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Abstract
In this paper, we deal with the state-dependent nonconvex sweeping process motivated through
quasi-variational inequalities arising in the evolution of sandpiles, quasistatic evolution problems with
friction, micromechanical damage models for iron materials. We prove the existence of absolutely
continuous solution for the problem in presence of a perturbation, that is an external force applied on
the system. The perturbation considered here is general and take the form of a sum of a single-valued
Carathéodory mapping and a set-valued unbounded mapping.
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1. Introduction

The perturbed state-dependent sweeping process is an evolution differential inclusion governed
by the normal cone to a mobile set depending on both time and state variables, of the following form:{

−ẋ(t) ∈ NC(t,x(t))(x(t)) + F (t, x(t)), a.e t ∈ [T0, T ];
x(t) ∈ C(t, x(t)), ∀t ∈ [T0, T ], x(T0) = a,

(1.1)

where NC(t,x(t))(x(t)) is the normal cone to C(t, x(t)) at x(t) and F is a single or set-valued mapping
playing the role of a perturbation to the problem, that is an external force applied on the system.
This kind of problems was initiated by J. J. Moreau (see [23]) for time-dependent sets C(t) and
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F ≡ {0} to deal with problems arising in elastoplasticity, quasistatics, electrical circuits, hysteresis
and dynamics. Since then, various generalizations have been obtained, see for instance [1, 2, 3, 4, 6,
7, 8, 9, 10, 17, 18, 19, 20] and the references therein.

When the moving sets C depends also on the state, one obtain a generalization of the classical
sweeping process known as the state-dependent sweeping process. Such problems are motivated by
parabolic quasi-variational inequalities arising e.g. in the evolution of sandpiles, and occur also in the
treatment of 2-D or 3-D quasistatic evolution problems with friction, as well as in micro-mechanical
damage models for iron materials with memory to describe the evolution of the plastic strain in
presence of small damages. We refer to [22] for more details. This problem have been studied for the
first time for convex sets C(t, u) by Chraibi [15] in R3, then by Kunze and Monteiro Marques [21]
in Hilbert spaces under some compactness condition. After, Chemetov and Monteiro Marques [14]
established the existence for prox regular sets C(t, u) with a Carathéodory perturbation F (t, u(t))
by applying the Shauder fixed point theorem. By means of a generalized version of the Shauder
theorem, Castaing, Ibrahim and Yarou [11] provided an other approach to prove the existence when
F ≡ {0} and C(t, u(t)) is prox regular and ball-compact, and for the perturbed problem (even in
presence of a delay). The approach is based on the Moreau catching-up algorithm. For recent results
in the study of state-dependent sweeping process, we refer to [4, 24]. Vilches [28] has studied the
first order state-dependent sweeping process with single-valued perturbation using the approach of
Yoshida regularization. It consists in approaching the problem by a penalized (regularized) one
depending on a positif parameter converging to zero.

Usually in mechanical systems and also in planning procedures in mathematical economics, ex-
ternal forces are applied, which leads to consider the sweeping process with set-valued perturbations.
Several results have been obtained when the perturbation takes bounded values or satisfies a linear
growth condition. Recently, the case of unbounded perturbations has been considered (see for in-
stance [4, 2, 24]). The idea is to take only the element of minimal norm bounded, that is: there
exists some real α > 0,

d(0, F (t, u)) ≤ α for all t ∈ [T0, T ] u ∈ H with u ∈ C(t, u).

Our aim in this paper is twofold: taking a perturbation as a sum of two mappings with single and set-
values respectively, we generalize all the results obtained in the two cases. Using a different approach,
we weaken the hypotheses on the perturbation by taking a Carathéodory single-valued mapping
satisfying only a linear growth condition and an unbounded set-valued perturbation; furthermore we
extend the approach given in [18] in the case of time-dependent prox regular sets to the time and
state-dependent case. The paper is organized as follows. In Section 2, we introduce notation and
preliminaries needed throughout the paper. Section 3 is devoted to the study of the existence of
solutions for the considered problem.

2. Preliminaries and background

Throughout this paper, let T > T0 ≥ 0, I = [T0, T ] be an interval of R and H be a separable
Hilbert space whose inner product is denoted by 〈·, ·〉 and the associated norm by ‖ · ‖. The closed
unit ball of H with center 0 will be denoted by B, and BH(a, η) will be the closed ball of center
a ∈ H and radius η > 0. If A is a subset of H, coA stands for the closed convex hull of A and
δ∗(·, A) the support function of A that is, for all ξ ∈ H,

δ∗(ξ, A) = sup
x∈A

〈ξ, x〉.
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L1
H([T0, T ], dt) (shortly L1

H(T0, T )) is the Banach space of Lebesgue-Bochner integrable functions
f : [T0, T ] → H and CH(I) is the space of continuous mappings u : I → H equipped with the
norm of uniform convergence. A mapping u : [T0, T ] → H is absolutely continuous if there is a
function u̇ ∈ L1

H(T0, T ) such that u(t) = u(T0) +
∫ t
T0
u̇(s) ds, ∀t ∈ [T0, T ]. A set-valued mapping

G : [T0, T ] × H ⇁ H is said to be upper semicontinuous if, for any open subset V ⊂ H, the
set {x ∈ H : G(x) ⊂ V} is open in H. G is said to be scalarly upper semicontinuous or upper
hemicontinuous if, for any y ∈ H, the real-valued function x 7→ δ∗(y,G(x)) is upper semicontinuous.
We refer to [13] for measurable set-valued mappings and convex analysis.
For a given r ∈]0,+∞], a nonempty subset S of a Hilbert space H is r-prox regular or equivalently
r-proximally smooth [16, 27] if and only if every nonzero proximal normal to S can be realized by a
r-ball. This is equivalent to say that for every x̄ ∈ S, and for every v 6= 0, v ∈ Np

S(x̄),

〈 v

||v||
, x′ − x̄〉 ≤ 1

2r
||x′ − x̄||2

for all x′ ∈ S, where Np
S(x̄) is the proximal normal cone of S at the point x̄ ∈ S defined by

Np
S(x̄) = {ξ ∈ H : ∃α > 0, x̄ ∈ ProjS(x̄+ αξ)},

P rojS(·) stands for the projection on the set S defined by

ProjS(x) := {y ∈ S : dS(x) = ‖x− y‖}

and dS(·) is the distance function to S. We make the convention 1
r
= 0 for r = +∞ and recall that for

r = +∞, the r-proximal regularity of S is equivalent to the convexity of S. Let f : H → R ∪ {+∞}
be a proper function and x̄ ∈ domf := {x ∈ H : f(x) < +∞}, the proximal subdifferential of f at
x̄ is the set ∂pf(x̄) of all elements v ∈ H for which there exists δ > 0 and β > 0 such that

f(y) ≥ f(x̄) + 〈v, y − x̄〉 − β||y − x̄||2 for all y ∈ BH(x̄, δ).

Given a nonempty closed set S and given a point x̄ ∈ S, the Clarke normal cone NS(x̄) to S at
x̄ defined by

NS(x̄) = clω(R+∂ dS(x̄)),

where clω denotes the closure with respect to the weak topology of H. With the definition of Clarke
normal cones to nonempty closed sets in hand, the Clarke subdifferential ∂f(x̄) of f at a point x̄
(where f is finite) can be defined in terms of Clarke normal cones to the epigraph of the function by

∂f(x̄) = {v ∈ H : (v,−1) ∈ Nepi f ((x̄, f(x̄)))},

where epi f denotes the epigraph of f , that is, epi f = {(x̄, λ) ∈ H × R : f(x̄) ≤ λ}. Further

∂dS(x̄) ⊂ NS(x̄) ∩ B, for all x̄ ∈ S.

Let C,C ′ be two subsets of H, we denote by

e(C,C ′) = sup {dC′(a), a ∈ C}

the excess of C over C ′ and if C and C ′ are closed,

H(C,C ′) = max {e(C,C ′), e(C ′, C)}
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the Hausdorff distance between C and C ′. Let us denote, for r > 0, by Ur(C) (respectively, by
Er(C)) the open tube around the set C (respectively, the open enlargement of C), that is,

Ur(C) := {v ∈ H : 0 < dC(v) < r},

respectively,
Er(C) := {v ∈ H : dC(v) < r}.

The following proposition provides some properties of the proximal and Clarke subdifferentials
of the function distance dC(·) when the set C is r-prox regular. It also summarizes some important
consequences of the prox regularity property which will be needed in the sequel of the paper. For
the proof of these results, we refer to [7, 25].

Proposition 2.1. Let S be a nonempty closed subset in the Hilbert space H and let r > 0. If S is
r-prox regular, then the following hold:

a) For any x ∈ Ur(S), P rojS(x) exists and is unique, the mapping ProjS(·) : Ur(S) → S is locally
Lipschitz on Ur(S);

b) For any v ∈ Ur(S) and y = ProjS(v) one has y ∈ ProjS

(
y + r v−y

∥v−y∥

)
;

c) The Clarke and proximal subdifferentials of dS(·) coincide at all points v ∈ Er(S);

d) The Clarke and proximal normal cone to S coincide at all points u ∈ S and α∂pdS(u) =
Np
S(u)

⋂
αB;

e) Let C : [T0, T ]×H ⇁ H be r-prox regular and satisfies

|dC(t,x)(u)− dC(s,y)(v)| ≤ ||u− v||+ χ(t)− χ(s) + L||x− y||

for all u, x, v, y in H and for all s ≤ t in [T0, T ], where χ : [T0, T ] → R+ is a nondecreasing
absolutely continuous function and L is a positive constant. Then the convex weakly compact
valued mapping (t, x, y) → ∂pdC(t,x)(y) satisfies the upper semicontinuity property: Let (tn, xn)
be a sequence in [T0, T ]×H converging to some (t, x) ∈ [T0, T ]×H, and (yn) be a sequence in
H with yn ∈ C(tn, xn) for all n, converging to y ∈ C(t, x), then, for any z ∈ H,

lim sup
n→∞

δ∗(z, ∂pdC(tn,xn)(yn)) ≤ δ∗(z, ∂pdC(t,x)(y)).

3. The main result

Let assume the following assumptions:

(A1) There is some constant r > 0 such that, for each t ∈ [T0, T ] and each u ∈ H, the sets C(t, u)
are r-prox regulars.

(A2) For each bounded subset A ⊂ H, the set C(t, x) is relatively ball-compact for all (t, x) ∈
[T0, T ]× A.

(A3) There is a constant L ∈]0, 1[ and an absolutely continuous nondecreasing function χ : [T0, T ] →
R+ such that, for all s, t ∈ [T0, T ], s ≤ t and any x, y, u, v ∈ H one has∣∣dC(t,u)

(
x
)
− dC(s,v)

(
y
)∣∣ ≤ ‖x− y‖+ χ(t)− χ(s) + L‖u− v‖.
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Let recall the following existence result for the sweeping process without perturbation and with
time and state dependent nonconvex moving sets in Hilbert space proved in ([11], Theorem 3.4):

Theorem 3.1. Assume that (A1), (A2) and (A3) hold. Then, for any a ∈ C(T0, a), there exists an
absolutely continuous solution u : [T0, T ] → H of the problem{

−u̇(t) ∈ NC(t,u(t))(u(t)) a.e. t ∈ [T0, T ],
u(T0) = a, u(t) ∈ C(t, u(t)), ∀t ∈ [T0, T ],

which satisfies
‖u̇(t)‖ ≤ 1

1− L
χ̇(t).

We start with the case when the perturbation is a single valued integrable function.

Proposition 3.2. Assume that (A1), (A2) and (A3) hold, then, for any mapping h ∈ L1
H(T0, T ) and

any a ∈ C(T0, a), there exists an absolutely continuous solution u : [T0, T ] → H of{
−u̇(t) ∈ NC(t,u(t))(u(t)) + h(t) a.e. in [T0, T ]
u(T0) = a, u(t) ∈ C(t, u(t)), ∀t ∈ [T0, T ].

Moreover, we have

‖u̇(t) + h(t)‖ ≤ 1

1− L
(χ̇(t) + ‖h(t)‖) a.e. in [T0, T ]. (3.1)

Proof . Set ψ(t) =
∫ t
T0
h(s)ds, for all t ∈ [T0, T ], and consider the set-valued mapping D : [T0, T ]×

H ⇀ H defined by
D(t, z) = C(t, z − ψ(t)) + ψ(t)

for all (t, z) ∈ [T0, T ]×H. Obviously, D satisfies (A1) and (A2), let verify (A3). For any y1, y2, z1, z2
in H and all t, s in [T0, T ], we have

|dD(t,z1)(y1)− dD(s,z2)(y2)| ≤ |dC(t,z1−ψ(t))(y1 − ψ(t))− dC(s,z2−ψ(s))(y2 − ψ(s))|

≤ ‖ψ(t)− ψ(s)‖+ |dC(t,z1−ψ(t))(y1)− dC(s,z2−ψ(s))(y2)|
≤ ‖ψ(t)− ψ(s)‖+ ‖y1 − y2‖+ χ(t)− χ(s) + L‖z1 − ψ(t)− z2 + ψ(s)‖,

≤ ‖y1 − y2‖+ χ1(t)− χ1(s) + L‖z1 − z2‖
where χ1(t) =

∫ t
T0
(χ̇(s)+(1+L)‖h(s)‖)ds is nondecreasing absolutely continuous. Hence, D satisfies

(A3), as a ∈ D(T0, a) = C(T0, a), from Theorem 3.1 there exists an absolutely continuous solution y
to the state-dependent sweeping process{

−ẏ(t) ∈ ND(t,y(t))(y(t)) a.e. in [T0, T ]
y(T0) = a, y(t) ∈ D(t, y(t)),

which verify
‖ẏ(t)‖ ≤ 1

1− L
χ̇1(t).

Furthermore, the mapping u(t) = y(t)− ψ(t) is solution of

−u̇(t)− h(t) = −ẏ(t) ∈ NC(t,y(t)−ψ(t))(y(t)− ψ(t)) := NC(t,u(t))u(t)

and satisfies ‖u̇(t) + h(t)‖ ≤ 1
1−L(χ̇(t) + ‖h(t)‖) a.e. t ∈ [T0, T ]. □

Now, we are able to give our main result in the paper, which is an existence result for a class
of first-order differential inclusions. The perturbation is supposed to be the sum of a Carathéodory
mapping and a scalarly upper semicontinuous set-valued mapping.
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Theorem 3.3. Assume that (A1), (A2) and (A3) hold. Let g : [T0, T ]×H → H be a map such that

i) g is a Carathéodory mapping on [T0, T ]×H;

ii) there exists a non-negative function α(·) ∈ L1
R+

(T0, T ) such that, for all t ∈ [T0, T ] and for all
x ∈ H, we have

‖g(t, x)‖ ≤ α(t)(1 + ‖x‖).

Let G : [T0, T ]×H ⇁ H be a set-valued mapping with nonempty closed convex values such that

iii) G is L([T0, T ]⊗ B(H)) measurable and scalarly upper semicontinuous on H;

iv) there exists a real γ > 0, such that, for all (t, x) ∈ [T0, T ]×H,

d(0, G(t, u)) ≤ γ(1 + ‖x‖).

Then, for any a ∈ C(T0, a), there exists an absolutely continuous mapping u : [T0, T ] → H solution
of

(SP)

{
−u̇(t) ∈ NC(t,u(t))(u(t)) +G(t, u(t)) + g(t, u(t)) a.e. in [T0, T ];
u(T0) = a, u(t) ∈ C(t, u(t)), ∀t ∈ [T0, T ].

Proof . For each (t, x) ∈ [T0, T ]×H, denote by P (t, x) the element of minimal norm of the closed
convex set G(t, x) of H, we put f(t, x) = g(t, x) + P (t, x) and β(t) = α(t) + γ, by ii) and iv), we get
for all (t, x) ∈ [T0, T ]×H ,

‖f(t, x)‖ ≤ β(t)(1 + ‖x‖). (3.2)
We suppose that ∫ T

T0

β(s)ds ≤ 1− L

4
, (3.3)

and consider, for every n ∈ N, a partition of [T0, T ] defined by

tni = i
T − T0
n

(0 ≤ i ≤ n).

We are going to construct a sequence of maps (un(·)) in CH(T0, T ) via Proposition 3.2 by considering
a perturbation f with fixed second variable u in each subinterval. So, for a ∈ C(T0, a), let us consider
the following problem on the interval [T0, tn1 ] :{

−u̇(t) ∈ NC(t,u(t))(u(t)) + f(t, a) a.e. t ∈ [T0, t
n
1 ];

u(T0) = a ∈ C(T0, a),

where f(·, a) is a mapping depending only on t and is L1
H(T0, t

n
1 ). By Proposition 3.2, it has an

absolutely continuous solution that we denote by un0 (·) : [T0, tn1 ] → H. According to (3.1) this solution
satisfies

‖u̇n0 (t) + f(t, a)‖ ≤ 1

1− L
(χ̇(t) + ‖f(t, a)‖) a.e. t ∈ [T0, t

n
1 ]. (3.4)

Now, since un0 (tn1 ) ∈ C(tn1 , u
n
0 (t

n
1 )) is well defined, let consider in the interval [tn1 , tn2 ] the problem{

−u̇(t) ∈ NC(t,u(t))(u(t)) + f(t, un0 (t
n
1 )) a.e. t ∈ [tn1 , t

n
2 ];

u(tn1 ) = un0 (t
n
1 ) ∈ C(tn1 , u

n
0 (t

n
1 ))



Perturbed sweeping process;
Volume 12, Special Issue, Winter and Spring 2021,605-615 611

which admits a solution denoted by un1 (·) : [tn1 , tn2 ] → H with un1 (t
n
1 ) = un0 (t

n
1 ) and satisfying

‖u̇n1 (t) + f(t, un0 (t
n
1 ))‖ ≤ 1

1− L
(χ̇(t) + ‖f(t, un0 (tn1 ))‖) a.e. in [tn1 , t

n
2 ]. (3.5)

And so on, for each n, there exists a finite sequence of absolutely continuous mappings uni (·) :
[tni , t

n
i+1] → H, (0 ≤ i ≤ n− 1) such that, for each i ∈ {0, ..., n− 1},{

−u̇ni (t) ∈ NC(t,uni (t))
(uni (t)) + f(t, uni−1(t

n
i )) a.e. t ∈ [tni , t

n
i+1],

uni (t
n
i ) = uni−1(t

n
i ) ∈ C(tni , u

n
i−1(t

n
i )),

where un−1(0) = a and

‖u̇ni (t)‖ ≤ 1

1− L
(χ̇(t) + 2‖f(t, uni−1(t

n
i ))‖) a.e. in [tni , t

n
i+1]. (3.6)

Define the functions un : [T0, T ] → H and θn : [T0, T ] → [T0, T ] by

un(t) = uni (t); ∀t ∈ [tni , t
n
i+1], i = 0, ..., n− 1{

θn(t) = tni , ∀t ∈]tni , tni+1], i = 0, ..., n− 1
θn(T0) = T0,

(3.7)

so, un(·) is absolutely continuous on [T0, T ], and one has{
−u̇n(t) ∈ NC(t,un(t))(un(t)) + f(t, un(θn(t))) a.e. t ∈ [T0, T ]
un(T0) = a

(3.8)

with
‖u̇n(t)‖ ≤ 1

1− L
(χ̇(t) + 2‖f(t, un(θn(t)))‖) a.e. t ∈ [T0, T ]. (3.9)

It follows that

‖un(tni+1)‖≤ ‖un(tni )‖+
1

1− L

∫ tni+1

tni

(χ̇(s) + 2‖f(s, un(tni ))‖)ds. (3.10)

By iteration, we obtain

‖un(tni+1)‖ ≤ ‖a‖+ 1

1− L

i∑
k=0

∫ tnk+1

tnk

(χ̇(s) + 2‖f(s, un(tnk))‖)ds

≤ ‖a‖+ 1

1− L

∫ tni+1

T0

χ̇(s)ds+
2

1− L

i∑
k=0

∫ tnk+1

tnk

‖f(s, un(tnk))‖ds

≤ ‖a‖+ 1

1− L

∫ tni+1

T0

χ̇(s)ds+
2

1− L

i∑
k=0

(1 + ‖un(tnk)‖)
∫ tnk+1

tnk

β(s)ds.

Then
‖un(tni+1)‖ ≤ ‖a‖+ 1

1− L

∫ tni+1

T0

χ̇(s)ds+
2

1− L
(1 + max

0≤k≤i
‖un(tnk)‖)

∫ tni+1

T0

β(s)ds

for each i = 0, ..., n− 1 and thus

max
0≤k≤n

‖un(tnk)‖ ≤ ‖a‖+ 1

1− L

∫ T

T0

χ̇(s)ds+
2

1− L
(1 + max

0≤k≤n
‖un(tnk)‖)

∫ T

T0

β(s)ds.
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Taking in account (3.3), we obtain

max
0≤k≤n

‖un(tnk)‖ ≤ ‖a‖+ 1

2
+

1

1− L

∫ T

T0

χ̇(s)ds+
1

2
max
0≤k≤n

‖un(tnk)‖

and hence
‖un(θn(t))‖ ≤ 2(‖a‖+ 1

2
+

1

1− L

∫ T

T0

χ̇(s)ds) := m. (3.11)

By (3.9), (3.11) and (3.2), one has for any n and almost all t

‖f(t, un(θn(t)))‖ ≤ (1 +m)β(t) (3.12)

‖u̇n(t)‖ ≤ 1

1− L
(χ̇(t) + 2(1 +m)β(t)) := m1(t). (3.13)

Thus by (3.12) and (3.13) we may suppose that (u̇n) σ(L1
H(T0, T ), L

∞
H (T0, T ))-converges in L1

H(T0, T )
to a function z with ||z(t)|| ≤ m1(t) for a.e. t ∈ [T0, T ] (see e.g. [12], Proposition 6.2.3), and
(un) converges pointwisely on [T0, T ] with respect to the weak topology to an absolutely continuous
function u

u(t) = a+

∫ t

T0

u̇(s) ds, ∀t ∈ [T0, T ]

for all t ∈ [T0, T ] with u̇ = z. Further, according to (3.11), we have by construction

un(θn(t)) ∈ C(θn(t), un(θn(t)))
⋂

BH(0,m). (3.14)

Then, (un(θn(t)) is relatively compact for every t ∈ [T0, T ] in H since

D(t) := ∪nC(θn(t), un(θn(t)))

is ball-compact thanks to (A2) and (3.11). As θn(t) → t, it follows that

lim
n→∞

||un(θn(t))− un(t)|| = 0 (3.15)

and (un(t)) is relatively compact. By (3.13), (un(·)) is equicontinuous, thus relatively compact
in CH(T0, T ), consequently, (un) converges in CH(T0, T ) to the absolutely continuous function u.
Furthermore, for all t ∈ [T0, T ]

‖g(t, un(θn(t)))‖ ≤ (1 +m)α(t),

by the continuity of the mapping g(t, ·) we get

g(t, un(·)) → g(t, u(·)),

and
‖g(t, u(t))‖ ≤ (1 +m)α(t).

In the other hand we have for all t ∈ [T0, T ]

||P (t, un(θn(t)))‖ ≤ (1 +m)γ



Perturbed sweeping process;
Volume 12, Special Issue, Winter and Spring 2021,605-615 613

for all n ≥ n0 and for all t ∈ [T0, T ], we put (P (·, un(θn(·)))) = (ρn(·)) so (ρn(·)) is bounded, taking
a subsequence if necessary, we may conclude that (ρn(·)) converges σ(L1

H(T0, T ), L
∞
H (T0, T )) to some

mapping ρ ∈ L1
H(T0, T ) with

‖ρ(t)‖ ≤ γ(1 +m).

Now, we proceed to prove that u̇(t) ∈ −NC(t,u(t))(u(t)) + G(t, u(t)) + g(t, u(t)) a.e. t ∈ [T0, T ].
First, we check that u(t) ∈ C(t, u(t)), for all t ∈ [T0, T ]. Indeed, for every t ∈ [T0, T ] and for every n,
we have

dC(t,u(t))(un(t)) ≤ ||un(t)− un(θn(t))||+ dC(t,u(t))(un(θn(t)))

≤ ||un(t)− un(θn(t))||+H(C(θn(t), un(θn(t))), C(t, u(t)))

≤ ||un(t)− un(θn(t))||+ χ(θn(t))− χ(t) + L||un(θn(t))− u(t)||.

Taking into account (3.15) and passing to the limit when n→ ∞, in the preceding inequality, we get
u(t) ∈ C(t, u(t)). Recall that (3.8), (3.12), (3.13) and Proposition 2.1 entails for a.e. t ∈ [T0, T ]

− u̇n(t)− f(t, un(θn(t))) ∈ Np
C(t,un(t))

un(t) ∩m2(t)B (3.16)

= m2(t)∂
pdC(t,un(t))(un(t))

with
m2(t) = m1(t) + (1 +m)β(t). (3.17)

Putting pn(t) = f(t, un(θn(t))) and p(t) = f(t, u(t)), remark that (u̇n + pn, ρn) weakly converges in
L1
H×H(T0, T ) to (u̇+p, ρ). An application of the Mazur’s theorem to (u̇n+pn, ρn) provides a sequence

(wn, ζn) with
wn ∈ co{u̇l + pl : l ≥ n} and ζn ∈ co{ρj : j ≥ n}

such that (wn, ζn) converges strongly in L1
H×H(T0, T ) to (u̇ + p, ρ). We can extract from (wn, ζn) a

subsequence which converges a.e. to (u̇ + p, ρ). Then, there is a Lebesgue negligible set S ⊂ [T0, T ]
such that for every t ∈ [T0, T ] \ S

u̇(t) + p(t) ∈
⋂
n≥0

{wk(t) : k ≥ n} ⊂
⋂
n≥0

co{u̇k(t) + pk(t) : k ≥ n} (3.18)

and
ρ(t) ∈

⋂
n≥0

{ζk(t) : k ≥ n} ⊂
⋂
n≥0

co{ζ(t) : k ≥ n}. (3.19)

Fix any t ∈ [T0, T ] \ S, n ≥ n0 and µ ∈ H, then the relation 3.18 gives

〈µ,−u̇(t)− p(t)〉 ≤ lim sup
n→∞

δ∗(µ,m2(t)∂dC(t,un(t))(un(t))

≤ δ∗(µ,m2(t)∂dC(t,u(t))(u(t)),

according to (A3) and Proposition 2.1, taking the supremum over µ ∈ H, we deduce that

δ(−u̇(t)− p(t),m2(t)∂dC(t,u(t))(u(t)) = δ∗∗(−u̇(t)− p(t),m2(t)∂dC(t,u(t))(u(t)) ≤ 0,

which entails

−u̇(t) ∈ m2(t)∂dC(t,u(t))(u(t)) + f(t, u(t))

∈ NC(t,u(t))(u(t)) + f(t, u(t))

∈ NC(t,u(t))(u(t)) + ρ(t) + g(t, u(t)).
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Further, the relation (3.19) gives

〈µ, ρ(t)〉 ≤ lim sup
n→∞

δ∗(µ,G(t, un(θn(t)))),

since δ∗(µ,G(t, ·)) is upper semicontinuous on H, then

〈µ, ρ(t)〉 ≤ δ∗(µ,G(t, u(t))),

so, we get d(ρ(t), G(t, u(t))) ≤ 0, consequently

ρ(t) ∈ G(t, u(t)) a.e. t ∈ [T0, T ].

Finally, to turn to the general case when condition (3.3) is not satisfied, we subdivide I into
intervals satisfying (3.3) and, thanks to the foregoing, one construct an absolutely continuous solution
in each subinterval, then by continuity the problem (SP) admits a solution on [T0, T ]. □

Remark 3.4. We cannot replace the constant γ in the condition (iv) of Theorem 3.3 by an integrable
mapping since the distance function (which define the element of minimal norm of G) is not necessary
continuous. This is possible in finite dimensional setting, see ([26], Lemma 2.2) or if G has compact
values, ([5], Corollary 1.4.17,) we get then the following result

Corollary 3.5. Assume that (A1), (A2), (A3) and assumptions on g hold. Let G : [T0, T ]×Rn ⇁ Rn

be a set-valued mapping with nonempty closed convex values such that

i) G is Carathéodory on [T0, T ]× Rn;

ii) there exists a non-negative function γ(·) ∈ L1
R+

(T0, T ) such that, for all t ∈ [T0, T ] and for all
x ∈ Rn, we have

d(0, G(t, u)) ≤ γ(t)(1 + ‖x‖).

Then, for any a ∈ C(T0, a), there exists an absolutely continuous mapping u : [T0, T ] → Rn solution
of (SP). Moreover, we have for a.e. t ∈ [T0, T ]

‖d(0, G(t, u))‖ ≤ (1 +m)γ(t)

and
‖u̇(t) + g(t, u(t)) + d(0, G(t, u))‖ ≤ 1

1− L

(
χ̇(t) + (1 +m)(γ(t) + α(t))

)
,

where
m = 2

(
‖a‖+ 1

2
+

1

1− L

∫ T

T0

χ̇(s)ds
)
.
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