A NEW RESTRUCTURED HARDY-LITTLEWOOD'S INEQUALITY

BICHENG YANG ${ }^{1 *}$, G. M. RASSIAS ${ }^{2}$ AND TH. M. RASSIAS ${ }^{3}$

Abstract. In this paper, we reconstruct the Hardy-Littlewood's inequality by using the method of the weight coefficient and the technic of real analysis including a best constant factor. An open problem is raised.

1. Introduction

In 1908, D. Hilbert published the following Hilbert's inequality (cf. [1]): If $0<$ $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$ and $0<\sum_{n=1}^{\infty} b_{n}^{2}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\pi\left(\sum_{n=1}^{\infty} a_{n}^{2} \sum_{n=1}^{\infty} b_{n}^{2}\right)^{\frac{1}{2}}, \tag{1.1}
\end{equation*}
$$

where the constant factor π is the best possible. The integral analogue of (1.1) known as Hilbert's integral inequality is stated as follows:

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y<\pi\left(\int_{0}^{\infty} f^{2}(t) d t \int_{0}^{\infty} g^{2}(t) d t\right)^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

where the constant factor π is still the best possible.
In $1925, G$. H. Hardy and M. Riesz [2] gave extensions of (1.1) and (1.2) by introducing one pair of conjugate exponents $(p, q)\left(p>1, \frac{1}{p}+\frac{1}{q}=1\right)$ as:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left(\sum_{n=1}^{\infty} a_{n}^{p}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty} b_{n}^{q}\right)^{\frac{1}{q}}, \tag{1.3}\\
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left(\int_{0}^{\infty} f^{p}(t) d t\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} g^{q}(t) d t\right)^{\frac{1}{q}}, \tag{1.4}
\end{gather*}
$$

where the constant factor $\frac{\pi}{\sin (\pi / p)}$ is the best possible. Inequalities (1.3) and (1.4) are respectively called Hardy-Hilbert's inequality and Hardy-Hilbert's integral inequality. Inequalities (1.1) and (1.2) are important in analysis and its applications (cf. [3], [4]).

[^0]In 1998, by introducing an independent parameter $\lambda>0$ and applying the way of weight functions, Yang gave an extension of (1.2) as (cf. [5], [6]):

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+y)^{\lambda}} d x d y<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\left(\int_{0}^{\infty} t^{1-\lambda} f^{2}(t) d t \int_{0}^{\infty} t^{1-\lambda} g^{2}(t) d t\right)^{\frac{1}{2}} \tag{1.5}
\end{equation*}
$$

where the constant $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ is the best possible, and $B(u, v)$ is the Beta function.
Since then several mathematicians studied this thesis, such as Jichang Kuang, Mingzhe Gao, W. T. Sulaiman and S. R. Salem et al.. In 2003, Yang and Rassias [7] studied the way of weight coefficient and the method of introducing some independent parameters to obtain a number of new improvements and best extensions of (1.1)-(1.5). In 2004, Yang [8] gave an extension of (1.4) by introducing a parameter $\lambda>0$ and adding another pair of conjugate exponents $(r, s)\left(r>1, \frac{1}{r}+\frac{1}{s}=1\right)$ as:

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x^{\lambda}+y^{\lambda}} d x d y<\frac{1}{\lambda} B\left(\frac{1}{r}, \frac{1}{s}\right) \\
& \times\left(\int_{0}^{\infty} t^{p\left(1-\frac{\lambda}{r}\right)-1} f^{p}(t) d t\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} t^{q\left(1-\frac{\lambda}{s}\right)-1} g^{q}(t) d t\right)^{\frac{1}{q}} \tag{1.6}
\end{align*}
$$

where the constant factor $\frac{1}{\lambda} B\left(\frac{1}{r}, \frac{1}{s}\right)$ is the best possible, and for $\lambda=1, r=q$, inequality (1.6) reduces to (1.4). For those Hilbert-type inequalities, which possess the general form of kernel or the particular homogeneous kernel of $-\lambda$-degree $(\lambda>$ 0), Yang et al. [9], [10], [11], [12] used the Operator theory to study them and published many new interested results.

The equivalent form of (1.3) with the best constant $\left[\frac{\pi}{\sin (\pi / p)}\right]^{p}$ is as follows:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{m+n}\right)^{p}<\left[\frac{\pi}{\sin (\pi / p)}\right]^{p} \sum_{n=1}^{\infty} a_{n}^{p} . \tag{1.7}
\end{equation*}
$$

Modifying the kernel of (1.7), Hardy's inequality was given as (cf. [13]):

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{m=1}^{n} a_{m}\right)^{p}<\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p} \tag{1.8}
\end{equation*}
$$

where the constant factor $\left(\frac{p}{p-1}\right)^{p}$ is the best possible. The integral analogue of (1.8) is as follows (cf. [13]):

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x<\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x \tag{1.9}
\end{equation*}
$$

In the period 1927-1928, Hardy [14] provided an extension of (1.9) in the following form (cf. [2], Th. 330): If $p>1, r \neq 1,0<\int_{0}^{\infty} x^{-r}(x f(x))^{p} d x<\infty$, setting $F(x)$ as: $F(x)=\int_{0}^{x} f(t) d t(r>1) ; F(x)=\int_{x}^{\infty} f(t) d t(r<1)$, then

$$
\begin{equation*}
\int_{0}^{\infty} x^{-r} F^{p}(x) d x<\left(\frac{p}{|r-1|}\right)^{p} \int_{0}^{\infty} x^{-r}(x f(x))^{p} d x \tag{1.10}
\end{equation*}
$$

where the constant $\left(\frac{p}{|r-1|}\right)^{p}$ is the best possible. Similarly to the type of (1.10), Hardy and Littlewood [15] proved the following inequality (cf. [2], Th. 346): Assuming
that $p>1, r \neq 1, a_{n} \geq 0,0<\sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p}<\infty$, if (a) $r>1, s_{n}=\sum_{k=1}^{n} a_{k}$, or (b) $r<1, s_{n}=\sum_{k=n}^{\infty} a_{k}$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-r} s_{n}^{p} \leq K^{p} \sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p} \tag{1.11}
\end{equation*}
$$

where the constant factor K satisfies the following inequalities

$$
\begin{equation*}
\phi_{n}=\sum_{k=n}^{\infty} \frac{1}{k^{r}} \leq K n^{1-r}(r>1) ; \widetilde{\phi}_{n}=\sum_{k=1}^{n} \frac{1}{k^{r}} \leq K n^{1-r}(r<1) \tag{1.12}
\end{equation*}
$$

Hardy et al. [2] did not obtained the expression of K^{p} and proved that the constant factor is the best possible. But Hardy and Littlewood [16] pointed out some applications of (1.11) in the theory of functions, especially for $r=2$.

The proof of (a) in (1.11) was described in Hardy et. al. [2] as follows:
For $r>1, s_{n}=\sum_{k=1}^{n} a_{k}\left(s_{0}=0\right)$, by Abel's transform and (1.12), one finds

$$
\begin{align*}
& \sum_{n=1}^{m} n^{-r} s_{n}^{p}=\sum_{n=1}^{m}\left(\phi_{n}-\phi_{n+1}\right) s_{n}^{p} \\
= & \sum_{n=1}^{m} \phi_{n}\left(s_{n}^{p}-s_{n-1}^{p}\right)-\phi_{m+1} s_{m}^{p} \leq \sum_{n=1}^{m} \phi_{n}\left(s_{n}^{p}-s_{n-1}^{p}\right) \\
\leq & K \sum_{n=1}^{m} n^{1-r} s_{n}^{p-1} a_{n}=K \sum_{n=1}^{m} n^{-r}\left(n a_{n}\right)\left(s_{n}^{p-1}\right) . \tag{1.13}
\end{align*}
$$

Hence, by Hölder's inequality with weight, it follows

$$
\begin{equation*}
\sum_{n=1}^{m} n^{-r} s_{n}^{p} \leq K\left\{\sum_{n=1}^{m} n^{-r}\left(n a_{n}\right)^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{m} n^{-r} s_{n}^{p}\right\}^{\frac{1}{q}} \tag{1.14}
\end{equation*}
$$

For more large enough $m \in \mathbf{N}$, we have $\sum_{n=1}^{m} n^{-r} s_{n}^{p}>0$. Dividing by $\left\{\sum_{n=1}^{m} n^{-r} s_{n}^{p}\right\}^{\frac{1}{q}}$ in both sides of (14), we obtain

$$
\left\{\sum_{n=1}^{m} n^{-r} s_{n}^{p}\right\}^{\frac{1}{p}} \leq K\left\{\sum_{n=1}^{m} n^{-r}\left(n a_{n}\right)^{p}\right\}^{\frac{1}{p}}
$$

It follows that (a) in (1.11) is valid.
Remark 1.1. We find that the following inequality

$$
\begin{equation*}
s_{n}^{p}-s_{n-1}^{p} \leq s_{n}^{p-1} a_{n} \tag{1.15}
\end{equation*}
$$

is wrong. Hence we can't reach the last inequality of (1.13). In fact, we can find that

$$
\begin{align*}
& s_{n}^{p}-s_{n-1}^{p}=s_{n}^{p-1} s_{n}-s_{n-1}^{p}=s_{n}^{p-1}\left(s_{n-1}+a_{n}\right)-s_{n-1}^{p} \\
= & \left(s_{n}^{p-1}-s_{n-1}^{p-1}\right) s_{n-1}+s_{n}^{p-1} a_{n} \\
= & {\left[\left(s_{n-1}+a_{n}\right)^{p-1}-s_{n-1}^{p-1}\right] s_{n-1}+s_{n}^{p-1} a_{n} . } \tag{1.16}
\end{align*}
$$

Since $p>1, s_{n}=\sum_{k=1}^{n} a_{k}$, in view of $\sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p}>0$, there exists $n \in \mathbf{N}$, such that $s_{n-1}>0, a_{n}>0$ and

$$
\left[\left(s_{n-1}+a_{n}\right)^{p-1}-s_{n-1}^{p-1}\right] s_{n-1}>\left(s_{n-1}^{p-1}-s_{n-1}^{p-1}\right) s_{n-1}=0
$$

Hence by (1.16), it follows

$$
\begin{equation*}
s_{n}^{p}-s_{n-1}^{p}>s_{n}^{p-1} a_{n}, \tag{1.17}
\end{equation*}
$$

which contradicts (1.15). Therefore, inequality (1.15) is not valid by using the this way, and we can not prove (a) in (1.11).

If (b) $r<1, s_{n}=\sum_{k=n}^{\infty} a_{k}$, setting $\widetilde{\phi}_{0}=0$, then following the front-way, we can meet the similar result of (1.17). In fact,

$$
\begin{align*}
& \sum_{n=1}^{m} n^{-r} s_{n}^{p}=\sum_{n=1}^{m}\left(\widetilde{\phi}_{n}-\widetilde{\phi}_{n-1}\right) s_{n}^{p}=\sum_{n=1}^{m} \widetilde{\phi}_{n}\left(s_{n}^{p}-s_{n+1}^{p}\right)-\widetilde{\phi}_{m} s_{m+1}^{p} \\
= & \sum_{n=1}^{m} \widetilde{\phi}_{n}\left(s_{n}^{p-1} s_{n}-s_{n+1}^{p}\right)-\widetilde{\phi}_{m} s_{m+1}^{p} \\
= & \sum_{n=1}^{m} \widetilde{\phi}_{n}\left[s_{n}^{p-1}\left(s_{n+1}+a_{n}\right)-s_{n+1}^{p}\right]-\widetilde{\phi}_{m} s_{m+1}^{p} \\
= & \sum_{n=1}^{m} \widetilde{\phi}_{n} s_{n}^{p-1} a_{n}+\left[\sum_{n=1}^{m} \widetilde{\phi}_{n} s_{n+1}\left(s_{n}^{p-1}-s_{n+1}^{p-1}\right)-\widetilde{\phi}_{m} s_{m+1}^{p}\right] . \tag{1.18}
\end{align*}
$$

Since $s_{n}^{p-1}-s_{n+1}^{p-1} \geq 0$, we can't prove the following inequality:

$$
\sum_{n=1}^{m} \widetilde{\phi}_{n} s_{n+1}\left(s_{n}^{p-1}-s_{n+1}^{p-1}\right)-\widetilde{\phi}_{m} s_{m+1}^{p} \leq 0
$$

and then the inequality $\sum_{n=1}^{m} n^{-r} s_{n}^{p} \leq \sum_{n=1}^{m} \widetilde{\phi}_{n} s_{n}^{p-1} a_{n}$ is not valid by (1.18). So we cannot do more work for (b) in (1.11) following this way.

In this paper, by using (1.10), we reformulate (1.11) to obtain a new inequality with a best constant factor, by using the way of weight coefficient and the technic of real analysis. That is the following theorem:

Theorem 1.2. Assuming that $r \neq 1, p>1, a_{n} \geq 0,0<\sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p}<\infty$, if (a) $r>1, s_{n}=\sum_{m=1}^{n} a_{m}$, or (b) $r<1, s_{n}=\sum_{m=n}^{\infty} a_{m}$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{-r} s_{n}^{p}}{\left(1+\frac{|r-1|}{p n}\right)^{p-1}}<k_{r}^{p} \sum_{n=1}^{\infty}\left(1+\frac{|r-1|}{p n}\right) n^{-r}\left(n a_{n}\right)^{p} \tag{1.19}
\end{equation*}
$$

where the constant factor $k_{r}^{p}=\left(\frac{p}{|r-1|}\right)^{p}$ is the best possible and $. k_{r}:=\frac{p}{|r-1|}$.
Remark 1.3. Inequality (1.19) is a new restructured Hardy-Littlewood's inequality with a best constant factor. For $r=p, q=\frac{p}{p-1}$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{q n}{1+q n}\right)^{p-1}\left(\frac{1}{n} \sum_{m=1}^{n} a_{m}\right)^{p}<q^{p} \sum_{n=1}^{\infty} \frac{1+q n}{q n} a_{n}^{p} \tag{1.20}
\end{equation*}
$$

which is weaker than (1.8) but with the same best constant factor as (1.8).

2. A Lemma and a preliminary theorem

Lemma 2.1. If $\alpha>0, m, n \in \mathbf{N}$, then

$$
\begin{gather*}
\sum_{n=m}^{\infty} \frac{1}{n^{1+\alpha}}<\frac{1}{\alpha m^{\alpha}}\left(1+\frac{\alpha}{m}\right) \tag{2.1}\\
\frac{1}{\alpha} n^{\alpha}\left(1-\frac{1}{n^{\alpha}}\right)<\sum_{m=1}^{n} \frac{1}{m^{1-\alpha}}<\frac{1}{\alpha} n^{\alpha}\left(1+\frac{\alpha}{n}\right) . \tag{2.2}
\end{gather*}
$$

Proof. For $\alpha>0$, we obtain

$$
\begin{aligned}
& \sum_{n=m}^{\infty} \frac{1}{n^{1+\alpha}}=\frac{1}{m^{1+\alpha}}+\sum_{n=m+1}^{\infty} \frac{1}{n^{1+\alpha}} \\
< & \frac{1}{m^{1+\alpha}}+\int_{m}^{\infty} \frac{1}{x^{1+\alpha}} d x=\frac{1}{\alpha}\left(1+\frac{\alpha}{m}\right) \frac{1}{m^{\alpha}} .
\end{aligned}
$$

Then inequality (2.1) is valid.
For $0<\alpha \leq 1$, it follows

$$
\begin{aligned}
& \sum_{m=1}^{n} \frac{1}{m^{1-\alpha}}<\int_{0}^{n} \frac{1}{x^{1-\alpha}} d x=\frac{1}{\alpha} n^{\alpha}<\frac{1}{\alpha} n^{\alpha}\left(1+\frac{\alpha}{n}\right) \\
& \sum_{m=1}^{n} \frac{1}{m^{1-\alpha}}>\int_{1}^{n} \frac{1}{x^{1-\alpha}} d x=\frac{1}{\alpha} n^{\alpha}\left(1-\frac{1}{n^{\alpha}}\right)
\end{aligned}
$$

for $\alpha>1$, we obtain

$$
\begin{aligned}
& \sum_{m=1}^{n} \frac{1}{m^{1-\alpha}}=\frac{1}{n^{1-\alpha}}+\sum_{m=1}^{n-1} m^{\alpha-1} \\
< & \frac{1}{n^{1-\alpha}}+\int_{0}^{n} x^{\alpha-1} d x=\frac{1}{\alpha} n^{\alpha}\left(1+\frac{\alpha}{n}\right), \\
& \sum_{m=1}^{n} \frac{1}{m^{1-\alpha}}=\sum_{m=1}^{n} m^{\alpha-1}>\int_{1}^{n} x^{\alpha-1} d x=\frac{1}{\alpha} n^{\alpha}\left(1-\frac{1}{n^{\alpha}}\right) .
\end{aligned}
$$

Hence (2.2) is valid. The lemma is proved.
Theorem 2.2. If $p>1, \frac{1}{p}+\frac{1}{q}=1, r>1, a_{n}, b_{n} \geq 0, n \in \mathbf{N}$, such that

$$
\begin{equation*}
0<\sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p}<\infty, 0<\sum_{n=1}^{\infty} n^{-r}\left(n^{r} b_{n}\right)^{q}<\infty \tag{2.3}
\end{equation*}
$$

then the following inequality holds:

$$
\begin{align*}
I: & =\sum_{n=1}^{\infty} \sum_{m=1}^{n} a_{m} b_{n}=\sum_{m=1}^{\infty} \sum_{n=m}^{\infty} a_{m} b_{n}<\frac{p}{r-1} \\
& \times\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n a_{n}\right)^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}\right)^{q}\right\}^{\frac{1}{q}}, \tag{2.4}
\end{align*}
$$

where the constant factor $\frac{p}{r-1}$ is the best possible.

Since $1<1+\frac{r-1}{p n} \leq 1+\frac{r-1}{p}$, it is obvious that inequalities (2.3) are equivalent to the following:

$$
0<\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n a_{n}\right)^{p}<\infty, 0<\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}\right)^{q}<\infty
$$

By Hölder's inequality (cf. [17]), we obtain

$$
\begin{aligned}
& I=\sum_{n=1}^{\infty} \sum_{m=1}^{n}\left[\frac{m^{\left(1-\frac{r-1}{p}\right) / q}}{n^{\left(1+\frac{r-1}{p}\right) / p}} a_{m}\right]\left[\frac{n^{\left(1+\frac{r-1}{p}\right) / p}}{m^{\left(1-\frac{r-1}{p}\right) / q}} b_{n}\right] \\
\leq & \left\{\sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{m^{\left(1-\frac{r-1}{p}\right)(p-1)}}{n^{1+\frac{r-1}{p}}} a_{m}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{n^{\left(1+\frac{r-1}{p}\right)(q-1)}}{m^{1-\frac{r-1}{p}}} b_{n}^{q}\right\}^{\frac{1}{q}} \\
= & \left\{\sum_{m=1}^{\infty}\left(\sum_{n=m}^{\infty} \frac{1}{n^{1+\frac{r-1}{p}}}\right) m^{\left(1-\frac{r-1}{p}\right)(p-1)} a_{m}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left(\sum_{m=1}^{n} \frac{1}{m^{1-\frac{r-1}{p}}}\right) n^{\left(1+\frac{r-1}{p}\right)(q-1)} b_{n}^{q}\right\}^{\frac{1}{q}} .
\end{aligned}
$$

Then by (2.1) and (2.2), setting $\alpha=\frac{r-1}{p}(>0)$, we have

$$
\begin{aligned}
I< & \frac{p}{r-1}\left\{\sum_{m=1}^{\infty}\left(1+\frac{r-1}{p m}\right) \frac{m^{\left(1-\frac{r-1}{p}\right)(p-1)}}{m^{\frac{r-1}{p}}} a_{m}^{p}\right\}^{\frac{1}{p}} \\
& \times\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{\left(1+\frac{r-1}{p}\right)(q-1)+\frac{r-1}{p}} b_{n}^{q}\right\}^{\frac{1}{q}} \\
= & \frac{p}{r-1}\left\{\sum_{m=1}^{\infty}\left(1+\frac{r-1}{p m}\right) m^{p-r} a_{m}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{q r-r} b_{n}^{q}\right\}^{\frac{1}{q}} .
\end{aligned}
$$

Hence inequality (2.4) is valid.
For $N \in \mathbf{N}$, setting $\widetilde{a}_{n}=n^{\frac{r-1}{p}-1}, \widetilde{b}_{n}=n^{\frac{r-1}{q}-r}, n \leq N ; \widetilde{a}_{n}=\widetilde{b}_{n}=0, n>N$, if there exists a positive number $k \leq \frac{p}{r-1}$, such that (2.4) is still valid as we replace $\frac{p}{r-1}$ by k, then in particular, we have

$$
\begin{align*}
\widetilde{I}: & =\sum_{n=1}^{\infty} \sum_{m=1}^{n} \widetilde{a}_{m} \widetilde{b}_{n}<k\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n \widetilde{a}_{n}\right)^{p}\right\}^{\frac{1}{p}} \\
& \times\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} \widetilde{b}_{n}\right)^{q}\right\}^{\frac{1}{q}} \\
= & k \sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) \frac{1}{n}=k\left(\sum_{n=1}^{N} \frac{1}{n}+\frac{r-1}{p} \sum_{n=1}^{N} \frac{1}{n^{2}}\right) \\
= & k\left(\sum_{n=1}^{N} \frac{1}{n}\right)\left[1+\frac{r-1}{p}\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{-1} \sum_{n=1}^{N} \frac{1}{n^{2}}\right] ; \tag{2.5}
\end{align*}
$$

On the other-hand, by (2.2), we obtain

$$
\begin{align*}
\widetilde{I} & =\sum_{n=1}^{N}\left(\sum_{m=1}^{n} m^{\frac{r-1}{p}-1}\right) n^{\frac{r-1}{q}-r} \geq \frac{p}{r-1} \sum_{n=1}^{N} n^{\frac{r-1}{p}}\left(1-\frac{1}{n^{\frac{r-1}{p}}}\right) n^{\frac{r-1}{q}-r} \\
& =\frac{p}{r-1}\left(\sum_{n=1}^{N} \frac{1}{n}-\sum_{n=1}^{N} \frac{1}{n^{\frac{r-1}{p}+1}}\right) \\
& =\frac{p}{r-1}\left(\sum_{n=1}^{N} \frac{1}{n}\right)\left[1-\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{-1} \sum_{n=1}^{N} \frac{1}{n^{\frac{r-1}{p}+1}}\right] . \tag{2.6}
\end{align*}
$$

Combining with (2.5) and (2.6) and dividing by $\sum_{n=1}^{N} \frac{1}{n}$, we have

$$
\frac{p}{r-1}\left[1-\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{-1} \sum_{n=1}^{N} \frac{1}{n^{\frac{r-1}{p}+1}}\right]<k\left[1+\frac{r-1}{p}\left(\sum_{n=1}^{N} \frac{1}{n}\right)^{-1} \sum_{n=1}^{N} \frac{1}{n^{2}}\right]
$$

and then $\frac{p}{r-1} \leq k($ for $N \rightarrow \infty)$. Hence $k=\frac{p}{r-1}$ is the best value of (2.4) and the theorem is proved.

3. Main results

Theorem 3.1. If $p>1, \frac{1}{p}+\frac{1}{q}=1, r>1, a_{n}, b_{n} \geq 0,0<\sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p}<\infty$ and $0<\sum_{n=1}^{\infty} n^{-r}\left(n^{r} b_{n}\right)^{q}<\infty$, then

$$
\begin{align*}
J & :=\sum_{n=1}^{\infty} \frac{n^{-r}}{\left(1+\frac{r-1}{p n}\right)^{p-1}}\left(\sum_{m=1}^{n} a_{m}\right)^{p} \\
& <\left(\frac{p}{r-1}\right)^{p} \sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n a_{n}\right)^{p} \tag{3.1}\\
L & :=\sum_{m=1}^{\infty} \frac{m^{r(q-1)-q}}{\left(1+\frac{r-1}{p m}\right)^{q-1}}\left(\sum_{n=m}^{\infty} b_{n}\right)^{q} \\
& <\left(\frac{p}{r-1}\right)^{q} \sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}\right)^{q} \tag{3.2}
\end{align*}
$$

where the constant factors $\left(\frac{p}{r-1}\right)^{p}$ and $\left(\frac{p}{r-1}\right)^{q}$ are the best possible. Inequalities (3.1), (3.2) and (2.4) are equivalent.

Proof. If $J=0$, then (3.1) is naturally valid; if $J>0$, then there exists $n_{0} \in \mathbf{N}$, such that for $N \geq n_{0}, \sum_{n=1}^{N} n^{-r}\left(n a_{n}\right)^{p}>0$ and $J_{N}:=\sum_{n=1}^{N} \frac{n^{-r}}{\left(1+\frac{r-1}{p n}\right)^{p-1}}\left(\sum_{m=1}^{n} a_{m}\right)^{p}>0$.

We set $b_{n}(N):=\frac{n^{-r}}{\left(1+\frac{r-1}{p m}\right)^{p-1}}\left(\sum_{m=1}^{n} a_{m}\right)^{p-1}(n \leq N)$, and use (2.4) to obtain

$$
\begin{align*}
0< & \sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}(N)\right)^{q}=J_{N} \\
= & \sum_{n=1}^{N} \sum_{m=1}^{n} a_{m} b_{n}(N)<\frac{p}{r-1}\left\{\sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n a_{n}\right)^{p}\right\}^{\frac{1}{p}} \\
& \times\left\{\sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}(N)\right)^{q}\right\}^{\frac{1}{q}} \tag{3.3}
\end{align*}
$$

Dividing $\left\{\sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}(N)\right)^{q}\right\}^{\frac{1}{q}}$ in both sides of (3.3), it follows

$$
\begin{align*}
0 & <\left\{\sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}(N)\right)^{q}\right\}^{\frac{1}{p}}=J_{N}^{\frac{1}{p}} \\
& <\frac{p}{r-1}\left\{\sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n a_{n}\right)^{p}\right\}^{\frac{1}{p}} \\
& <\frac{p}{r-1}\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n a_{n}\right)^{p}\right\}^{\frac{1}{p}}<\infty . \tag{3.4}
\end{align*}
$$

We conform that $0<\sum_{n=1}^{\infty} n^{-r}\left(n^{r} b_{n}(\infty)\right)^{q}<\infty$ and for $N \rightarrow \infty$, both (3.3) and (3.4) still preserve the strict sign-inequalities. Hence (3.1) follows.

By the same way, if $L=0$, then (3.2) is naturally valid; if $L>0$, then there exists n_{0}, such that for $N \geq n_{0}, \sum_{n=1}^{N} n^{-r}\left(n^{r} b_{n}\right)^{q}>0$ and $L_{N}:=\sum_{m=1}^{N} \frac{m^{r(q-1)-q}}{\left(1+\frac{r-1}{p m}\right)^{q-1}}\left(\sum_{n=m}^{N} b_{n}\right)^{q}$ >0. We set $a_{m}(N):=\frac{m^{r(q-1)-q}}{\left(1+\frac{r-1}{p m}\right)^{q-1}}\left(\sum_{n=m}^{N} b_{n}\right)^{q-1}$ and use (2.4) to obtain

$$
\begin{align*}
0< & \sum_{m=1}^{N}\left(1+\frac{r-1}{p m}\right) m^{-r}\left(m a_{m}(N)\right)^{p}=L_{N}=\sum_{m=1}^{N} \sum_{n=m}^{\infty} a_{m}(N) b_{n} \\
< & \frac{p}{r-1}\left\{\sum_{m=1}^{N}\left(1+\frac{r-1}{p m}\right) m^{-r}\left(m a_{m}(N)\right)^{p}\right\}^{\frac{1}{p}} \\
& \times\left\{\sum_{n=1}^{N}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}\right)^{q}\right\}^{\frac{1}{q}} ; \tag{3.5}\\
0 & <\sum_{m=1}^{N}\left(1+\frac{r-1}{p m}\right) m^{-r}\left(m a_{m}(N)\right)^{p} \\
& <\left(\frac{p}{r-1}\right)^{q} \sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}\right)^{q}<\infty \tag{3.6}
\end{align*}
$$

We conform that $0<\sum_{m=1}^{\infty} m^{-r}\left(m a_{m}(\infty)\right)^{p}<\infty$, and for $N \rightarrow \infty$, both (3.5) and (3.6) still preserve the strict sign-inequalities. Hence we have (3.2).

By Hölder's inequality (cf. [17]), we have

$$
\begin{align*}
I & =\sum_{n=1}^{\infty}\left[\frac{n^{\frac{-r}{p}}}{\left(1+\frac{r-1}{p n}\right)^{\frac{1}{q}}} \sum_{m=1}^{n} a_{m}\right]\left[\left(1+\frac{r-1}{p n}\right)^{\frac{1}{q}} n^{\frac{r}{p}} b_{n}\right] \\
& \leq J^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p n}\right) n^{-r}\left(n^{r} b_{n}\right)^{q}\right\}^{\frac{1}{q}} ; \tag{3.7}\\
I & =\sum_{m=1}^{\infty}\left[\left(1+\frac{r-1}{p m}\right)^{\frac{1}{p}} m^{1-\frac{r}{p}} a_{m}\right]\left[\frac{m^{\frac{r}{p}-1}}{\left(1+\frac{r-1}{p m}\right)^{\frac{1}{p}}} \sum_{n=m}^{\infty} b_{n}\right] \\
& \leq\left\{\sum_{n=1}^{\infty}\left(1+\frac{r-1}{p m}\right) m^{-r}\left(m a_{n}\right)^{p}\right\}^{\frac{1}{p}} L^{\frac{1}{q}} . \tag{3.8}
\end{align*}
$$

On the other hand, assuming that (3.1)(or (3.2)) is valid, by (3.7)(or (3.8)), we obtain (2.4). Hence (3.1), (3.2) and (2.4) are equivalent. We conform that both constants $\left(\frac{p}{r-1}\right)^{p}$ in (3.1) and $\left(\frac{p}{r-1}\right)^{q}$ in (3.2) are the best possible, otherwise, we can obtain a contradiction by (3.7) or (3.8) that the constant factor in (2.4) is not the best possible. The theorem is proved.

Proof of Theorem 1. Exchange with m and n, a_{m} and b_{n}, p and q in (3.2), and putting $R=r(>1)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{R(p-1)-p}}{\left(1+\frac{R-1}{q n}\right)^{p-1}}\left(\sum_{m=n}^{\infty} a_{m}\right)^{p}<\left(\frac{q}{R-1}\right)^{p} \sum_{m=1}^{\infty}\left(1+\frac{R-1}{q m}\right) m^{-R}\left(m^{R} a_{m}\right)^{p} . \tag{3.9}
\end{equation*}
$$

Setting $r=p-R(p-1)$ in (3.9), we obtain $R(p-1)=p-r, r<1$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{-r}}{\left(1+\frac{1-r}{p n}\right)^{p-1}}\left(\sum_{m=n}^{\infty} a_{m}\right)^{p}<\left(\frac{p}{1-r}\right)^{p} \sum_{m=1}^{\infty}\left(1+\frac{1-r}{p m}\right) m^{-r}\left(m a_{m}\right)^{p} \tag{3.10}
\end{equation*}
$$

Combining with (3.1) and (3.10), we have (1.19), and the constant factor is obviously the best possible. This proves the theorem.

Open problem. Since $1+\frac{|r-1|}{p n} \leq 1+\frac{|r-1|}{p}$, if we set $K_{r}=1+\frac{p}{|r-1|}$, then inequality (1.19) can be deduced to

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-r} s_{n}^{p}<K_{r}^{p} \sum_{n=1}^{\infty} n^{-r}\left(n a_{n}\right)^{p} \tag{3.11}
\end{equation*}
$$

which is the same as (1.11), but obviously the constant factor K_{r}^{p} is not the best possible in (3.11) unless $K_{r}=k_{r}=\frac{p}{|r-1|}$. If we replace K_{r} by \widetilde{k}_{r}, that makes (3.11) still valid, then by simple proof, we find $\frac{p}{|r-1|} \leq \widetilde{k_{r}} \leq 1+\frac{p}{|r-1|}$ and in view of (1.8), it follows for $r=p, \inf \widetilde{k_{p}}=k_{p}$. We conjecture that

$$
\begin{equation*}
\inf \widetilde{k_{r}}=k_{r}=\frac{p}{|r-1|} \tag{3.12}
\end{equation*}
$$

We leave behind it as an open problem.

REFERENCES

1. H. Weyl, Singulare integral gleichungen mit besonderer berucksichtigung des fourierschen integral theorems, Inaugeral-Dissertation, Gottingen.
2. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
3. G. H. Hardy, Note on a theorem of Hilbert concerning series of positive terms, Proc. London Math. Soc., 23,2(1925), Records of Proc. xlv-xlvi.
4. D. S. Mintrinovic, J. E. Pecaric and A. M. Fink, Inequalities involving functions and their integrals and derivertives, Kluwer Academic Publishers, Boston, 1991.
5. Bicheng Yang, On Hilbert's integral inequality, J. Math. Anal. Appl.,220(1998): 778-785.
6. Bicheng Yang, A note on Hilbert's integral inequality, Chinese Quarterly Journal of Mathematics, 13, 4(1998): 83-86.
7. Bicheng Yang and Th. M. Rassias, On the way of weight coefficient and research for the Hilbert-type inequalities, Math. Ineq. Appl., 6, 4(2003): 625-658.
8. Bicheng Yang, On an extension of Hilbert's integral inequality with some parameters, The Australian Journal of Mathematical Analysis and Applications, 1,1(2004): Art.1,1-8.
9. Bicheng Yang, On the norm of a self-adjoint operator and a new bilinear integral inequality, Acta Math. Sinica, English Series,23,7 (2007): 1311-1316.
10. Bicheng Yang, On a Hilbert-type operator with a symmetric homogeneous kernel of -1-order and applications, Journal of Inequalities and Applications, Volume 2007, Article ID 47812, 9 pages, doi:10.1155/2007/47812.
11. M Krnetic, Mingzhe Gao, J. Pecaric and Xuemei Gao, On the best constant in Hilbert's inequality, Math. Ineq. Appl., 8, 2(2005): 317-329.
12. I Brnet, M. Krnic and J. Pecaric, Multiple Hilbert and Hardy-Hilbert inequalities with nonconjugate parameters, Bull. Austral. Math. Soc., 71(2005): 447-457.
13. G. H. Hardy, Note on a theorem of Hilbert, Math. Zeitschr, 6(1920): 314-317.
14. G. H. Hardy, Note on some points in the integral calculus(LXIV), Messenger of Math., 57(1928): 12-16.
15. G. H. Hardy and J. E. Littlewood, Elementary theorems concerning power series with positive coefficients and moment constants of positive function, J. Math., 157(1927): 141-158.
16. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Annalen, 97(1927): 159-209.
17. Jichang Kuang, Applied inequalities, Shangdong Science Press, Jinan, 2004.
${ }^{1}$ Department of Mathematics, Guangdong Education Institute, and Guangzhou, Guangdong 510303, P. R. China

E-mail address: bcyang@pub.guangzhou.gd.cn
${ }^{2}$ Zagoras St. Paradissos, Amaroussion 15125 Athens, Greece
E-mail address: trassias@math.ntua.gr
${ }^{3}$ Department of Mathematics, National Technical University of Athens, Zografou, Campus 15780 Athens, Greece.

E-mail address: trassias@math.ntua.gr

[^0]: Date: Received:April 2010; Revised: May 2010.
 2000 Mathematics Subject Classification. Primary 26D15.
 Key words and phrases. Hardy-Littlewood's inequality, weight coefficient, Hölder's inequality, best constant factor.
 *: Corresponding author.

