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Abstract

In this paper, utilizing the technique of Petryshyn’s fixed point theorem in Banach algebra,
we analyze the existence of solution for functional integral equations, which includes as special
cases many functional integral equations that arise in various branches of non-linear analysis and its
application. Finally, we introduce the numerical method formed by modified homotopy perturbation
approach to resolving the problem with acceptable accuracy.
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FIEs are regarded as a part of the applications of non-linear analysis. It create a very important
and significant part of the theories of radiative transfer, mathematical physics, population dynamics,
kinetic theory of gases and neutron transport [II, 4], 10, 11l 12| 21]. Recently, the concept of MNC is
one of the most efficient tools in non-linear analysis to study the solvability of FIEs and differential
equations [14, [16], 17, 24, 25 27, 33]. We study a different existence result for the solution of FIEs
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u(s) = ¢ (s,u(&(s)),y(s,u ¢(s) ,foa(s) h(s,r,u(o(r)))dr, foﬁ(s) f s,r,u(gp(r)))dr) (0.1)
u(s) = q (3, fo h(s,r,u(op(r)))dr, u(f fo f(s,r,u gp(r)))dr) (0.2)
us)= g (s,u<< $)) Ji hls, 7, u(@(r)))dr, fo 7 f (s, ulp(r)))dr) (0.3)

where,s € I. = [0,c]. Eq.(I) is the generalization of the some equations which introduced by
[3, 7, B, 15, 19, 22],etc. We apply the concept of MNC and Petryshyn’s fixed point theorem|[29],
which is generalization of Darbo’s fixed point theorem[5]. The main aim is to find the existence
result of Eq. and also, work to gain the analytic solution of it by applying the semi-analytic
method. Many useful papers have been studied to the existence result for various FIE by Darbo’s
fixed point theorem (seel0] [7, 8, 18, 22 23]). Now, we discuss the principal reason why we examine
Eqs. and what we perform. The first importance is that the conditions given in various
papers will be investigated and the second reason is that it joins similar work in this area. The third
condition is the bounded condition explains that the ”sublinear condition” that has been recognized
in literature will not play a meaningful role here.

This article is divided into 4 sections including the introduction. Section 2, we show some prelim-
inaries and define the concept of MNC. Section 3 is applied to state and prove an existence result

for Eq.(1]) using Petryshyn’s theorem. In last, we provide some examples that test the utilization of
FIE.

1. Preliminaries

In this paper, assume A be a real Banach space. Let B(u,o) be a closed ball centre at u with
radius ¢ > 0. MNC are very powerful tools in non-linear analysis, for example in the operator
equations theory and fixed point theory in Banach space.

Definition 1.1. [5/ The Kuratowski MNC
v(Q2) =inf{p>0:Q= U Q; with diam$); < p, j=1,2,...,m}.
j=1
Definition 1.2. [5] The Hausdroff MNC
X(2) =inf {p > 0 : there exists a finite p net for Q in A}, (1.1)

here, from a finite p net for Q in A it implies, as a set {uy, uz, ..., up} C A such that B,(A,u1), B,(A, us), ..., B
over ). These MNC' are similar in the sense that

X(Q) <~(2) <2x(Q), for any bounded set 2 C A.
Theorem 1.3. Let ), Z C A bounded and A\ € R. Then
(i) x(2) =0 iff Q is precompact;
(i) Q€ Z = x(Q) <x(2);

(i) x(cof2) = x(2);
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(iv) x(QU 2) = max{x(©), x(2)},
(v) x(A9) = [A[x(2);
(vi) x(Q+2Z) < x(Q) +x(2).

Let C[0,c]be the space of all real valued and continuous function defined on the [0,¢] with the
standard norm, ||u|| = max{|u(s)|: s € [0,]}. C[0,] is also the structure of Banach algebra. The
modulus of continuity of u defined as

w(u, p) = sup{lu(s) —u(n)| :n,s €[0,d,|s —n| < p}.

Theorem 1.4. [22] The Hausdorff MNC is similar to

u(Q2) = lir% sup Qu, p), for all Q C C|0,]. (1.2)
p—

Theorem 1.5. [26] Assume that F': A — A is a continuous mapping of A which holds the condition
if for all Q@ C A with Q bounded, F(Q2) is bounded and v(FQ) < ky(Q),k € (0,1). If v(FQ) <
v(2), for all v(Q) > 0, then F is called condensing or densifying map.

Theorem 1.6. Petryshyn’s[29] Suppose that F : B, — A be a densifying mapping, which fulfill the
boundary condition.
If F(u) = ku, for some u € 0B, then k <1,

then the set of fixed points of F' in B, is nonempty.

2. Main Results
Here, we shall treat Eq. for u belongs to C[0, ¢] under the following assumptions;

(T1) q € C(I.xRxRxRxR,R), v € C(I.xR,R), h € C(I.x[0, A;]xR,R), f € C(I.x]0, As] xR, R),
and o, : I, = RY, ¢ : [0,A1] — 14, p : [0,As] — I, 0, : I. — 1., are continuous so
a(s) < Ay, B(s) <Ay Vsel;

(T3) 3 non-negative constants dj + dads < 1, so
lq(s,v1,v2,v3,v4) — q(8, %1, T2, 3, T4| < di|vr — 21| + da|ve — T2| + dslvg — 3| + dalvg — 24];
lv(s,v1) — v(s,va)| < dslvy — 24

(T3) 3 a o > 0 of the inequality

sup{|q(s,v1,ve,v3,04)| : s € I, 01,05 € [—0,0],v3 € [-A1 Ny, A1 V]
Uy € [—AaNy, AsNs]} < o,

where,
Ny = sup{|h(s,r1,u)| : Vs € I.,r1 € [0, A1] and u € [—0,0]},

Ny = sup{|f(s,r9,u)| : Vs € I.,r5 € [0, Ay] and u € [—0,0]}.
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Theorem 2.1. Under the above hypotheses Eq.(1]) has at least one solution in A = C(1.).

Proof .Define I': B, — A as

(Fu)(s) =q (5,u(6(5)),V(s,u(g“(s)),/oa (s,r,u(o(r)))dr, / f(s,ru(p ) :

To prove that F' is continuous on B,. Takeing p > 0 and for any u,v € B, such that ||u —v|| < p.
We have

where,

|(Fu)(s) = (Fo)(s)| =

a(s)
q (s,u<e<s>>,u<s,u<<<s>>, | hsratoar / (5.1, )
a(s)
g (s,v<e<s>>,u<s,v<<<s>>, | msroten / (s.7,0( )
a(s)
< |q (s,u(@(s)),u(s,u(((s)),/ﬂ h(s,r,u(gb(r)))dr,/o (s, u( )
a(s)
—q <s,v<9<s>>,u<s,u<<<s>>, | nsratotar / (5, r,u( )
a(s) B(s)
+lg (s,v<0<s>>,v<s,u<<<s>>7 [ ntsrator [ sl )
—q (3,1}(0(5)),V(S,U(C(s)),/oa (s, u( / fs,ru( )
a(s) B(s)
+q (S,U(Q(S)LV(S U(C(S))/O h(s,, u(ﬁb(f’)))dh f(s,mu( )
—q (s,v(@(s)) V(s U(C(s)),/oCY (s,m,v( / f(s,ru( >
a(s) B(s)
+q (S v(0(s)), v(s U(C(S))/O h(s,r,v(é(r)))dr f(s,mu( )
—q (s v(0(s)),v(s U(C(s)),/oa (s,m,v( / f(s,ru( )
a(s)
< difu(f(s)) —v(0(s))] + dafr(s,u(C(s)) — v(s,v(((s))] +d3/0 |h(s,m, u(¢(r)))
B(s)
h(s,r,v(d(r)))|dr + d4/0 |f(s,m,0(0(r))) = f(s,m,0(p(r)))dr
< difu(6(s)) — v(0(s))| + dads|u(((s)) — v(C(s))] + dzArw(h, p) + dsAsw(f, p)
S (dl + dzdg,)HU — ’UH -+ d3A1W(h, p) + d4A2(U(f, p)

w<h>p) = Sup{’h(‘S?ra U) - h(S,T, /U)‘ HERS 1077' S [0>A1]7uav € [_Ua U]a ”u - UH < p}7
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w(f,p) = sup{|f(s,r,u) — f(s,r,v)] : s € I.,7 € [0, A3],u,v € [0, 0], ||lu—2| < p}.

Since h(s,r,u) and f(s,r,u) are uniform continuous on I. x [0, A;] x R and I. x [0, A3] X R, we
conclude that w(h, p) and w(f,p) as p — 0. Hence, F' is continuous on B,. Again, we show that F
satisfies the densifying map. Fixed a arbitrary p > 0 and take u € 2, where 2 is bounded subset of
A, s1,89 € I. with s1 < sy such that s; — s9 < p, we get

|(Fu)(s2) = (Fu)(s1)] =

a(s2) B(s2)
q (32,u<9<s2>>,u<82,u<<<s2>>, / B(s, ru((r)))dr, / f(SQ,r,U(sO(T)))dT>

a(s1) B(s1)
—q (Slju(6<31>)’V(Slﬁu(<<81>)a/0 h(Sl,T,u(¢<T)))dT,/O f(sl,r,u(go(r)))dr>

IN

a(s2) B(s2)
q (52,u<9<s2>>,u<52,u<<<s2>>, / W(s, r,u(6(r)))dr, / f<82,r,u<sa<r>>>dr>

a(s2) B(s1)
. (52,u<9<S2>>,u<s2,u<c<82>>, / B(sa, 1, u((r)))dr, / f(slmuw(r)))dr>

0 0
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+da|v(s2,u(C(s1)) — v(s1,u(C(s1))] + ds/o |(A(s2, 7, u(@(r)) = h(s1,r,u(e(r)))|dr

a(s2) B(s1)
Ty / o 7wl -y / F(sanrs ul(r))) — F(s0,7 u(eo(r)))dr

a(s1)
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B(s2)
[ s o)l + (1)
B(s1)

For simplify,

wy(1e, p) = sup{|q(s, v1,va, v3,v4) — (S, v1,v2,v3,04)| 1 |5 = §| < p,s € L., v1,09 € [—0, 0],
vg € [~A1 Ny, A1 Ny|,v4 € [—A3Ny, AyNs b
wip(Ie, p) = sup{|h(s,r,u) — h(s,r,u)| : |s — 8| < p,s € I.,r € [0, A1],u
wr(le, p) = sup{[f(s,r,u) — f(8,7,u)] : |s = 8] < p,s € Le,r € [0, As] u
(I, p) = sup{|v(s,v ) —v($,m)|:|s—38| <p,s€l.,v €[00},
) = sup{|a(s) — a(s)] : |s — 8| < p,s,§ € I.}.

[ ]}7

12
w(a, p
From above relation, we get

|(Fu)(s2) — (Fu)(s1)] < difu(@(s2) — u(0(s1)| + dads|u({(s2) — u(C(s1)] + dawy (Ie, p)
+ d3A1Wh<]C, p) + dgle(Oz, p) + d4A2wf(Ic, p) + d4N2w(B, p) + wq(lc, p)

Taking limit as p — 0, we get w(Fu,p) < (di + dads)w(u, p), this gives the relation x(F) <
(dy + dods)x(w), then F' is a condensing map. Let u € 0B, and if Fu = ku then we obtain
||Full = k[[u]| = ko and by (T5),

a(s) B(s)
\Fu(s)\z\q<s,u<e<s>>,u<s,u<c<s>>, / Bs, 7, u(@(r))dr, / f<smu<@0<r>>>d7“>(§"

Vs € I., hence ||Ful| < o ie k < 1. O Second, we will study the Eq.(0.2) under the following
assumptions,

(B1) g € C(LxRxRxR,R), v e C(I. xR,R), h € C(I.x [0, A] xR, R), f € C(I.x[0, As] x R, R),
and o, : I, = R, ¢ : [0,A1] — 14, v : [0,As] — I, 0, : I. — I., are continuous so
a(s) < Ay, B(s) < Ay Vs el
(B2) 3 non-negative constants dydy + d3As Ny < 1 so
|q(s, v1,v2,v3) — q(s, 1, T2, 73| < difvr — 21| + dalva — T2| + dslvs — 23];
lv(s,v1) — v(s,va)| < dylvr — 24
(B3) 3 a o > 0 of the inequality
sup{|q(s,vi,v2,v3)| : s € I, v1 € [—0,0],v5 € [-AIN1, ALN1],v3 € [=A3 Ny, A3 Ns]} < 0,
where, Ny = sup{|h(s,r1,u)|: Vs € I, € [0, 4] and u € [~0,0]},

Ny = sup{|f(s,ro,u)| : Vs € I.,75 € [0, Ay] and u € [—0,0]}.
Then Eq.(0.2) has at least one solution in /..

Proof . The proof is relevant to the Theorem and leave this parts. [ Third, we will study the
Eq.(0.3) under the following assumptions,
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(G1) ¢ C(I.xRxRxRR),he C(I. x I. x R,R), f € C(I. x [0, A] x R,R),
and 8:I. - RY ¢ :[0,A] = I, 6,(: I. — I., are continuous so 3(s) < A V s € I.

(G3) 3 non-negative constants di + dacNy < 1, so

lq(s, v1,v9,v3) — q(s, 21, T, T3] < di|vy — 21| + do|ve — x| + d3|v5 — T3]

(G3) 3 a o >0 of the inequality
sup{lq(s,vi,ve,v3)| : s € I, v1 € [—0,0|,v3 € [—cNy,cNy|,v3 € [-ANs, ANs]} < 0,

where,
Ny = sup{|h(s,r,u)| : Vs,ry € I, and u € [—0,0]},

Ny = sup{|f(s,ro,u)| : Vs € I.,m2 € [0, A] and u € [—0,0]}.

Then Eq.(0.3) has at least one solution in /..
Proof . The proof is relevant to the Theorem [2.1] and leave this parts. [J

Corollary 2.2. [3] Suppose that

(D)) g€ C(I, xRxR,R), h € C(L x [0, 4] xR, R), and a: I, = R*, ¢ : [0, A1] = L, 0: I, — I,
are continuous such that a(s) < A; Vs € I

(D3) There exists non-negative constant d € (0,1) such that
lq(s, v1,v2) = q(s, 21, 22| < d(|vr — 21| + vz — 22]);
and there exists non-negative constants by such that; |q(s,0,0)| < b;

(D3) There exists constants ¢; and cy such that; |h(s,r,u)| < ¢ + co|ul
Moreover d + Aidecy < 1.

Then the following equation has at least one solution in I..

a(s)
u(s) =q <S7U(0(S))7/o h(s,r,u(qﬁ(r)))dr) ,sel.=10,c. (2.1)

Proof . Let 0 = 15%1, where Fi; = d + Aydcy, Fo = Aydey + by, and q(s, vy, v9,v3,v4) = q($,v1,03),

also v = u(0(s)) and vy = Oa(s) h(s,r,u(¢p(r))dr. We see that (1) is led by (D). Again, we show
that Ds is also fulfill, then

Y

a(s)
us)| = \q<s,u<9<s>>, / h(s,r,uw(r)))dr)

IN

a(s)

()] +d| [ bls.r.uoln))dr| + la(s.0.0).
0

< (d+ Aydes)||u|| + Ardey + by, for all s € 1.,

consequently, sup|q(s,vy,v3)| < Fio+ Fy = Fllfia +F =o.

Corollary 2.3. Suppose that
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(Ey) qe C(I. xRxR/R), K e C(I. xR,R), h € C(I. x [0,A;] x R,R), f e C(l. x[0,As] x R,R),
and o, 5 : I. = RY ¢ : [0, A1] — I, ¢ : [0,As] — I, 0 : I. — 1., are continuous such that
a(s) < AL, B(s) <Ay Vsel;
(Es) There exists non-negative constants d € (0,1) and by, by such that
lg(s,v1,v2) — q(s, 21, 22| < d(|vg — 21| + |va — xa]), |K(s,v1) — K(s,21| < d|vg — x4];
[K(s,0)] < b1, |g(s,0,0)] < bo.
(E3) There exists the constants ¢y, cq, c3 and cq such that
|h(s,r,u)| < e+ colul, |f(s,ru)| < cs+ cqlul,
Moreover, d + coA1d 4 c4Axd < 1.

Then the following equation has at least one solution in 1. = [0, c|.

o(s) B(s)
u(s) = K(s,u(f(s)) + ¢ (S,/O h(s,r,u(gb(r)))dr,/o f(SmU(SD(T)))dT’) » (2.2)

_ H
Proof . Let 0 = 7%

=d + CQAld + C4A2d, H2 = b1 + ClAld + C3A2d + bQ, and
q(s,v1,v2,v3,v4) = K(s,v1) + q(s, v3,v4),

where v; = K(s,u(0(t)), vy = foa(s) h(s,r,u(¢(r)))dr and v3 = fo (s,m,u(o(r)))dr. We see that
(T3) is led by (E2). Now, we show that Ej is also fulfill, then

lu(s)| = ‘K(s,u(@(s)) +q (S,/OQ(S) h(s,r,u(¢(r)))dr, / (s, u(e(r))) T) ‘,

a(s)
K (s, u(0(s)) — K s o>|+|K<so|+\q / h(s, . u(@(r))dr.

IN
w
g

[ s atotr )~ (6,00 + 16,00,

< dl|u|[ + by + Ard(cr + co|[ul]) + Azd(cs + cqlul]) + b2,
S (d + CQAld -+ C4A2d)||u|| + bl + ClAld + CgAQd -+ bQ,

for all s € I.., consequently sup|q(s, vy, vs, vs,v4)| < Hyo + Hy = H) -2 -+ Hy=0. 0

-
Corollary 2.4. [19] Let

(J1) hre CUXxIxRR), g C(IxRxRxRR), Vsel=]|01],
(Jo) There ezists constant d € (0,1) such that

lq(s,v1,v9,v3) — q(s, 21, T, T3] < d(|vy — 21| + |V2 — 22| + U3 — 23]);

and there exists non-negative constants by such that, |q(s,0,0)| < by;
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(J3) There ezists the non-negative constants cy,cq,c3 and cq such that

|h(s,r,u)| < 1+ colul, | f(s,r,u)| < e+ calu|, and moreover,d + dcy + dey < 1.

Then the following equation has at least one solution in I = [0, 1].

u(s) =q (s,u(s), /01 h(s,r,u(r))dr, /08 f(s,r,u(r))dr) ,s € 1. (2.3)

Proof . Let o0 = I—Qé?27 where Q1 = (d + dey + dey), Qo = dey + des + by, and ¢(s, Ul,’UQ,’Ug,U4) =

C](SUl,’Ug,’U4) inheregb() o(r) = r0(s) = s,a(s) = 1,8(s) = s, v2—f0 s,r,u(r))dr and
= [ f(s,r,u(r))dr. Thus (T5) is conducted by (J;). We show that (J3) is holds

u(s)| = ‘q(s,u(s),/gl (5,7, u(r /fsru )‘

dlu(s)] + d /0 h(s, 7, u(r))dr (r))dr

<

< d||ul| + d(er + eal|u]]) + dles + eql|u]]) + b1,
< (d+dcy + dey)||ul| + dey + des + by,

for all s € I =10, 1], consequently sup|q(s, vy, vs,v4)| < Q1o + Q2 = 0. O

+1q(s,0,0)],

Corollary 2.5. Putting q(s,vi,vs,v3,01) = q(s,02,03,01) and Ay = Ay = A, Eq.(1]) reduces to
following FIE studied in [15]

a(s) B(s)
u(s) = q <s,u(s,u(g(s)),/0 h(smuw(?“)))dn/o f(SmU(sO(T)))dT>- (2.4)

Corollary 2.6. Replacing q(s, vy, va,v3,v4) = q(8,v1,02,03),v(s,v1) = v1 and Ay = A, Eq. re-
duces to following FIE studied in [22)]

a(s)
u(s) = q (&U(@(S)),U(C(S))a/o h(Sﬂ“auw(T)))dT) : (2.5)

Corollary 2.7. Putting q(s,v1, va, vs,v1) = G(s,v1) + vavs, and Ay = A, Eq.(1)) reduces to following
FIE studied in [28]

a(s)
u(s) = q(s,u(6(s))) + V(S»U(Q(S))/O h(s,r,u(o(r)))dr. (2.6)

Corollary 2.8. Substituting q(s, vy, v, v3,v4) = 1 + v1v3,0(s) = a(s) = ¢(s) = s, and h(s,r,u) =
s ¥(r)u. Then Eq. reduces to Chandrasekhar integral equation in radiative transfer [11)].

u(s) = 1+ u(s) /0 *p(ryu(r)dr,s € I = [0, . (2.7)

sS+r

Corollary 2.9. Putting q(s,v1,vs,vs,v4) = a(s) + vs,a(s) = s and ¢(r) = r, Eq.(1) reduces to
Volterra Urysohn integral equation

u(s) = a(s) + /OS h(s,r,u(r))dr. (2.8)

Corollary 2.10. Putting q(s, vy, va,v3,v4) = b(s) + vy, B(t) = ¢ and o(r) = r, Eq. reduces to
Urysohn integral equation

+ /ch(s,r,u(r))dr. (2.9)
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3. An Example

Example 3.1. Let the following Volterra non-linear FIE:

e 1 [*e 2" sin(u(r))
) = (1 arctan(uim) + § [Ty, (3.)
/05 e (eVT 4+ /s cos(r) + %“(TQ))dT: s €[0,1]

Wl =

Put, 0(s) = v/s,a(s) = s,0(s) = s,8(s) = 5%, ¢(s) = s*,V s € [0,1],

Q(37U1>U27U37 'U4) - 91(37 U1, 1}2) + C]2(37U37U4);

where, ¢1(s,v1,v2) = 0vy + %02, q2(s,v3,v4) = %3 + %, Vg = (%)arct(m(\u(\/g)\),

a(s) B(s)
= [ o) v = [ s e

and

e 2" r sin(u(r))

4+ |sin(u(r))|
It is seen that these functions holds (7}) and (73). Now, we check that (73) also holds. Choose
J:%—i—%ethen]\ﬁ §%,N2§ %jt%—; and

1

s u(@(r) = e (V" + Vs sin(r) + Su(r?)).

h(S7T7u(¢(T))) = 9

sup{|q(s,vi,ve,v3,04)| : s € [0,1],v1,0v9 € [—0,0],v3 € [-ANy, AN1]},v4 € [—ANy, AN5]|}

1 (4e+17)< <(4e+17)}<5+2
R N TV R R N D YR A

-

1
< sup{lﬁ(u(s) + vy +v3)|;s € [0,1], —
Hence, from Theorem Eq.(3.1]) has at least one solution in C|0, 1]. O

4. An iterative algorithm to solve Example4.1

Here, we utilize a sequence of MHP and Adomian decomposition method to solve Eq..
Homotopy perturbation is a powerful concept in perturbations theory and topology[9, 20]. Any
modifications of MHP and Adomian decomposition method can be viewed in [13, 30, BT] and [2 32]
respectively. In this proposed method, we discreet a non-linear functional equation to some smaller
difficulties and to free of non-linearity, we apply a linear combination of Adomian polynomials.
Therefore we present an iterative algorithm to solve the above problem.

Now, take the general form of Eq.(3.1]) as,
M(s,u(s)) —g(s,u(s)) =0, sel0,1] (4.1)

where M is a non-linear integral operator and ¢ is a function. According to [30, [31], divide the
operator M to some nonlinear or linear operators as M; and M,. Also g converts to g; and g, . Thus
(4.1)) can be represented by M;(u) — g1(s) + Ma(u) — go(s,u(s)) = 0. Therefore we can define a MHP
in this form:

H(,p) = Mi(9) = g1(s) + p(M2(V) — g2(s,9(s))) =0, p€0,1] (4.2)
u(s) = 9(s) = Do(s) +pdi(s) + p*a(s) + p*Is(s) + ..., (4.3)
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here p is an embedding parameter. Putting parameter p = 0 to p = 1 we can get M;(¢) = g1(s) to
M) = g(s,u(s)). In this way, we achieve the solution of (4.1]) for p = 1 and u(s) =~ lim,_,; ¥(s). To
introduce operators M, M, and functions ¢, g2 , we consider to the non-linear functional Volterra

integral equation (3.1)) as follows,

s2

u(s) + /0 ha(s.r) j@;‘gzimdr T /0 ka(s,7) (27 + 25 cos(r) + u(r?))ds
- %(1 fsg)arctan(w(\/g)l) =0, s € [0,1], (4.4)
Bi(s,r) = —5re ™, kol ) = —ce .
Then, we have
My(u(s)) = u(s), 2

[ ki) sin(u(r) : :
Ms(u(s)) = /0 1 Jsinu()] dr +/0 ko(s,m)(2eV" + 24/5 cos(r) + u(r?))dr,

2

1, s
0(s) =0, gals,ul(s)) = 5(o—z)arctan(u(Vs))). (4.5)
Substituting (4.5)) and ( . in . ) leads to,

@W ) <o “)4+|n(§;°fif92)>>\d o

+ / ka(s,7)(2eV" 4 24/ cos(r) + Zp%? ))dr — ga(s ,Zpi?%(s))> =
0 =0

—

For relief, operator M, is converted to operators ]\/4\2 and ]\/4\2 and we use Adomian polynomials for
approximate nonlinear terms,

My(D~ p'oi(r)) = 4ij§§ioiilﬁ ZPA

TL(Y poi(r) = Zpim(ﬂ) =3 r ) (@.7)
ga(s, Zp’z? Zp’A p [0, 1]

In which Adomian polynomials are given as,

~ o1 db o sin(3, p'i(r)
Ap(r) = H(Wzl + ]sin(Zﬁopiﬁi(r))])pzo’
i«ﬂﬁ% ,Zpiwr?»pzo, 19

Ai(s) = k" dkgg Zpi? o
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Substituting (4.7)) in (4.6) implies that,

(90(s) + pir(s) + P20a(s) + - — 01 (5)) +p(/s o) S
(4.9)

s2

+ /0 ka(s,7)(2eV" + 24/ cos(r) + ipi?l\i(r))dT - ZpiAi(s)) =0,

with rearranging (4.9)) in terms of p powers and taking of the coefficients of p powers equal to zero,
we approach an iterative algorithm for numerical solution of (3.1)).

Algorithm:
Jo(s) = g1(s), (4.10)
Dppyr(s) = — /0 ki(s,r) A(r)dr — /O ka(s,7)(2¢Y" + 24/ cos(r) + A (r))dr

+ Ax(s), k=0,1,2,---

For convergence of these kinds of algorithm see [19]. Since in (3.1]), u(0) = 0, and solution space is
C10, 1], then a simple choice for start point in algorithm (4.10))is YJo(s) = ¢1(s) = 0 or s. Therefore
from (4.8) Adomian polynomials are,

n sin(Yo(r)) 2 2
A = A =1 A = v : 4.11

o(r) 4+ |sin(Do(r)]’ o(r) o(r?), o(s) = g2(s, Vo (s)) ( )
Thus in algorithm (4.10)) we can get

Vo(s) = g1(s) =0

Vi(s) = — /s k1(s, ) Ag(r)dr — / ka(s,7)(2eV" 4 24/ cos(r) + ;\l\o(r))dr + Ao(s)

0 0
11 40 Vs 1 4. el12\/m 1 1—6s
— - _ S s+___ S - —E
5 9° 0 " 106 Ve cos(s) + TV (E rf(wg) rf( 273 )
1
+ %67382\/5 sin(s?).

We keep some approximations of the solution (3.1)) as,

1
Zﬁ —352+s + \/_E . —6_382\/5 008(82)
10 10
(4.12)

o1/12
: 1/8f< s f> BB+ e B sinls?)

By considering Figure.1, the approximate solution is in space C[0,1]. For validity of this
numerical result, we replace in and comparing both sides of it, the absolute errors in
some points are given in table 1. It’s axiomatic that by increasing the number of iterations in
algorithm , we can improve the accuracy in the approximation.

5. Conclusions

In the current work, we studied the existence of a solution for functional non-linear Volterra
integral equation. For illustrating the efficiency and applicability of our results we gave some corollary
and an example respectively. Also, we offer an iterative algorithm to find the solution of the above
problem with acceptable accuracy.
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0.25

0.20

0.10 |-

0.05 |-

0.2 0.4 0.6 0.8 1.0

Figure 1: u(s) :The sum of the first two terms of the series(4.3])

Table 1: Absolute errors

s | Absolute errors for u(s)
0.0 0
0.1 1.7x1074
0.2 1.2x1073
0.3 3.9%x1073
0.4 8.1x1073
0.5 1.3x1072
0.6 2.0x1072
0.7 2.6x1072
0.8 3.3x1072
0.9 4.0x1072
1.0 4.6x1072
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