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Abstract
Trace of quotient spaces is usually seen wherever there is a study of a linear structure. In linear

spaces, we use subspaces and their corresponding equivalence relation to define quotient spaces.
With the same method, in this paper, we present two generalized structures of quotient space that
are defined on quasilinear spaces. One of them is a quasilinear space and the other is a linear space.
After that, we try to introduce norms on certain states of these spaces and examin some properties
of them. We will also provide examples for better understanding throughout the process.
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1. Introduction

Aseev generalized the concept of linear spaces and introduced the notion of quasilinear spaces
[2]. This was the beginning of an Extensive research that has continued to this day. We can refer to
recent efforts to present the counterpart of classical Riesz lemma and an analogue of Hahn-Banach
theorem in quasilinear spaces. For more details, see [7, 4].

By examining the results of linear spaces on quasilinear spaces and quasi-algebras [9], as well
as introducing the generalized space of C∗-algebras, this path can be continued. For example, one
of the topics that has attracted the attention of many mathematicians for decades is the issue of
stability. The stability problems of several functional equations have been investigated by a number
of authors. The interested reader can use [3, 10, 11, 12] to learn more.

One of the problems that arises is whether the question of Ulam [15] concerning the stability of
group homomorphisms can be generalized to quasi-homomorphisms? As another idea, can significant
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results be achieved by changing the definition of a fuzzy normed vector space [1] and adding the
following condition to it?

N(x, t) ≤ N(y, s) if x ≤ y and t ≤ s.
However, it would not be easy to fulfill this goal. As we will see in this paper, defining quotient

spaces requires initiative and new tools.
In linear spaces, a subspace and its transfers make a quotient space [13]. Our idea of defining

quotient spaces on quasilinear spaces is the same. equivalence relations and equivalence classes will
also be helpful here.

Consider the space of all nonempty convex closed bounded subsets of R denoted by Ωc(R).
Geometrically, [−a+ r, a+ r] is [−a, a] that has been displaced. So we can compress the whole space
into all symmetric closed intervals around Zero. This unification of all transfers could occur in the
space of all closed circles in R2, all closed cubes in R3, and etc. Closed intervals on R is an example of
quasilinear spaces. According to the definition given in [16], R is a subspace of Ωc(R). This example
shows that the idea of constructing cosets in linear spaces can also be used in quasilinear spaces, so
that [−a, a] + R will be a member of a quotient space. In section 3 we make this space in general
way, and obtain some examples, theorems and results related to this new space.

But our attempt to build a new space from a quasilinear space does not end here. Suppose the
space of all nonempty closed bounded subsets of a linear space E denoted by Ω(E). it is another
example of a quasilinear space [2]. So, we see that a linear space get us a quasilinear space. But, is
there a way to build a linear space from a quasilinear space?

The answer is yes. The space of all invertible elements of a quasilinear space is an obvious linear
space that can be extracted from this space. Also, in section 4, we offer a way to build a non-trivial
linear space from a quasilinear space by using the subtracting an element from itself.

2. QUASILINEAR SPACES

We suggest that the reader refer to [2] for a preliminary introduction. Only the necessary defini-
tions and theorems will be stated here.

Definition 2.1. A set X is said to be a quasilinear space if a partial order relation “≤”, an algebraic
sum operation “+”, and an operation of multiplication by real numbers “·” are defined on it in such
a way that the following conditions hold for any elements x, y, z, v ∈ X and any α, β ∈ R:

1. x+ y = y + x;
2. x+ (y + z) = (x+ y) + z;
3. There exists an element 0 ∈ X, called Zero of X such that x+ 0 = x;
4. α · (β · x) = (αβ) · x;
5. α · (x+ y) = α · x+ α · y;
6. 1 · x = x;
7. 0 · x = 0;
8. (α + β) · x ≤ α · x+ β · x;
9. x+ z ≤ y + v if x ≤ y and z ≤ v;

10. α · x ≤ α · y if x ≤ y.

Lemma 2.2. [2] In a quasilinear space X, Zero is minimal. In other words, x = 0 if x ≤ 0.
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An element x′ ∈ X is called an additive-inverse of x ∈ X if x+ x′ = 0. For simplicity, from now
on, we use the word “inverse” instead of “additive-inverse”. The inverse of x is unique, If it exists.

If x ∈ X has an inverse, we call it regular, otherwise it is called singular. Xr and Xs denote the
sets of all regular and singular elements in X, respectively [16, 6].

Lemma 2.3. [2] Suppose that any element x in the quasilinear space X is regular. Then the partial
order in X is determined by equality, and consequently, X is a linear space.

Corollary 2.4. [2] In a real linear space, equality is the only way to define a partial order such that
conditions 1-10 hold.

Similar to vector spaces, it will be assumed that −x = (−1) · x and x − y means x + (−y).
However, here −x is not necessarily the inverse of x.

Lemma 2.5. [16] In a quasilinear space X, x ∈ Xr if and only if x− x = 0.

The following lemma shows that being minimal is not limited to Zero.

Lemma 2.6. [16] In a quasilinear space every regular element is minimal.

Definition 2.7. Let X be a quasilinear space and Y ⊆ X. Y is called a subspace of X whenever
Y is a quasilinear space with the same partial ordering and the same operations on X.

Example 2.8. Xr and Xs ∪ {0} are subspaces of X.

Theorem 2.9. [16] Y is a subspace of a quasilinear space X if and only if for every x, y ∈ Y and
α, β ∈ R, α · x+ β · y ∈ Y .

Definition 2.10. Suppose that X is a quasilinear space and Y ⊆ X. Y is a linear subspace of X
whenever Y is a linear space with the same operations on X.

Example 2.11. Xr is a linear subspace of X.

It is clear that a linear subspace of X is a subspace of Xr and vice versa.

3. QUASILINEAR QUOTIENT SPACES

Let N be a linear subspace of a quasilinear space X. So n ∈ Xr for any n ∈ N . Let R be a
relation on X such that

xRy ↔ x ∈ y +N (3.1)
when y +N = {y + n : n ∈ N}. Then R is an equivalence relation on X.

x = x+ 0 means xRx, and if x = y + n thus y = x− n. Also, if xRy and yRz, then

x = y + n1 (3.2)

and
y = z + n2 (3.3)

for some n1, n2 ∈ N . Thus x = y + n1 = z + n2 + n1. because n1 + n2 ∈ N therefore xRz.
For every x ∈ X, the equivalence class of x is defined as follows

[x] = {y : yRx}. (3.4)
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Definition 3.1. Let X be a quasilinear space, s ∈ X and S ⊆ X. s is called a l-member of S and it
is denoted by s∈≤S if there exists r ∈ S such that s ≤ r. “l” is taken from the word “less”. Likewise,
t is called a g-member of S and it is denoted by t∈≥S if there exists r ∈ S such that r ≤ t. “g” is
taken from the word “greater”.

In the following, we will see how this concept can help us a lot. In [9], we have proposed to use
this concept to define ideals in quasi-algebras.

Definition 3.2. Let X be a quasilinear space and y ∈ X. y is a non-negative element of X if y = 0
or

x+ y ≰ x (3.5)
for every x ∈ X. Also, z ∈ X is a non-positive element of X if z = 0 or

x ≰ x+ z (3.6)

for every x ∈ X. Y ⊆ X is a non-negative (non-positive) set if any element of it is non-negative
(non-positive).

Example 3.3. R is a non-positive linear subspace of Ω(R).

Obviously, a non-negative linear subspace is also non-positive and vice versa. If y ̸= 0 is a
non-negative element of X then y ≰ 0.

Lemma 3.4. Let X be a quasilinear space and N be a non-negative linear subspace of X. If x∈≤y+N
and y∈≤x+N . Then x ∈ y +N .

Proof . There exist r, s ∈ N such that x ≤ y + r and y ≤ x + s. So x ≤ x + s + r. Since N is a
non-negative linear subspace, then s+ r = 0. Thus y + r = y − s ≤ x and hence x = y + r. □

If N is a non-negative linear subspace of a quasilinear space X, then X/N = {[x] : x ∈ X} is a
quasilinear space, called the quasilinear quotient space of X modulo N . In this spac partial order,
addition and multiplication by real numbers are defined by

1. [x] ≤ [y] if and only if x∈≤y +N ;
2. [x] + [y] = [x+ y];
3. α · [x] = [α · x].

Since N is a linear space, these operations are well defined. This means that if [x] = [x′] and
[y] = [y′], thus

x = x′ + n (3.7)
and

y = y′ +m (3.8)
for some n,m ∈ N . If [x] ≤ [y], there exists r ∈ N such that x ≤ y + r. So

x′ = x− n ≤ y + r − n = y′ +m+ r − n ∈ y′ +N, (3.9)

and hence [x′] ≤ [y′]. Also, x+ y = x′ + y′ + n+m, thus (x+ y)R(x′ + y′), and so

[x′] + [y′] = [x′ + y′] = {z : zR(x′ + y′)} = [x+ y] = [x] + [y]. (3.10)
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The part of scalar multiplication is proved in a similar way. Proofs of quasilinear properties are
easy. We check some of them. If [x] ≤ [y] and [y] ≤ [x], there exist r, s ∈ N such that x ≤ y + r and
y ≤ x+ s. So [x] = [y] by lemma 3.4. Also, since (α + β) · x ≤ α · x+ βx, then

(α + β) · [x] = [(α + β) · x] ≤ [α · x+ β · x] = [α · x] + [β · x] = α · [x] + β · [x]. (3.11)

For the last proof, let [x] ≤ [y] and [z] ≤ [v]. Then there exist r, s ∈ N such that x ≤ y + r and
z ≤ v + s. So

x+ z ≤ y + v + r + s. (3.12)
Hence [x] + [z] = [x+ z] ≤ [y+ v] = [y] + [v]. Since [x] + [0] = [x], then the origin of X/N is [0] = N .

Example 3.5. Let E be a real normed linear space, then the quotient space Ω(E)/E is a quasilinear
space. The equivalence class [x], contains x and all transfers of x.

3.1. NORMED QUOTIENT SPACES
In preliminary functional analysis, the quotient space inherits a norm from the main space. A

normed quasilinear space can make such a contribution to its quotient space, too.

Definition 3.6. Let X be a quasilinear space. A real function ∥ · ∥X : X → R is called a norm if
the following conditions hold:

1. ∥x∥X > 0 if x ̸= 0;
2. ∥x+ y∥X ≤ ∥x∥X + ∥y∥X ;
3. ∥α · x∥X = |α|∥x∥X ;
4. If x ≤ y, then ∥x∥X ≤ ∥y∥X ;
5. If for any ϵ > 0 there exists an element xϵ ∈ X such that x ≤ y + xϵ and ∥xϵ∥X ≤ ϵ, then

x ≤ y.

A normed quasilinear space is a pair (X; ∥ · ∥X), where X is a non-zero quasilinear space and
∥ · ∥X is a given norm on it.

Let X be a normed quasilinear space. the Hausdorff metric on X is defined by

hX(x, y) = inf{r ≥ 0 : ∃ar1, ar2 ∈ X : x ≤ y + ar1, y ≤ x+ ar2, ∥ari∥X ≤ r}. (3.13)

Since x ≤ y+(x−y) and y ≤ x+(y−x), the equality hX(x, y) is well-defined and hX(x, y) ≤ ∥x−y∥X .

Theorem 3.7. Let X be a normed quasilinear space. Let N be a non-negative closed linear subspace
of X such that the following condition is satisfied for any x, y ∈ X:
If x +m ≰ y for any m ∈ N , then there exists ϵ > 0 such that x + n ≰ y + a for any n ∈ N and
a ∈ {z ∈ X : ∥z∥X < ϵ} .
Then X/N is a normed quasilinear space.

Proof . Define ∥ · ∥X/N : X/N → R by

∥[x]∥X/N = inf{∥x+ n∥X : n ∈ N}. (3.14)

If ∥[x]∥X/N = 0, then for any ϵ > 0, there exists nϵ ∈ N such that

∥x+ nϵ∥X < ϵ. (3.15)
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Since hX(x,−nϵ) ≤ ∥x + nϵ∥X , thus there exists a sequence of elements of N that converges to x.
Because N is closed in X hence x ∈ N and so [x] = N = 0X/N .

Proofs of norm conditions 2 and 3, are similar to linear spaces. See [8, 13]. Moreover, if [x] ≤ [y],
then x ≤ y + r for some r ∈ N . For any y + n, since x− r + n ≤ y + n and ∥x− r + n∥ ≤ ∥y + n∥
Thus

inf{∥x+ n∥X : n ∈ N} ≤ inf{∥y + n∥X : n ∈ N}. (3.16)
Finally, we examin the last property of quasilinear norm. Suppose that for any ϵ > 0, there exists

an alement [cϵ] such that [x] ≤ [y] + [cϵ] and ∥[cϵ]∥X/N ≤ ϵ. Because [x] ≤ [y + cϵ], then

x ≤ y + cϵ + nϵ (3.17)

for some nϵ ∈ N , and Since inf{∥cϵ + n∥X : n ∈ N} ≤ ϵ, so there exists n′
ϵ ∈ N such that

∥cϵ + n′
ϵ∥X ≤ ϵ. (3.18)

Let n = n′
ϵ− nϵ and a = cϵ + n′

ϵ therefore x+ n ≤ y+ a concludes that x ≤ y+m for some m ∈ N .
Hence [x] ≤ [y]. □

Example 3.8. Ωc(R)/R is a normed quasilinear space.

According to Theorem 3.7 define ∥ · ∥ : Ωc(R)/R→ R by

∥[x]∥Ωc(R)/R = inf{∥x+ r∥Ω : r ∈ R}. (3.19)

In fact, ∥[x]∥Ωc(R)/R = ∥y∥Ω when y ∈ [x] is a symmetric interval around 0. Here, we resolve validity
of the last norm condition in a different way. Suppose that for any ϵ > 0, there exists an element
[cϵ] such that [x] ≤ [y] + [cϵ] and ∥[cϵ]∥Ωc(R)/R ≤ ϵ. Assume to the contrary that [x] ≰ [y]. Since
x, y ∈ Ωc(R), so there exist a, b, a′, b′ ∈ R such that x = {c ∈ R : a ≤ c ≤ b} and y = {c ∈ R :
a′ ≤ c ≤ b′}. Because x ⊈ y + r for any r ∈ R, then a < a′ + s ≤ b′ + s < b for some s ∈ R. If
∥[cϵ]∥Ωc(R)/R < ϵ = min{a′ + s − a, b − b′ − s}, then there exists a symmetric interval dϵ ∈ [cϵ] such
that dϵ ⊆ (−ϵ, ϵ). Since

a < a′ + s− ϵ ≤ b′ + s+ ϵ < b, (3.20)
then [x] ≰ [y] + [cϵ], a contradiction.

3.2. QUOTIENT MAP
Let us start this section by introducing the definition of a quasilinear operator. For more details

see [2].

Definition 3.9. Let X and Y be quasilinear spaces. A map Λ : X → Y is a quasilinear operator if
it satisfies the following conditions:

1. Λ(α · x) = α · Λ(x);
2. Λ(x+ y) ≤ Λ(x) + Λ(y);
3. If x ≤ y, then Λ(x) ≤ Λ(y).

Let N be a non-negative linear subspace of a quasilinear X. For every x ∈ X, let π(x) be the
coset of N that contains x. Thus

π(x) = [x] (3.21)
π is called the quotient map of X onto X/N .
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Theorem 3.10. π is a quasilinear operator of X onto X/N .

Proof . π(α · x) = [α · x] = α · [x] = α · π(x). Also

π(x+ y) = [x+ y] = [x] + [y] = π(x) + π(y) (3.22)

and if x ≤ y then [x] ≤ [y], so π(x) ≤ π(y). Therefore π is a quasilinear operator. □
Theorem 3.11. Let X be a normed quasilinear space. Let N be a non-negative closed linear subspace
of X as in theorem 3.7, then the quotient map π : X → X/N is continuous.

Proof . Suppose that xn → x, then for any ϵ > 0 there exists an index M such that the following
conditions hold for n ≥M :

xn ≤ x+ aϵ1,n, x ≤ xn + aϵ2,n, ∥aϵi,n∥X ≤ ϵ. (3.23)

Consequently, [xn] ≤ [x+ aϵ1,n] = [x] + [aϵ1,n], [x] ≤ [xn + aϵ2,n] = [xn] + [aϵ2,n] and

∥[aϵi,n]∥X/N = inf{∥aϵi,n + r∥
X
: r ∈ N} ≤ ∥aϵi,n∥X ≤ ϵ. (3.24)

Hence [xn]→ [x]. The theorem is proved. □
Definition 3.12. Let X be a quasilinear space. We say it has the subtraction property of inequality,
if we conclude b ≤ c from a+ b ≤ a+ c for any a, b, c ∈ X.

Example 3.13. Every real linear space has the subtraction property of inequality. In fact, since
equality is the only way to define a partial order on a real linear space, the subtraction property of
inequality is the subtraction property of equality.

Example 3.14. The subtraction property of inequality is stablished on Ωc(R).

Lemma 3.15. Let X be a quasilinear space. If it has the subtraction property of inequality, then
every linear subspace of it is non-negative.

Proof . Suppose that N is a linear subspace of X and x ≤ x + n for some x ∈ X and 0 ̸= n ∈ N .
So 0 ≤ n by subtraction property. Then n = 0 by lemma 2.6 and it is a contradiction. □
Theorem 3.16. Let N be a closed linear subspace of a normed quasilinear space X such that the
condition of theorem 3.7 is satisfied. Moreover, X has the subtraction property of inequality. Then
the quotient map π : X → X/N is open.

Proof . N is non-negative by lemma 3.15. Aalso, for any ϵ > 0, suppose that hX/N([x], [y]) < ϵ/4.
Then there exist [a1], [a2] such that

[x] ≤ [y] + [a1], [y] ≤ [x] + [a2], ∥[ai]∥X/N ≤ ϵ/4. (3.25)

So x ≤ y + a1 + n1 ,y ≤ x+ a2 + n2, ∥ai +mi∥X ≤ ϵ/4 for some ni,mi ∈ N . Thus

x ≤ (y + n1 −m1) + (a1 +m1), (y + n1 −m1) ≤ x+ (a2 +m2) + n2 + n1 −m1 −m2. (3.26)

So we conclude −n2 − n1 +m1 +m2 ≤ (a2 +m2) + (a1 +m1) from

x ≤ (y + n1 −m1) + (a1 +m1) ≤ x+ (a2 +m2) + (a1 +m1) + n2 + n1 −m1 −m2. (3.27)

Thus
∥n2 + n1 −m1 −m2∥ ≤ ∥(a2 +m2) + (a1 +m1)∥ ≤ ϵ/2. (3.28)

Therefore hX(x, (y + n1 −m1)) < ϵ by 3.26 and 3.28. □
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Example 3.17. The quotient map of Ωc(R) onto Ωc(R)/R is an open, continuous quasilinear oper-
ator.

Example 3.18. Let X be the set of all Ba,r = {x ∈ C : ∥x− a∥ ≤ r} ∈ Ωc(C) for a ∈ C and r ≥ 0.
Let A = B0,r1,B = B0,r2 and C = B0,r1+r2. Clearly A+B ⊆ C. Suppose that r1 ≤ r2. Let r3eiθ ∈ C.
If 0 ≤ r3 ≤ r1, then r3e

iθ +0 ∈ A+B. If r1 ≤ r3 ≤ r1 + r2, then r1e
iθ + (r3− r1)e

iθ ∈ A+B. Hence
A+B = C. Let D = Bz1,r1,E = Bz2,r2. Since

D + E = B0,r1 + z1 +B0,r2 + z2 = C + z1 + z2 (3.29)

therefore sum of both circles becomes a circle. So X is a subspace of Ωc(C). It is obvious that the
quotient map of X onto X/C is an open, continuous quasilinear operator.

4. LINEAR QUOTIENT SPACES

Similar to what has been done so far, To build Linear quotient spaces, The basis of our work is
the using of equivalence relations and equivalence classes.

Definition 4.1. Let X be a quasilinear space and M = {a− a : a ∈ X}. So M is a subspace of X.
Let Q be a relation on X such that

xQy ←→ ∃n,m ∈M : x+ n = y +m. (4.1)

Then Q is an equivalence relation on X. It is not hard to see that this relation satisfies all the axioms
of an equivalence relation. For every x ∈ X, the equivalence class of x is defined as follows:

[x] = {y : yQx}. (4.2)

Let Y be the set of all [x]. Addition on Y is defined by

[x] + [y] = [x+ y]. (4.3)

Then Y is a Abelian group.

Since M is a subspace of X, this operation is well-defined. It means that if [x] = [x′] and [y] = [y′],
thus

x+ n = x′ + n′ (4.4)
and

y +m = y′ +m′ (4.5)
for some n,m, n′,m′ ∈ N , then x+ y + n+m = x′ + y′ + n′ +m′, so (x+ y)Q(x′ + y′) and

[x′] + [y′] = [x′ + y′] = {z : zQ(x′ + y′)} = [x+ y] = [x] + [y]. (4.6)

Also, since 0 + (a− a) = (a− a) + (0− 0), then [0] = [a− a] for every a ∈ X. So for evey a ∈ X,
[a] + [−a] = [0]. Other parts of group axioms are proved easily.

Let X be a quasilinear space. If for every x ∈ X and α, β ∈ R there exists a ∈ X such that the
following condition holds:

(α + β)x+ a− a = αx+ βx. (4.7)
So [(α + β)x] = [αx + βx]. Then Y is a linear space when multiplication by real numbers on Y is
defined by α[x] = [αx]. We denote Y by Xext.
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Example 4.2. Let X be a linear space, then X is a quasilinear space with partial order given by
equality. It is obvious that Xext = X.

Example 4.3. Let X = Ωc(R). In fact X = {[a, b] : a, b ∈ R}. Then since

α[a, b] + β[a, b] = [αa, αb] + [βa, βb]

= [αa+ βa, αb+ βb]

= [(α + β)a, (α + β)b]

= (α + β)[a, b]

(4.8)

when α, β ≥ 0, and

α[a, b] + β[a, b] = [αb, αa] + [βa, βb]

= [αb+ βa, αa+ βb]

= [(α + β)a− αa+ αb, (α + β)b− αb+ αa]

= (α + β)[a, b] + [
−αa+ αb

2
,
−αb+ αa

2
]− [
−αa+ αb

2
,
−αb+ αa

2
]

(4.9)

when α ≤ 0 ≤ β and |α| ≤ |β|. So Xext = (Ωc(R))ext is a linear space. Geometrically, all closed
intervals that have a similar center fall into an equvalence class.

Example 4.4. Let X = Ωc(R). (Xs ∪ {{0}})ext is a linear space. In this example, no equivalence
class, except Zero, contains a regular element of X. [{0}] contains {0} and all symmetric intervals
around Zero.

Theorem 4.5. Let X be a quasilinear space which has the subtraction property of inequality, Q be
the equivalence relation as defind in definition 4.1 and x ∈ Xr. if xQ0 then x = 0.

Proof . Since xQ0, then
x+ a− a = b− b (4.10)

for some a, b ∈ X. Since −(x+ a− a) = −(b− b), thus

− x+ a− a = b− b. (4.11)

We conclude by combining 4.10 and 4.11 that x + x + a − a = a − a. So 2x = 0 according to the
subtraction property of inequality. Hence x = 0. □

Corollary 4.6. Suppose that X and Q are defined as in theorem 4.5. Then two regular elements
can not belong to an equivalence class.

Proof . Let x, y ∈ Xr such that xQy. Then

x+ a− a = y + b− b (4.12)

for some a, b ∈ X. So x− y + a− a = b− b. Since x− y ∈ Xr thus x− y = 0 by theorem 4.5. □
Let X be a quasilinear space and Xext be the linear space that is defind in definition 4.1. Then

a seminorm on Xext is defined by

∥[x]∥ext = inf{∥y∥X : ∃a ∈ X : y + a− a = x}. (4.13)
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We prove that ∥[x] + [y]∥ext ≤ ∥[x]∥ext + ∥[y]∥ext. Since

{z : ∃a : z + a− a = x}+ {z : ∃a : z + a− a = y} ⊆ {z : ∃a : z + a− a = x+ y}, (4.14)

then

{∥z + z′∥X : ∃a, b : z + a− a = x, z′ + b− b = y} ⊆ {∥z∥X : ∃a : z + a− a = x+ y}. (4.15)

Thus

inf{∥z∥X : ∃a : z + a− a = x+ y}
≤ inf{∥z + z′∥X : ∃a, b : z + a− a = x, z′ + b− b = y}
≤ inf{∥z∥X + ∥z′∥X : ∃a, b : z + a− a = x, z′ + b− b = y}
= inf{∥z∥X : ∃a : z + a− a = x}+ inf{∥z∥X : ∃a : z + a− a = y}.

(4.16)

Lemma 4.7. Let X be a quasilinear space and x ∈ X. If an + bn → x and an → 0, then bn → x.

Proof . Since hX(an + bn, x) → 0 and hX(an, 0) → 0, then there exist m ∈ N and t1, t2, t3, t4 ∈ X
such that:

am ≤ t1, 0 ≤ am + t2 (4.17)
and

am + bm ≤ x+ t3, x ≤ am + bm + t4 (4.18)

and ∥ti∥X ≤
ϵ

2
. Thus

bm ≤ am + bm − am ≤ x+ t3 − t1, ∥t3 − t1∥X ≤ ϵ (4.19)

and
x ≤ am + bm + t4 ≤ bm + t4 + t1, ∥t4 + t1∥X ≤ ϵ. (4.20)

□

Theorem 4.8. Let X be a quasilinear space and x ∈ X. If an − an → x, then x = −x.

Proof . hX(an − an, x)→ 0, hence

am − am ≤ x+ t1, x ≤ am − am + t2 (4.21)

for some m ∈ N, t1, t2 ∈ X and |ti|X ≤
ϵ

2
. Then

− x ≤ am − am − t2 ≤ x+ t1 − t2, |t1 − t2|X ≤ ϵ. (4.22)

So −x ≤ x. Thus x = −x. □

Theorem 4.9. Let X be a quasilinear space and Xext be a linear space. If for any convergent
sequence {an − an} there exists a ∈ X such that

an − an → a− a, (4.23)

then the seminorm ∥ · ∥ext is a norm.
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Proof . Consider that ∥[x]∥ext = 0, so

inf{∥y∥X : ∃b ∈ X : y + b− b = x} = 0. (4.24)

Then for every n ∈ N, there exist yn, an ∈ X such that yn + an − an = x and ∥yn∥X <
1

n
. Since

yn → 0, so an − an → x by lemma 4.7. Then x = a − a for some a ∈ X by assumption. Therefor
[x] = [0]. □

Example 4.10. Let X = Ωc(R) And {[an, bn]− [an, bn]} be a convergent sequence in X. Then there
exists [c, d] ∈ X such that

[an − bn, bn − an]→ [c, d] (4.25)
So an − bn → c and bn − an → d. Hence c = −d and therefore the norm on X is defined by the
following statement:

∥[[x1, x2]]∥ext =
|x1 + x2|

2
. (4.26)

5. Conclusion

Although it has been a long time since the quasilinear spaces have been defined, building quotient
spaces on them has remained an open problem for years. The Benefits of quotient space and also the
advantage of quasilinear spaces over linear ones (their greater conformity to engineering sciences),
prompted us to define quotient spaces on quasilinear spaces.

We made our efforts to advance the definitions and theorems with the logical rhythm.This is why
addition and scalar multiplication on the desired quotient space were defined in the simplest possible
way and the closest thing that comes to mind. What challenged us was the definition of the partial
order relation. The difficulty was that the definition had to satisfy all the properties of quasilinear
spaces.

In this paper, we have shown that a quasi-linear space could be introduced by defining the notions
of l-members and non-negative subspaces. By replacing a ∈ A, which means a is equal to an element
of A, with a∈≤A, which means a is less than or equal to an element of A, generalization has happened
well and generalized object satisfies our desires.

The notion of l-members can be used in all spaces with partial order structures. It can also be
extended to l-subsets, l-subspaces and wherever the membership is presented.

A linear or quasilinear space without norm is like a soulless body. We tried to define the notion of
norm by imposing some hypotheses. Also, by using the norm, the corresponding metric, and defining
quotient map, we have discussed about the theorems of openness and continuity of this map.

Next, we have defined another type of quotient spaces. In contrast to previously defined quotient
spaces, such spaces are linear. In this definition the subspace, which contains all members that are
derived by subtraction of a, which a is an element of the space, from itself, plays a major role. it
is worth noting that, the definition was presented in such a way that encompasses a wide range of
examples and theorems. This issue also does not end without defining the norm . Then, as usual in
this article, we gave examples to better understand the content.

The reader who really wants to work in this area should understand the motivation and the way
of definitions, see the examples and analyze theorems in order to take steps to improve them, to
continue them, or to use them in similar spaces.
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