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Abstract

A second order finite difference scheme is constructed to solve a singularly perturbed degenerate
parabolic convection diffusion problem via Rothe’s method. The solution of the problem exhibits a
boundary layer on the left side of the spatial domain. By means of the Crank Nicolson finite difference
scheme, the time derivative is discretised to obtain a set of semi-discrete boundary value problems.
Using a fitted operator finite difference scheme based on the midpoint downwind scheme, the system
of boundary value problems are discretized and analysed for convergence. Second order accuracy
is established for each discretisation process. Numerical simulations are carried out to validate the
theoretical error estimate.
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1. Introduction

Consider the singularly perturbed degenerate parabolic convection diffusion problem

−ut(x, t) + εuxx(x, t) + a(x)ut(x, t)− b(x, t) = f(x, t), (x, t) ∈ Q,

Q = Ω× (0, T ], Ω = (0, 1), (1.1)
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subject to the boundary and the initial condition

u(0, t) = η0(t), u(1, t) = η1(t), t ∈ [0, T ], u(x, t) = φ(x), x ∈ [0, 1]. (1.2)

We assume the source term f(x, t) and the coefficient functions a(x), b(x, t) are smooth and bounded.
Moreover, the coefficient function satisfy

a(x) ≥ a0(x)x
p > α > 0, p ≥ 1, b(x, t) ≥ β ≥ 0.

The perturbation parameter ε is such that 0 < ε << 1. Problems of type (1.1) are known as
singularly perturbed turning point problem since the coefficient of the convective term vanishes at
x = 0. Subsequently, the point x = 0 is the turning point. Depending on the value of p we can have
either a simple turning point or a multiple point. Setting ε = 0, in Problem (1.1)–(1.2) yields the
reduced problem

−(u0)t(x, t) + a(x)(u0)x(x, t)− b(x, t)(u0)(x, t) = f(x, t), (1.3)

which is a first order hyperbolic problem along with the initial and boundary conditions

u(0, t) = η0(t), u(1, t) = η1(t), t ∈ [0, T ], u(x, 0) = φ(x), (x, t) ∈ [0, 1]. (1.4)

Evidently, solving the reduced problem (1.3)–(1.4) will require only one boundary condition and
thus, one of the boundary conditions will be underutilized leading to a boundary layer in that
neighborhood. Notice that the convective term is positive throughout the domain Ω. Therefore, the
boundary layer will occur in the neighborhood of x = 0. The width of that layer takes the form
O(

√
ε), [20] similar to that of a reaction diffusion problem.

It is well known that classical numerical methods can not solve these problems satisfactorily. Thus
some modifications of these classical numerical methods have been made to elude this difficulty. See
for example the survey articles [4, 5, 6, 8] and the books [14, 18]. Below we cite some of the works
done in line with Problem (1.1)–(1.2).

Clavero et. al [1] investigated a singularly perturbed convection diffusion problem with degenerate
coefficient having a discontinuous source term and obtained a first order accuracy in time and almost
second order accuracy in space. They discretised the space and the time variables at the same time
via the simple upwind scheme on a non-uniform mesh and the backward Euler schemes respectively.

Dunne et. al [2] solved Problem (1.1)–(1.2) by the classical finite difference operator on a Shishkin
mesh and the backward Euler finite difference scheme. These authors established an almost first order
accuracy in space and first order in time.

Gupta et. al [3] designed a hybrid scheme to solve a stationary singularly perturbed problem
with an interior turning point. They analysed the scheme for convergence and obtained a second
order accuracy except for a logarithmic factor.

Majumdar and Natesan [10] proposed a numerical scheme which employed the backward Euler
and the classical finite difference operator on Shishkin mesh to solve the time and the space variables
respectively. They established that their scheme was first order accurate in both variables except for
a logarithmic factor in space. Using Richardson extrapolation technique, they enhanced the accuracy
to almost second order in space and second order in time.

In [11], Majumdar and Natesan studied a two-dimensional version of Problem (1.1)–(1.2) using
an alternating direction scheme for the time derivative and an upwind finite difference operator on
Shishkin mesh for the space derivative. These authors established an almost first order accuracy for
their scheme.



A second order fitted operator finite difference scheme for a singularly perturbed ...;
Volume 12, Special Issue, Winter and Spring 2021, 677-687 679

In [12], Majumdar and Natesan proposed an ε-uniform scheme of first order accuracy in time
and almost second order in space to solve Problem (1.1)–(1.2) via the Rothe’s method. The scheme
employed a combination of the classical central difference and the midpoint upwind scheme on a
Shishkin mesh to solve the spatial derivatives and the backward Euler was used for the time derivative.

In [17], Rai and Yadav discretised the time and the space variables of a singularly perturbed
delayed parabolic convection diffusion problem with degenerate coefficients via the backward Euler
and a hybrid scheme on a non-uniform mesh respectively. Their analysis was almost second order in
space and first order in time. Using Richardson extrapolation on the time variable, they improved
the time accuracy to second order.

Viscor and Stynes [19] studied the reaction diffusion version of Problem (1.1)–(1.2) and obtained
an almost second order accuracy in space and first order in time.

Inspired by the simplicity of the analysis, its accuracy and noticing that all the above papers
focused on non-uniform mesh, we propose a scheme which uses a uniform mesh to solve Problem
(1.1)–(1.2). The scheme uses the Crank Nicolson finite difference scheme to solve the time derivatives
and a fitted operator finite difference scheme based on non-standard finite difference scheme [7] and
midpoint downwind scheme for the spatial derivatives. The authors wish to state that, although
the scheme which was proposed in [13] was also based on the non-standard finite difference scheme,
Richardson extrapolation was employed to enhance the accuracy of the scheme to second order whilst
the proposed scheme uses the midpoint rule to obtain the second order accuracy.

The paper unfolds as follows: In Section 2, some theoretical results are presented. The discreti-
sation of the continuous problem in time by the Crank Nicolson finite difference scheme and its
convergence are presented in Section 3. Section 4 focuses on the spatial discretisation which uses
a fitted operator finite difference scheme based on the midpoint rule. In Section 5, the stability of
the scheme is presented and then analysed for convergence in Section 6. In Section 7, numerical
experiments are conducted to validate the theoretical findings whilst a summary of the main result
is presented in Section 8.

2. Bounds on the Solution and Its Derivatives

In this section, we estimate the solution of (1.1)–(1.2) by providing the bounds of the solution
and its partial derivatives. The proofs of the lemmas in this section follow the lines of the proofs in
[9, 12, 15, 20].

Lemma 2.1. Continuous minimum principle
Suppose Ψ(x, t) is a smooth functions which satisfies Ψ(x, 0) ≥ 0, Ψ(0, t) ≥ 0, Ψ(1, t) ≥ 0 and
LεΨ(x, t) ≤ 0, ∀ (x, t) ∈ Q. Then Ψ(x, t) ≥ 0, ∀ (x, t) ∈ Q̄.

Proof . Let (x∗, t∗) ∈ Q̄, such that

Ψ(x∗, t∗) = min
(x,t)∈ Q̄

Ψ(x, t) and Ψ(x∗, t∗) < 0.

It is clear that (x∗, t∗) ∈ Q. At the point (x∗, t∗) the operator Lε on Ψ(x∗, t∗) becomes

LεΨ(x∗, t∗) = −Ψt(x
∗, t∗) + εΨxx(x

∗, t∗) + a(x∗)Ψx(x
∗, t∗)− b(x∗, t∗)Ψ(x∗, t∗).

Since Ψxx(x
∗, t∗) > 0 and Ψx(x

∗, t∗) = Ψt(x
∗, t∗) = 0, we obtain LεΨ(x∗, t∗) ≥ 0, which is a contra-

diction. Therefore, Ψ(x, t) ≥ 0, ∀ (x, t) ∈ Q̄, which completes the proof. □
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Lemma 2.2. (Stability estimate)
Suppose u(x, t) is the solution of Problem (1.1)–(1.2). Then the following estimate holds

|u(x, t)| ≤
[
β−1||f ||+max(|φ(x)|, |η0(t)|, |η1(t)|)

]
.

Proof . The proof of this Lemma is similar to the proof of Lemma 2.2 of [12]. □

Theorem 2.1. The solution and its partial derivatives are such that,∣∣∣∣∂i+ju(x, t)

∂xi∂tj

∣∣∣∣ ≤ C(1 + ε−i/2 exp(−µx)), (x, t) ∈ Q,

where µ =
√

q∗/ε and i and j are non-negative integers which satisfy 0 ≤ i+ j ≤ 6.

Proof . The proof of this Theorem is similar to the proof of Lemma 2.3 of [12]. □

3. Time Discretisation

Here we transform the PDE (1.1)–(1.2) to a boundary value problem by discretising in time,
whilst leaving the spatial domain continuous. The discretisation in time via the Crank Nicolson finite
difference scheme on a uniform mesh yields the following semi-discrete boundary value problems

u(x, 0) = φ(x), x ∈ Ω̄, (3.1)

L∗
εu(x, tk+1/2) ≡ −uk+1 − uk

∆t
+ εuxx(x, tk+1/2) + a(x)ux(x, tk+1/2)

−b(x, tk+1/2)u(x, tk+1/2) = f(x, tk+1/2), k = 0, 1, 2, ...,m, (3.2)

along with the boundary conditions

u(0, tk+1) = η0(tk+1), u(1, tk+1) = η1(tk+1). (3.3)

The notation Z(x, tk+1/2) is given by

Z(x, tk+1/2) =
Z(x, tk+1) + Z(x, tk)

2
,

and m is the number of sub-intervals in the time direction. The scheme (3.1)–(3.3) is rewritten as

u(x, 0) = φ(x), x ∈ Ω, (3.4)

Lm
ε u

k+1(x) ≡ ε

2
uk+1
xx (x) +

a(x)

2
uk+1
x (x)− d(x)uk+1(x) = g(x, tk+1), (3.5)

uk+1(0) = η0(tk+1), uk+1(1) = η1(tk+1), (3.6)

where

g(x, tk+1) = f(x, tk+1/2)−
ε

2
uk
xx(x)−

a(x)

2
uk
x(x)− e(x)uk(x),

d(x) = (1/∆t+ b(x, tk+1)/2)

and
e(x) = (1/∆t)− b(x, tk+1)/2,
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or we write the scheme (3.1)–(3.3) as

u(x, 0) = φ(x), x ∈ Ω, (3.7)

L∗∗
ε uk+1(x) ≡ ∆tε

2
uk+1
xx (x) +

∆ta(x)

2
uk+1
x (x)− c(x)uk+1(x) = g(x, tk+1), (3.8)

uk+1(0) = η0(tk+1), uk+1(1) = η1(tk+1), (3.9)

where

g(x, tk+1) = f(x, tk+1/2)−
∆tε

2
uk
xx(x)−

a(x)∆t

2
uk
x(x)− p(x)uk(x),

c(x) = 1 + ∆t(b(x, tk+1)/2)

and
p(x) = 1−∆tb(x, tk+1)/2.

Lemma 3.1. Semi-discrete minimum principle
Let Ψk+1(x) ∈ C4(Ω̄). If Ψk+1(x) ≥ 0, ∀ x ∈ ∂Ω and L∗∗

ε Ψk+1(x) ≤ 0, for x ∈ Ω then, Ψk+1(x) ≥
0, ∀ x ∈ Ω̄.

Proof . Suppose there exist x∗ ∈ Ω̄ such that Ψk+1(x∗) = minx∈Ω̄ Ψk+1(x) < 0. It is evident that
x∗ ̸= 0, nor 1 but x∗ ∈ Ω. Now applying the differential operator L∗∗

ε on Ψk+1 gives L∗∗
ε Ψk+1(x∗) ≥ 0.

which is a contradiction. Thus Ψk+1(x) ≥ 0, ∀ x ∈ Ω̄, as required. □

Lemma 3.2. The local truncation error of the time semi-discretisation satisfies

||ek+1||∞ ≤ C∗(∆t)3. (3.10)

Proof . The local truncation error of the time semi-discetization method is given by

ek+1 = u(x, tk+1)− û(x, tk+1), (3.11)

where ûk+1 is the computed solution of

û(x, 0) = φ(x), x ∈ Ω, (3.12)

L∗∗
ε ûk+1(x) ≡ ∆t

2
εûk+1

xx (x) +
∆t

2
a(x)ûk+1

x (x)− c(x)ûk+1(x) = g(x, tk+1), (3.13)

ûk+1(0) = η0(tk+1), ûk+1(1) = η1(tk+1), (3.14)

where

g(x, tk+1) = f(x, tk+1/2)−∆t
ε

2
ûk
xx(x)−∆t

a(x)

2
ûk
x(x)− p(x)ûk(x),

c(x) = (1 + ∆tb(x, tk+1)/2)

and
p(x) = (1−∆tb(x, tk+1)/2).

A truncated Taylor series expansion of u(x, tk+1) and u(x, tk) takes the form

u(x, tk+1)=u(x, tk+1/2)+
∆t

2
ut(x, tk+1/2)+

∆t2

8
utt(x, tk+1/2) +O(∆t)3, (3.15)

u(x, tk)=u(x, tk+1/2)−
∆t

2
ut(x, tk+1/2)+

∆t2

8
utt(x, tk+1/2) +O(∆t)3. (3.16)
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From Equations (3.15) and (3.16) we have

u(x, tk+1)− u(x, tk)

∆t
= ut(x, tk+1/2) +O((∆t)2)

= −εuxx(x, tk+1/2)− a(x)ux(x, tk+1/2) + c(x)u(x, tk+1/2)

+g(x, tk+1/2) +O(∆t)2. (3.17)

Further simplification yields

L∗∗
ε uk+1(x) ≡ ∆t

2
εuk+1

xx (x)+
∆t

2
a(x)uk+1

x (x)−c(x)uk+1(x)=g(x, tk+1)+O(∆t)3. (3.18)

From Equation (3.13) and (3.18) the local truncation error satisfies

L∗∗
ε ek+1 = O((∆t)3),

ek+1(0) = ek+1(1) = 0.

Since the operator L∗∗
ε satisfies a minimum principle, the result

|ek+1(x)| ≤ C(∆t)3,

follows. □
The global error of the time discretisation satisfies the next result.

Theorem 3.1. The global error Em is such that

||Em||∞ ≤ C(∆t)2. (3.19)

Proof .

||Em||∞ ≤

∣∣∣∣∣
m∑
k=1

ek+1(x)

∣∣∣∣∣ ≤ Cm(∆t)3 = C(∆t)2. (3.20)

□
Next we design a fitted operator finite difference scheme based on the midpoint downwind scheme

to discretise Problem (3.4)–(3.6) in space.

4. Spatial Discretisation

In this section, the boundary value problem (3.4)–(3.6) is discretised via a fitted operator finite
difference scheme. We employ the notation Uk+1

i ≡ Uk+1(xi) ≡ U(xi, tk+1) as the numerical solution
of uk+1(x) and perform the discretisation on a uniform mesh as follows:

u(x, 0) = φ(xi), x ∈ Ω̄n (4.1)

Lm,n
ε Uk+1(xi) ≡ ε

2
δ2(Uk+1(xi)) +

a(xi+1/2)

2
(D+Uk+1(xi))− d(xi+1/2)U

k+1(xi)

= g(xi+1/2, tk+1), (4.2)

uk+1(0) = η0(tk+1), uk+1(1) = η1(tk+1), (4.3)

The source term g(xi+1/2, tk+1) is given by

g(xi+1/2, tk+1) =
f(xi+1/2, tk+1) + f(xi+1/2,tk)

2
− ε

2
δ2Uk(xi)

−
a(xi+1/2)

2
D+Uk(xi)− e(xi+1/2)U

k(xi). (4.4)
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The notations D+, δ2 are the first and second order finite difference schemes on appropriate denom-
inator functions and are given by

D+zi =
zi+1 − zi

h
, δ2zi =

zi+1 − 2zi + zi−1

ϕ2
i (ε, h)

, (4.5)

respectively. The denominator function ϕ2
i (h, ε) is given by

ϕ2
i (h, ε) =

εh

a(xi+1/2)

(
1− exp

(
−a(xi+1/2)h

ε

))
. (4.6)

The scheme (4.1)–(4.3) can be represented in a compact form

U + AU = F, (4.7)

where U and F are vectors of size (n − 1) and A is a tridiagonal matrix of size (n − 1) × (n − 1),
where n is the number of sub-intervals. The entries of F and A are as follows:

F1 = g1(xi+1/2, tk+1)− r−0 η0(tk+1),

Fi = gi, i = 2(1)n− 2,

Fn−1 = gn−1(xi+1/2, tk+1)− r+n−1ηn(tk+1),

and

Aij =


r−i i = 2, 3, ...n− 1, j = i− 1,

rci i = 1, 2, 3, ...n− 1, i = j,

r+i i = 1, 2, 3, ...n− 2, j = i+ 1,

where the r−i , r
c
i and r+i are given by

r−i =
ε

2ϕ−2
i (h, ε)

, rci = − ε

ϕ2
i (h, ε)

−
a(xi+1/2)

2h
− d(xi+1/2), r+i =

ε

2ϕ−2
i (h, ε)

+
a(xi+1/2)

2h
,

respectively. The operator Lm,n
ε satisfies a discrete minimum principle which is presented in the next

Lemma. For simplicity, we have dropped the superscript indices.

5. Stability of the Scheme

Below we show that the spatial discretisation is stable and that the scheme (4.1)–(4.3) has a
unique solution.

Lemma 5.1. Discrete minimum principle
Let ξ(xi) be a mesh function defined on Ω̄n, satisfies ξ(xi) ≥ 0, ∀ xi ∈ ∂Ωn and Lm,n

ε ξ(xi) ≤ 0, ∀ xi ∈
Ωn. Then ξ(xi) ≥ 0, ∀ xi ∈ Ω̄n.

Proof . The matrix A is a square tridiagonal matrix which assumes the properties of an M-matrix
thus the scheme is positive. □

From Lemma 5.1 we prove further that the scheme (4.1)–(4.3) satisfies a uniform stability estimate
below.

Lemma 5.2. The operator Lm,n
ε is uniformly stable. That is the solution ui of the discrete problem

(4.1)–(4.3) satisfies
|ui| ≤ ρ−1max

xi∈Ω̄
|Lm,n

ε ui|+max
xi∈Ω̄

(|η0|, |η1|).
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Proof . Let z = ρ−1maxxi∈Ω̄ |Lm,n
ε ui| + maxxi∈Ω̄(|η0|, η1|) and define the mesh function Ψ±

i by
Ψ±

i = z ± ui. At i = 0 and i = 1, we have Ψ±
0 = z ± ui ≥ 0. On the domain xi ∈ Ωn we obtain

Lm,n
ε Ψ±

i =
ε

2

(
z+ui+1−2(z + ui) +z ±ui−1

ϕ2
i (h, ε)

)
+

ai+1/2

2

(
z ±ui+1− (z ±ui)

h

)
− di+1/2(z ± ui)

= −di+1/2z ± Lm,n
ε ui

= −di+1/2

(
ρ−1 max

(xi)∈Ω̄
|Lm,n

ε ui|+max
xi∈Ω̄

(|η0|, ηn|)
)
± gi+1/2 ≤ 0.

From Lemma 5.1, Ψ±
i ≥ 0, ∀ (xi) ∈ Ω̄n. □

6. Error Estimate

The error associated with the spatial discretisation is estimated as follows:

Lm,n
ε (u(xi)− U(xi) = Lm,n

ε u(xi)− Lm,n
ε U(xi) = Lm,n

ε u(xi)− gi+1/2

= Lm,n
ε u(xi)− Lm

ε u(xi+1/2)

=
ε

2

(
δ2ui − u′′(xi+1/2)

)
+

ai+1/2

2

(
D+ui − u′(xi+1/2)

)
.

A truncated Taylor series expansion of the terms ui+1 and ϕ2
i and simplifying further yields

Lm,n
ε (u(xi)− U(xi) =

ε

2h2

(
h2u

′′
+

h4

4!
uiv +

h6

16.5!
uvi + ...

)
− ε

2
u′′ +

ai+1/2h
2

8.3!
u′′′

+
ai+1/2h

4

32.5!
uv + ...

=

(
ε

2.4!
uiv +

a(xi+1/2)

8.3!
uiii

)
h2 +

(
ε

32.5!
uvi +

a(xi+1/2)

32.5!
uv

)
h4.

From Theorem 2.1, and noticing that the exponential terms vanish as ε → 0 (see [16] for proof)
yields

|Lm,n
ε (ui − Ui)| ≤ Ch2.

Application of Lemma 5.1 leads to the result below.

Lemma 6.1. The error associated with the fitted operator finite difference scheme based on the
midpoint satisfies

|ui − Ui| ≤ Ch2.

Theorem 6.1. (Uniform Convergence)
Let u be the exact solution of the continuous Problem (1.1)-(1.2) and U be the approximate solution.
The error associated with the proposed numerical scheme satisfies

max
0≤i≤n;0≤k≤m

|u(xi, tk)− U(xi, tk)| ≤ C(h2 +∆t2).

Next we apply the method on test problem to validate the theoretical estimate.
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7. Numerical Results

In this section, we test the efficiency of the proposed scheme through numerical experiments. The
exact solution of the problem is not known, thus to compute the maximum pointwise errors we use
the double mesh principle given by

En,∆t = max
0≤i≤n;0≤k≤m

|Uk:m
i:n − Uk:2m

i:2n |. (7.1)

To compute the corresponding rate of convergence we use the formula

r = log2

(
En,∆t

E2n,∆t

)
(7.2)

The ε uniform maximum errors and the ε-uniform rates of convergence are computed with the
formulae

E = max
0<ε≤1

En,∆t and R = max
0<ε≤1

r,

respectively.

Example 7.1. [12] Consider the problem given by

−ut(x, t) + εuxx(x, t) + xpux(x, t)− (x+ p)u(x, t) = p(x2 − 1) exp(−t), (x, t) ∈ Q,

u(x, 0) = (1− x)2, x ∈ (0, 1),

u(0, t) = 1 + t2, u(1, t) = 0, t ∈ [0, 1].

Figure 1: Surface plot of the numerical solution Example 7.1 for p = 1, n = 64 and ε = 10−24.
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Table 1: Maximum pointwise error and rate of convergence for Example 7.1.

ε n=m=8 16 32 64 1028
10−4 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
10−5 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
10−6 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
10−7 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
10−8 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
10−9 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
10−10 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04

0.9103 1.6813 1.9209 1.9803
E 2.91E-02 1.55E-02 4.83E-03 1.28E-03 3.23E-04
R 0.9103 1.6813 1.9209 1.9803

8. Conclusion

A second order numerical method was proposed to solve a parabolic convection diffusion problem
with degenerate coefficient. The scheme employed the Crank Nicolson finite difference scheme and a
fitted operator finite difference scheme to solve the aforementioned problem via the Rothe’s method.
It is important to note that the fitted operator finite difference scheme which was designed was based
on the midpoint rule. Some properties of the discrete problem which ensured the stability of the
scheme were presented and used to analyse the scheme for convergence. This analysis resulted in
a full second order in both the space and the time variables. To test the efficiency of the scheme,
numerical experiments were conducted and the results were displayed in Table 1. From the table,
the uniform second order convergence rate can be observed. Again surface plots of the numerical
solution can be observed in Figure1. From the Figure 1, the left boundary layer in the solution can
be observed. Currently the scheme is being explored on degenerate problems with delays.
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