

+ r13z3 + r16z4,

ǔ2 = (r6 + r7z2) ž2z3.

Proof . Consider the following function: F1 (z1, z2, z3, z4) =
(
z1 − ž1 − ž1 ln

z1
z̆1

)
+(z2 − ž2− ž2 ln

z2
z̆2

)
+

z3 + z4, obviously F1 : R
4
+ → R is a C1 positive definite function.

So, by differentiating F1 with respect to time t and performing various algebraic operations, the
following result is obtained:

dF1

dt
=−

(
1 +

r2z2
z1ž1

)
(z1 − ž1)

2 +

(
r2
ž1

+
r1
z̆2

)
(z1 − ž1) (z2 − ž2)−

(
r4r5 +

r1z1
z2ž2

)
(z2 − ž2)

2 − r13z3

− r16z4 − (r6 − r9) z2z3 − (r10 − r14) z3z4 + (r6 + r7z2) ž2z3
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Now, when we combine the condition (5.3) with the biological facts r6 > r9 and r10 > r14, we get:

dF1

dt
< −

[√(
1 +

r2z2
z1ž1

)
(z1 − ž1)−

√(
r4r5 +

r1z1
z2ž2

)
(z2 − ž2)

]2

− r13z3 − r16z4 + (r6 + r7z2) ž2z3

= −ŭ1 + ŭ2

So, according to condition (5.4) F1 is negative definite under above the condition and then F1 is
Lyapunov function. As a result, we can conclude that F1 is globally asymptotically stable in the sub-
region ω1, and our demonstration is complete. □

Moreover since there are three top − predator free equilibrium points E2 = (ż1, ż2, ż3, 0) ,E3 =
(z1, z2, z3, 0) and E4 =

(
z1, z2, z3, 0

)
in R4

+ having the same local stability conditions but with different
neighborhood of starting points then it is not possible to studying the global stability of them using
Lyapunove function. Hence we’ll study it numerically instead of analytically as shown in last part.

Theorem 5.3. The equilibrium point E5 is a globally asymptotically stable on a subregion ω2 ⊂ R4
+

that satisfie the following conditions:(
r2
z∗1

+
r1
z∗2

)
≤ 2

√(
1 +

r2z2
z1z∗1

)(
r4r5 +

r1z1
z2z∗2

)
, (5.5)

u∗
1 > u∗

2, (5.6)

where:

u∗
1 =

[√(
1 +

r2z2
z1z∗1

)
(z1 − z∗1)−

√(
r4r5 +

r1z1
z2z∗2

)
(z2 − z∗2)

]2

+ (r7z2 + r11z3) z2z3

+ (r7z
∗
2 + r11z

∗
3) z

∗
2z

∗
3 + (r12z3 + r15z4) z3z4 + (r12z

∗
3 + r15z

∗
4) z

∗
3z

∗
4 ,

u∗
2 = (r6 − r9) (z2z

∗
3 + z∗2z3) + (r7z2 + r11z3) z

∗
3z

∗
2 + (r7z

∗
2 + r11z

∗
3) z3z2 + (r10 − r14) (z3z

∗
4 + z∗3z4)

+ (r12z
∗
3 + r15z

∗
4) z4z3 + (r12z3 + r15z4) z

∗
3z

∗
4 .

Proof . Consider the following function: F5 (z1, z2, z3, z4) =
(
z1 − z∗1 − z∗1 ln

z2
z∗1

)
+(z2 − z∗2− z∗2 ln

z2
z∗2

)
+(

z3 − z∗3 − z∗3 ln
z3
z∗3

)
+
(
z4 − z∗4 − z∗4 ln

z4
z∗4

)
, Obviously F5 : R

4
+ → R is a C1 positive definite function.

So, by differentiating F5 with respect to time t and performing various algebraic operations, the
following result is obtained:

dF5

dt
= −

(
1 +

r2z2
z1z∗1

)
(z1 − z∗1)

2 +

(
r2
z∗1

+
r1
z∗2

)
(z1 − z∗1) (z2 − z∗2)−

(
r4r5 +

r1z1
z2z∗2

)
(z2 − z∗2)

2

− (r6 − r9) z2z3 + (r6 − r9) z2z
∗
3 + (r6 − r9) z

∗
2z3 − (r6 − r9) z

∗
2z

∗
3 − (r10 − r14) z3z4

+ (r10 − r14) z3z
∗
4 + (r10 − r14) z

∗
3z4 − (r10 − r14) z

∗
3z

∗
4 − (r7z2 + r11z3) z2z3 − (r7z

∗
2 + r11z

∗
3) z

∗
2z

∗
3

− (r12z3 + r15z4) z3z4 − (r12z
∗
3 + r15z

∗
4) z

∗
3z

∗
4 + (r7z2 + r11z3) z

∗
3z

∗
2 + (r7z

∗
2 + r11z

∗
3) z3z2

+ (r12z
∗
3 + r15z

∗
4) z4z3 + (r12z3 + r15z4) z

∗
3z

∗
4
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Now, when we combine the condition (5.5) with the biological facts r6 > r9 and r10 > r14 , we get:

dF5

dt
< −

[√(
1 +

r2z2
z1z∗1

)
(z1 − z∗1)−

√(
r4r5 +

rr1z1
z2z∗2

)
(z2 − z∗2)

]2

− (r6 − r9) z
∗
2z

∗
3 − (r7z2

+r11z3) z2z3 − (r7z
∗
2 + r11z

∗
3) z

∗
2z

∗
3 − (r10 − r14) z

∗
3z

∗
4 − (r12z3 + r15z4) z3z4 − (r12z

∗
3 + r15z

∗
4) z

∗
3z

∗
4

+ (r6 − r9) (z2z
∗
3 + z∗2z3) + (r7z2 + r11z3) z

∗
3z

∗
2 + (r7z

∗
2 + r11z

∗
3) z3z2 + (r10 − r14) (z3z

∗
4

+z∗3z4) + (r12z
∗
3 + r15z

∗
4) z4z3 + (r12z3 + r15z4) z

∗
3z

∗
4

= −u∗
1 + u∗

2

So, again by the biological facts r6 > r9 and r10 > r14 with condition (5.6) F5 is negative definite,
and then F5 is Lyapunov function. As a result, we can conclude that F5 is globally asymptotically
stable in the subregion ω2, and our demonstration is complete. □

6. Numerical simulation:

In this portion, the dynamic behavior of the system (2.2) is numerically explored. For different
parameter values and different combinations of initial conditions, large-scale numerical simulations
are run. The aim is to explore different options for (biologically plausible) parametric space in order
to uncover the possibilities of dynamic behavior of the food chain, Fig. (1)(a-e) illustrates that the
system (2.2) has global asymptomatically stable positive equilibrium point.

r1 = 0.5, r2 = 0.5, r3 = 0.01, r4 = 0.3, r5 = 0.2, r6 = 0.5, r7 = 0.1, r8 = 0.01, r9 = 0.4, r10 = 0.5, r11 = 0.1,

r12 = 0.1, r13 = 0.01, r14 = 0.4, r15 = 0.1, r16 = 0.01. (6.1)
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Figure 1: (a − e) : Time series of the solution of system (2.2) start with different initial
point (1.5, 0.8, 0.9, 0.9), (1, 0.4, 0.5, 0.6), and (0.2, 0.1, 0.3, 0.3), for the data provided in Eq. (6.1)
. (a)trajectories variable of x dependent on time (b) trajectories variable of y dependent on time,
(c) trajectories variable of z dependent on time, (d) trajectoriesvariable of w dependent on time, (e)
time series of the solution of system (2.2).

Obviously, Fig(1)(a-e) shows that system (2.2) has globally asymptotically stable as the solutions
of the system (2.2) approaches to the positive point E5 = (1.220, 1.780, 0.038, 1.380) start from three
various initial points and this’s verifying the analytical findings we discovered.

Now, in order to discuss the outcome of the parameters values of the system (2.2) on the dynamical
behavior of the system, the system is numerically resolved for the data its provided Eq.(6.1) with a
different parameter each time.

It’s remarked that for 0.01 ≤ r1 < 0.043, the solutions of the system (2.2) approaches to E1, while
for 0.043 ≤ r1 < 1, the solutions of the system (2) approaches to E5,as shown in Fig. (2)(a− b) for
exemplary values (a)r 1 = 0.01 and (b)r1 = 0.043
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Figure 2: (a−b) : Time series of the solution of system (2.2) approaches to (a)E1 = (1.003, 0.047, 0, 0)
for r1 = 0.01 and (b) E5 = (1.039, 0.190, 0.026, 0.130) for r1 = 0.043.

the changing of parameters ri, i = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16, for the data pro-
vided in Eq. (6.1) don’t play a vital role on the dynamics of system (2.2) and the results have been
summarization in table1.

Table 1: Numerical behavior of system (2.2) for the data gives in eq. (6.1) when one factor is changed
at a time.

Range of parameter The stable point Range of parameter The stable point
0.01 ≤ r2<1 E5 0.5<r10 ≤2 E5

0.01<r3<1 E5 0.01<r11<1 E5

0.1<r4<2 E5 0.01<r12<1 E5

0.1<r5<2 E5 0.01<r13<1 E5

0.5<r6 ≤2 E5 0.01≤ r14<0.5 E5

0.01<r7<1 E5 0.01<r15<1 E5

0.01<r8<1 E5 0.01<r16<1 E5

Furthermore, for with 0.01 ≤ r9 < 0.012, the solution of the system (2.2) approaches to E1, while
for 0.012 ≤ r9 < 0.015, the solution of the system (2.2) approaches to E2, but for 0.015 ≤ r9 < 0.5,
the solution of the system (2.2) approaches to E5,as shown in Fig. (3)(a-c) for exemplary values (a)
r9 = 0.01, ( b)r9 = 0.013, (c)r9 = 0.2



1900 Radie, Majeed

Figure 3: (a-c): Time series of the solution of system (2.2) approcches to (a) E1 = (1.257, 1.930, 0, 0)
for r9 = 0.01(b)E2 = (1.191, 1.668, 0.070, 0) for r9 = 0.013, and (c) E5 = (1.227, 1.809, 0.030, 0.689)
for r9 = 0.2

Finally, change the parameters 0.6 ≤ r1 < 1, 0.83 < r3 < 1 and 0.5 < r8 < 1 at the same
time, with given in Eq. (6.1), it is remarked that the solutions of the system (2.2) approaches to
E0 = (0, 0, 0, 0) as shown in Fig. (4) for exemplary values r1 = 0.6, r3 = 0.83 and r8 = 0.5.

Figure 4: Time series of the solution of system (2.2) for the data provided Eq. (6.1) with r1 =
0.6, r3 = 0.83 and r8 = 0.5 which approaches to E0 = (0, 0, 0, 0)

Conclusions and discussion:

In this article, an eco-toxicant model made up of four autonomous non-linear differential equations
that represent distinct populations, such as prey in the protective zone Z1( T), prey in the predatory
zone Z2( T) first predator Z3( T), and top predator Z4( T) has been suggested and studied. Toxins
are excreted by all organisms as a form of defense. The prey grows according to the logistic growth
law. In order to make the calculation more visible, between the ages of eighteen and sixteen the
system’s boundedness has been investigated. We’ve shown that there is equilibrium in the system
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and investigated its stability. Our findings show that coexistence is possible. Lastly, numerical
computations have been used to verify the theoretical stability results which are summarized as
follows:

(i) The periodic solution is not existent in the system due to a set of parameters that have been
imposed.

(ii) Each of the parameters r1, r9 played an important role in changing the behavior of the solution
of system (2.2).

(iii) The parameters ri, i = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 have no effect on dynamical
behavior of the system (2.2) and the solution of system (2.2) is still approaching to the point
E5 = (z∗1 , z

∗
2 , z

∗
3 , z

∗
4).

(iv) For the set of parameters given in Eq. (6.1) with r1 = 0.6, r3 = 0.83 and r8 = 0.5 which
approaches to E0.
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