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Abstract

In this paper, we introduce the concept of (G, ρ, θ)-invexity/pseudoinvexity. We formulate duality
outcomes for G-Wolfe-type fractional symmetric dual programs over arbitrary cones. In the final
section, we discuss the duality theorems under (G, ρ, θ)-invexity/ (G, ρ, θ)-psedoinvexity assumptions.
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1. Introduction

Duality in numerical programming has praiseworthy utilize in numerous hypothetical and computa-
tional improvements as well as in financial aspects, control hypothesis, business problems and other
differing fields. Various authors have considered fractional programming problems containing square
root of positive semidefinite quadratic forms like Mond [1] and Zhang and Mond [2]. The ubiquity of
this sort of problem lies in the way that in spite of the fact that the target and limitation capacities
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are nondifferentiable, a straightforward definition of the dual might be given.
Kim et al. [3] worked a pair of multiobjective symmetric dual problem under cone constraints
with psuedo-invex functions. Devi [4] constructed a pair of second-order symmetric dual programs
and derived duality relations with bonvex functions. Chen [5] formulated a pair of multiobjec-
tive higher-order dual nonlinear programming and discussed duality theorems under higher-order
(F, α, ρ, d)-convexity assumptions. Also, Chen [5] discussed ratio property and established the op-
timality conditions under higher-order (F, α, ρ, d)-convexity assumptions. Wolfe type second-order
symmetric duality has been discussed by Yang et al. [6] for multiobjective programming problems.
Convexity is one of the most much of the time utilized speculation in streamlining hypothesis essen-
tially as a result of a few worldwide properties that it has. Convexity presumptions are frequently
not fulfilled in true problem so there was a need to debilitate them. One of the ways was the in-
troduction of generalization of convexity namely quasi/pseudo-convexity. Recently Gutierrez et al.
[7] constructed various notions of (K1, K2)-pseudoinvexity-I and II with K1, K2 ∈ {Cc

0, (intC)c} for
a locally Lipschitz function by means of the extended Jacobian where C ⊆ Rn is a closed convex
pointed cone with non empty interior and C0 = C \ {0}. They utilized them to consider productivity
through variational-like disparities with Lipschitz functions. For more data on fractional program-
ming, readers are advised to see [8, 9, 10, 11, 12, 13, 14, 15].

In this article, we generalized (G, ρ, θ)-invexity/ (G, ρ, θ)-pseudoinvexity assumptions. General-
ized G- Wolfe type fractional symmetric dual is proposed over arbitrary cones and duality results are
proved by using the above mentioned functions.

2. Preliminaries and Definitions

Let S1 ⊆ Rn and S2 ⊆ Rm be open sets and f(x, y) be real valued differentiable function defined
on S1×S2. Let G : R→ R be strictly increasing function in their range G : If (S1×S2)→ R, where
If (S1 × S2) is the range of f, η1, η2 : S1 × S2 → Rn, ρ ∈ R and θ : S1 × S2 → R.
Definition 2.1. The function f(x, y) is (G, ρ, θ) -pseudoinvex in the first variable at u ∈ S1 for fixed
v ∈ S2 with respect to η1, if there exist ρ and θ, such that for x ∈ S1, we have

ηT1 (x, u)
[
G′(f(u, v))∇xf(u, v)

]
+ ρ||θ(x, u)||2 ≥ 0⇒ [G(f(x, v))−G(f(u, v))] ≥ 0.

Remark 2.1. If the above inequality sign changes ≤, then the function f(x, y) is (G, ρ, θ) -
pseudoincave in the first variable at u ∈ S1 for fixed v ∈ S2 with respect to η1.
Definition 2.2. The function f(x, y) is (G, ρ, θ)-pseudoinvex in the second variable at v ∈ S2 for
fixed u ∈ S1 with respect to η2, if there exist ρ and θ, such that for y ∈ S2, we have

ηT2 (y, v)
[
G′(f(u, v))∇yf(u, v)

]
+ ρ||θ(y, v)||2 ≥ 0⇒ [G(f(u, y))−G(f(u, v))] ≥ 0.

Remark 2.2. If the above inequality sign changes ≤, then the function f(x, y) is (G, ρ, θ) -
pseudoincave in the second variable at v ∈ S2 for fixed u ∈ S1 with respect to η2.
Definition 2.3. The function f(x, y) is (G, ρ, θ) -invex in the first variable at u ∈ S1 for fixed v ∈ S2

with respect to η1 if there exist ρ and θ, such that for x ∈ S1, we have

[G(f(x, v))−G(f(u, v))] ≥ ηT (x, u)
[
G′(f(u, v))∇xf(u, v)

]
+ ρ||θ(x, u)||2.

Remark 2.3. If the above inequality sign changes ≤, then the function f(x, y) is (G, ρ, θ) -incave
in the first variable at u ∈ S1 for fixed v ∈ S2 with respect to η1.
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Definition 2.4. The function f(x, y) is (G, ρ, θ)-invex in the second variable at v ∈ S2 for fixed
u ∈ S1 with respect to η2, if there exist ρ and θ, such that for y ∈ S2, we have

[G(f(u, y))−G(f(u, v))] ≥ ηT2 (y, v)
[
G′(f(u, v))∇yf(u, v)

]
+ ρ||θ(y, v)||2.

Remark 2.4. If the above inequality sign changes ≤, then the function f(x, y) is (G, ρ, θ) -incave
in the second variable at v ∈ S2 for fixed u ∈ S1 with respect to η2.
Definition 2.5. The positive polar cone S∗of a cone S ⊆ Rs is defined by

S∗ = {y ∈ Rs : xTy ≥ 0, for x ∈ S}.

3. G-Wolfe Type Fractional Symmetric Pair of Primal-Dual Model

The application of non-linear programming methods for the optimum design of statically indeter-
minate structures is discussed, with special emphasis on the design of elastic grillages loaded laterally
and in plane. In the following section, we formulate the following pair of G-Wolfe type fractional
symmetric dual programming problem over arbitrary cones:

Primal Problem (FWP):

Min
G(f(x, y))− yTG′(f(x, y))∇yf(x, y)

G(g(x, y))− yTG′(g(x, y))∇yg(x.y)

Subject to

−[(G(f(x, y))− yTG′(f(x, y))∇yf(x, y))G′(g(x, y))∇yg(x, y)− (G(g(x, y))

−yTG′(g(x, y))∇yg(x, y))G′(f(x, y))∇yf(x, y)] ∈ C∗2 ,

x ∈ C1.

Dual Problem (FWD):

Max
G(f(u, v))− uT [G′(f(u, v))∇xf(u, v)]

G(g(u, v))− uT [G′(g(u, v))∇xg(u, v)]

Subject to

[(G(f(u, v))− uTG′(f(u, v))∇xf(u, v))G′(g(u, v))∇xg(u, v)− (G(g(u, v))

−uTG′(g(u, v))∇xg(u, v))G′(f(u, v))∇xf(u, v)] ∈ C∗1 ,

v ∈ C2,

where f : S1×S2 → R and g : S1×S2 → R+\{0} are differentiable functions. The above primal-dual
programs can be re-written as:

(EFWP) Min w

Subject to

(G(f(x, y))− yTG′(f(x, y))∇yf(x, y))− w(G(g(x, y))− yTG′(g(x, y))∇yg(x, y)) = 0, (3.1)
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− [G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)] ∈ C∗2 , (3.2)

x ∈ C1. (3.3)

(EFWD) Min t

Subject to

(G(f(u, v))− uTG′(f(u, v))∇xf(u, v))− t(G(g(u, v))− uTG′(g(u, v))∇xg(u, v)) = 0, (3.4)

[(G′(f(u, v))∇xf(u, v))− t(G′(g(u, v))∇xg(u, v))] ∈ C∗1 , (3.5)

v ∈ C2. (3.6)

Let P 0 and Q0 be the sets of feasible solution of (EFWP) and (EFWD), respectively.

Theorem 3.1 (Weak duality theorem). Let (x, y, w) ∈ P 0 and (u, v, t) ∈ Q0. Let

(i) f(., v) be (G, ρ1, θ1)- invex and g(., v) be (G, ρ2, θ2)- incave at u for fixed v with respect to η1,

(ii) f(x, .) be (G, ρ3, θ3)−incave and g(x, .) be (G, ρ4, θ4)− invex at y for fixed x with respect to η2,

(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2,

(iv) G(g(x, v)) > 0,

(v) (ρ1||θ1(x, u)||2 − tρ2||θ2(x, u)||2) ≥ 0,

(vi) (ρ3||θ3(x, u)||2 − wρ4||θ4(x, u)||2) ≤ 0,

then, w ≥ t.

Proof. From hypothesis (i), we have

G(f(x, v))−G(f(u, v)) ≥ ηT1 (x, u)G′(f(u, v))∇xf(u, v) + ρ1||θ1(x, u)||2 (3.7)

and

−G(g(x, v)) +G(g(u, v)) ≥ −ηT1 (x, u)G′(g(u, v))∇xg(u, v)− ρ2||θ2(x, u)||2. (3.8)

Multiplying by t in inequality (3.8) and combining with (3.7), we have

G(f(x, v))− tG(g(x, v))−G(f(u, v)) + tG(g(u, v))

≥ ηT1 (x, u)[G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)] + ρ1||θ1(x, u)||2 − tρ2||θ2(x, u)||2.

Using hypothesis (v), the above inequality follows that

G(f(x, v))− tG(g(x, v))−G(f(u, v)) + tG(g(u, v))

≥ ηT1 (x, u)[G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)]. (3.9)
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Next, by hypothesis (ii), gives

−G(f(x, v)) +G(f(x, y)) ≥ −ηT2 (v, y)G′(f(x, y))∇yf(x, y)− ρ3||θ3(v, y)||2 (3.10)

and

G(g(x, v))−G(g(x, y)) ≥ ηT2 (v, y)[G′(g(x, y))∇yg(x, y)] + ρ4||θ4(v, y)||2. (3.11)

Multiplying by w in inequality (3.11) and combining with (3.10), we obtain

−G(f(x, v)) + wG(g(x, v))−G(f(x, y)) + wG(g(x, y))

≥ −ηT2 (v, y)[G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)]− ρ3||θ3(v, y)||2 + wρ4||θ4(v, y)||2.

Using hypothesis (vi), the above inequality follows that

−G(f(x, v)) + wG(g(x, v))−G(f(x, y)) + wG(g(x, y))

≥ −ηT2 (v, y)[G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)]. (3.12)

On adding inequalities (3.9) and (3.12), we have

G(f(x, v))− tG(g(x, v))−G(f(u, v)) + tG(g(u, v))−G(f(x, v))

+ wG(g(x, v))−G(f(x, y))− wG(g(x, y))

≥ ηT1 (x, u)[G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)]

− ηT2 (v, y)[G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)]. (3.13)

From dual constraint (3.5) and hypothesis (iii), we get

(η1(x, u) + u)T [G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)] ≥ 0,

or

ηT1 (x, u)[G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)]

≥ −uT [G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)]. (3.14)

Similarly, from inequality (3.2) and hypothesis (iii), we get

−(ηT2 (v, y) + y)T [G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)] ≥ 0,

or

−ηT2 (v, y)[G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)]

≥ yT [G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)]. (3.15)

From inequalities (3.13), (3.14) and (3.15), we get

G(f(x, v))− tG(g(x, v))−G(f(u, v)) + tG(g(u, v))−G(f(x, v)) + wG(g(x, v))
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−G(f(x, y)) + wG(g(x, y)) ≥ uT [G′(f(u, v))∇xf(u, v)− tG′(g(u, v))∇xg(u, v)]

+ yT [G′(f(x, y))∇yf(x, y)− wG′(g(x, y))∇yg(x, y)].

Using equations (3.1) and (3.4), it follows that

(w − t)G(g(x, v)) ≥ 0.

From hypothesis (iv), above inequality gives

w ≥ t.

Hence, completes the results. �

Remark 3.1 Since every invex function is pseudoinvex. So, we can easily follow that every (G, ρ, θ)-
invex function is (G, ρ, θ)-pseudoinvex, therefore above weak duality theorem follows on the same
pattern.

Theorem 3.2 (Weak duality): Let (x, y, w) ∈ P 0 and (u, v, t) ∈ Q0. Let

(i) f(., v) be (G, ρ1, θ1)- pseudoinvex and g(., v) be (G, ρ2, θ2)- pseudoincave at u for fixed v with
respect to η1,

(ii) f(x, .) be (G, ρ3, θ3)− pseudoincave and g(x, .) be (G, ρ4, θ4)− pseudoinvex at y for fixed x with
respect to η2,

(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2,

(iv) G(g(x, v)) > 0,

(v) (ρ1||θ1(x, u)||2 − tρ2||θ2(x, u)||2) ≥ 0,

(vi) (ρ3||θ3(x, u)||2 − wρ4||θ4(x, u)||2) ≤ 0.

Then, w ≥ t.

Proof: The proof follows on the same pattern of theorem 3.1.

Theorem 3.3 (Strong duality theorem). Let f and g be differentiable functions. Let (r̄, s̄, w̄)
be an optimal solution of (EFWP). Suppose that

(i) [G′′(f(r̄, s̄))∇sf(r̄, s̄)(∇sf(r̄, s̄))T +G′(f(r̄, s̄))∇ssf(r̄, s̄)− w̄{G′′(g(r̄, s̄))∇sg(r̄, s̄)(∇sg(r̄, s̄))T

+G′(g(ȳ, ȳ))∇ssg(r̄, s̄)}] is non-singular,

(ii)
(
r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)− s̄TG′(g(r̄, s̄))∇sg(r̄, s̄))G(f(r̄, s̄)) + (s̄TG′(f(r̄, s̄))∇sf(r̄, s̄)

− r̄TG′(f(r̄, s̄))∇rf(r̄, s̄))G(g(r̄, s̄)
)

= 0.
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Then, (r̄, s̄, w̄) ∈ Q0 and objective values of (EFWP) and (EFWD) are equal. Moreover, if all
the hypotheses of weak duality theorem are satisfied, then (r̄, s̄, w̄, q̄ = 0) is an optimal solution of
(EFWD).

Proof: Since (r̄, s̄, w̄) is an optimal solution of (EFWP), α ∈ R, β ∈ R, γ ∈ C2, µ ∈ R such
that the following Fritz John necessary conditions [16] are satisfied at (r̄, s̄, w̄) :

[β(G′(f(r̄, s̄))∇rf(r̄, s̄)− w̄G′(g(r̄, s̄))∇rg(r̄, s̄)) + (γ − βs̄)T (G′′(f(r̄, s̄))∇sf(r̄, s̄)

∇rf(r̄, s̄) +G′(f(r̄, s̄))∇srf(r̄, s̄)− w̄(G′′(g(r̄, s̄))∇sg(r̄, s̄)∇rg(r̄, s̄)

+G′(g(r̄, s̄))∇srg(r̄, s̄))− µ] = 0, (3.16)

(γ − βs̄)T [G′′(f(r̄, s̄))∇sf(r̄, s̄)(∇sf(r̄, s̄))T +G′(f(r̄, s̄))∇ssf(r̄, s̄)

−w̄(G′′(g(r̄, s̄))∇sg(r̄, s̄)(∇sg(r̄, s̄))T +G′(g(r̄, s̄))∇ssg(r̄, s̄))] = 0, (3.17)

γT [G′(f(r̄, s̄))∇sf(r̄, s̄)− w̄G′(g(r̄, s̄))∇sg(r̄, s̄)] = 0, (3.18)

α− β[G(g(r̄, s̄))− s̄TG′(g(r̄, s̄)∇sg(r̄, s̄))]− γG′(g(r̄, s̄))∇sg(r̄, s̄) = 0, (3.19)

µT r̄ = 0, (3.20)

(α, β, γ, µ) 6= 0, (α, β, γ, µ) ≥ 0. (3.21)

Since
(
G′′(f(r̄, s̄))∇sf(r̄, s̄)(∇sf(r̄, s̄))T +G′(f(r̄, s̄))∇ssf(r̄, s̄)− w̄(G′′(g(r̄, s̄))∇sg(r̄, s̄)

(∇sg(r̄, s̄))T +G′(g(r̄, s̄))∇ssg(r̄, s̄))
)

is non-singular, it follows from (3.17) that

γ = βs̄. (3.22)

Next, our aim to show that β 6= 0. If possible, then suppose that β = 0, then from (3.22), we get
γ = 0. From (3.19), we have α = 0, which contradicts (3.21). This combined with (3.16), we find
that µ = 0. Hence, β 6= 0 =⇒ β > 0. Now, it gives that (3.17) and (3.22) and in particular, by
(3.22), β > 0 and since γ ≥ 0, hence we have s̄ ≥ 0.
From inequality (3.16), we get

G′(f(r̄, s̄))∇rf(r̄, s̄)− w̄G′(g(r̄, s̄))∇rg(r̄, s̄) =
µ

β
≥ 0, (3.23)

or

G′(f(r̄, s̄))∇rf(r̄, s̄)− w̄G′(g(r̄, s̄))∇rg(r̄, s̄) ∈ C∗2 . (3.24)

Therefore, (r̄, s̄, w̄) ∈ Q0.

Next, we have to claim that the objective values of the problem are equal. It is sufficient to show
that

G(f(r̄, s̄))− r̄TG′(f(r̄, s̄))∇rf(r̄, s̄)

G(g(r̄, s̄))− r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)
=
G(f(r̄, s̄))− s̄TG′(f(r̄, s̄))∇sf(r̄, s̄)

G(g(r̄, s̄))− s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)
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Now, multiplying (3.23), by r̄T and using (3.20), we have

r̄TG′(f(r̄, s̄))∇rf(r̄, s̄)

r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)
= w̄. (3.25)

Further, using (3.22) and (3.18), we get

s̄TG′(f(r̄, s̄))∇sf(r̄, s̄)

s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)
= w̄. (3.26)

From (3.25) and (3.26), we have

r̄TG′(f(r̄, s̄))∇rf(r̄, s̄)

r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)
=
s̄TG′(f(r̄, s̄))∇sf(r̄, s̄)

s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)

i.e.(
r̄TG′((r̄, s̄))∇rf(r̄, s̄)

)(
s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)

)
=
(
r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)

)(
s̄TG′((r̄, s̄))∇sf(r̄, s̄)

)
. (3.27)

By hypothesis (ii), we get

r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)G(f(r̄, s̄)) + s̄TG′((r̄, s̄))∇sf(r̄, s̄)G(g(r̄, s̄))

= s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)G(f(r̄, s̄)) + r̄TG′(g(r̄, s̄))∇rf(r̄, s̄)G(g(r̄, s̄)). (3.28)

On subtracting (3.28) from (3.27) and after this we adding G(f(r̄, s̄))G(g(r̄, s̄)) of both sides, we have

G(f(r̄, s̄))G(g(r̄, s̄))−G(f(r̄, s̄))r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)− s̄TG′(g(r̄, s̄))

∇sf(r̄, s̄)G(g(r̄, s̄)) + r̄TG′((r̄, s̄))∇rf(r̄, s̄)s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)

= G(f(r̄, s̄))G(g(r̄, s̄))− r̄TG′((r̄, s̄))∇rf(r̄, s̄)G(g(r̄, s̄))− s̄TG′(g(r̄, s̄))

∇sg(r̄, s̄)G(f(r̄, s̄)) + r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)s̄TG′((r̄, s̄))∇sf(r̄, s̄).

This can be rewritten as:

G(f(r̄, s̄))− r̄TG′(f(r̄, s̄))∇rf(r̄, s̄)

G(g(r̄, s̄))− r̄TG′(g(r̄, s̄))∇rg(r̄, s̄)
=
G(f(r̄, s̄))− s̄TG′(f(r̄, s̄))∇sf(r̄, s̄)

G(g(r̄, s̄))− s̄TG′(g(r̄, s̄))∇sg(r̄, s̄)
.

Under the weak duality theorem, if (r̄, s̄, w̄) is not an optimal solution of (EFWD), then there are
other (u, v,W ) ∈ Q0 such that w̄ ≥ W . Since, (r̄, s̄, w̄) ∈ P 0. So, we obtain that w̄ ≥ W , which is a
contradiction. Thus,(r̄, s̄, w̄) is an optimal solution of (EFWD). Hence, the result.

Theorem 3.4 (Strict converse duality). Let f and g be differentiable functions. Let (v̄, w̄, t̄) be
an optimal solution of (EFWD). Suppose that

(i)

(
G′′(f(v̄, w̄))∇xf(v̄, w̄)(∇xf(v̄, w̄))T +G′(f(v̄, w̄))∇xxf(v̄, w̄)− t̄

(
G′′(g(v̄, w̄))

∇xg(v̄, w̄)(∇xg(v̄, w̄))T +G′(g(v̄, w̄))∇xxg(v̄, w̄)
))

is non-singular,
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(ii)
(
ūTG′(g(v̄, w̄))∇xg(v̄, w̄)− v̄TG′(g(v̄, w̄))∇yg(v̄, w̄)

)
G(f(v̄, w̄))

+
(
v̄TG′(f(v̄, w̄))∇yf(v̄, w̄)− ūTG′(f(v̄, w̄))∇xf(v̄, w̄)

)
G(g(v̄, w̄)) = 0.

Then, there exists (v̄, w̄, t̄) ∈ P 0 and objective values are equal. Moreover, if all the hypotheses of
weak duality theorem are satisfied, then (v̄, w̄, t̄) is an optimal solution of (EFWP).

Proof: Proof follows on the lines of Theorem 3.3, due to symmetric programming problem.

Conclusion

In this article, we considered fractional dual symmetric programming problem and derived duality
theorems under (G, ρ, θ)-invexity conditions. The present work can be extended to multiobjective
symmetric fractional dual programs. This may be taken as the future task of the researchers.
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