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Abstract

It is generalized the subgradient extragradient algorithm from linear spaces to nonlinear cases. This
algorithm introduces a method for solving equilibrium problems on Hadamard manifolds. The global
convergence of the algorithm is presented for pseudomonotone and Lipschitz-type continuous bifunc-
tions.

Keywords: Equilibrium problem, Hadamard manifold, Subgradient extragradient algorithm.
2010 MSC: Primary 90C33; Secondary 49M37.

1. Introduction

Equilibrium problem (abbreviated by EP) is a fundamental problem and arises in an extensive
variety of application areas. It is a valuable mathematical tool in the study of optimization and
control problems, traffic network problems, Nash equilibrium problems, the problems of finding zeros
of operators, etc. These important applications employ many authors to have widely studied it in
recent years (see e.g. [1, 7, 12, 18, 28], and the references therein). It is well known (see e.g. [8, 9, 20])
that various classes of mathematical programming problems such as variational inequality problems
(abbreviated by VIPs), fixed point problems, and minimax problems can be formulated in the form
of EP. Many methods have been extensively studied for approximating solutions of the equilibrium
problem under suitable conditions, in which two general approaches are regularized methods and
projection methods. Our attention is focused on the second method.

The gradient method is the simplest projection method for variational inequality problems in
which iterations are generated by one projection on the feasible set. In [21], Korpelevich extended
this method by calculating the second projection onto the feasible set in each iteration to reduce the

Email address: mahdialiakbari@torbath.ac.ir (Mahdi Ali-Akbari)

Received: July 2020 Accepted: September 2020

http://dx.doi.org/10.22075/ijnaa.2020.20984.2220


76 Ali-Akbari

assumptions of convergencity. Korpelevich’s method (named extragradient method and abbreviated
EGM) presented for saddle point problems, and then, this method has been studied and improved
in both Euclidean spaces and Hilbert spaces by many authors[13, 14, 15, 16]. In the case, when
the feasible set has a simple structure, then the projection can be computed easily. However, if
the feasible set is any closed convex set, the computation of projections, in general, is complicated.
As the remarks of the authors in [5], this can affect the efficiency of the used method. Recently,
inspired by EGM, Y. Censor et al. [4] have introduced an algorithm, which is called the subgradient
extragradient method (SEGM), for solving VIPs on Hilbert spaces. In this method, they have
replaced the second projection in EGM by a projection onto a specially constructed half-space and
allow a clear computation. The projection on a half-space is inherently explicit, and so, the SEGM
can be considered as an improvement of EGM over each computational step. At the same time,
these methods have been developed or inherited for equilibrium problems (see [13, 26, 27, 28]). In
[13], the author introduced SEGM for equilibrium problems by replacing two projections of SEGM
in VIPs by two optimization programs.

Extensions of ideas and techniques for optimization methods from Euclidean spaces to Rieman-
nian manifolds have some extraordinary advantages. From the Riemannian manifold point of view,
it is possible to transform the nonconvex problem in linear context to a convex problem by endowing
the space with an appropriate Riemannian metric (see e.g. [3, 10, 29, 30]). Due to this, it can be
solved some (nonconvex) constrained optimization problems or problems with nonconvex objective
functions. Actually, in recent years some methods have been retrieved from the Hilbert spaces frame-
work to the more general setting Riemannian manifolds to solve nonlinear or nonconvex cases (see
e.g. [11, 17, 22]). In particular, Hadamard manifolds supply an appropriate environment for the
development of optimization methods as presented in [6, 19, 25, 23, 33]. Motivated and inspired by
the research works mentioned above, we present a subgradient extragradient method for equilibrium
problems on Hadamard manifolds whose iterative process retrieves the proposed in [13].

The paper is organized as follows: In Section 3, we recall some basic concepts and important
results on Riemannian manifolds and convexities for further use. In Section 4, we present a sub-
gradient extragradient method for equilibrium problems on Hadamard manifolds and prove strong
convergence result of the generated sequence of iterates to the solution of the equilibrium problem
under some mild condition.

2. Preliminaries

In this section, we review some basic definitions and useful properties of Riemannian manifolds,
which can be found in any textbook on Riemannian geometry, see [2, 31, 32].

Let M be a connected finite-dimensional manifold. For p ∈ M , we denote TpM the tangent space
of M at p which is a vector space of the same dimension as M , and by TM =

⋃
p∈M TpM the tangent

bundle of M , which is naturally a manifold. We suppose that M can be endowed with a Riemannian
metric ⟨., .⟩, which the corresponding norm denoted by ||.|| , to become a Riemannian manifold. By
using the metric, for a piecewise smooth curve γ : [a, b] → M joining x to y, we can define the length

of γ as L(γ) =
∫ b

a
||γ′

(t)||dt. Then, for any x, y ∈ M , the Riemannian distance d(x, y) is defined
by minimizing this length over the set of all such curves joining x to y, which induces the original
topology on M .

Let ∇ be the Levi-Civita connection associated with (M, ⟨, ⟩). Let γ be a smooth curve in M . A
vector field X is said to be parallel along γ if ∇γ′X = 0. γ is called a geodesic, if γ

′
be parallel along

γ. A geodesic joining x to y in M is said to be minimal if its length equals d(x, y). A Riemannian
manifold is complete iff the geodesics are defined for any values of t. By Hopf-Rinow theorem, we
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know that if M is complete then any pair of points in M can be joined by a minimal geodesic.
Moreover, (M,d) is a complete metric space, and bounded closed subsets are compact.

Assuming that M is complete, the exponential map expx : TxM → M at x ∈ M is defined
by expx ν = γν(1, x), where γ(.) = γν(., x) is the geodesic starting at x with the velocity ν, i.e.
γν(0, x) = x and γ

′
ν(0, x) = ν. Then expx tν = γν(t, x) for each real number t. Note that for any

x ∈ M , the map expx is differentiable on TxM .
A Hadamard manifold is a complete simply connected Riemannian manifold of nonpositive sec-

tional curvature. Throughout the remainder of the paper, we assume that M is an n−dimensional
Hadamard manifold. The following result is well known and will be useful.

Proposition 2.1. Let M be a Hadamard manifold and x ∈ M . Then expx : TxM → M is a
diffeomorphism, and for any x, y ∈ M , there exists a unique normalized geodesic joining x to y,
which is minimal.

This property shows that M is diffeomorphic to the Euclidean space Rn. Hence, M has the
same topological, differential structure, and some geometrical properties as Rn. Some of them are
mentioned in the following. Recall that a geodesic triangle △(x1, x2, x3) of a Riemannian manifold
is a set consisting of three points x1, x2, x3 and three minimal geodesics joining these points.

Proposition 2.2. (Comparison theorem for triangle) Let △(x1, x2, x3) be a geodesic triangle. De-
note, for each i = 1, 2, 3(mod3), by γi : [0, li] → M the geodesic joining xi to xi+1, and set
αi := ∠(γ

′
i(0),−γ

′
i−1(li−1)), the angle between the vector γ

′
i(0) and −γ

′
i−1(li−1), and li := L(γi).

Then

α1 + α2 + α3 ≤ π,

l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1. (2.1)

In term of the distance and the exponential map, inequality (2.1) can be rewritten as

d2(xi, xi+1) + d2(xi+1, xi+2)− 2⟨exp−1
xi+1

xi, exp
−1
xi+1

xi+2⟩ ≤ d2(xi−1, xi), (2.2)

since
⟨exp−1

xi+1
xi, exp

−1
xi+1

xi+2⟩ = d(xi, xi+1)d(xi+1, xi+2) cosαi+1. (2.3)

Let xi+2 = xi in relation (2.3), we obtain

|| exp−1
xi+1

xi||2 = ⟨exp−1
xi+1

xi, exp
−1
xi+1

xi⟩ = d2(xi, xi+1).

Note that, the inequality (2.2) is an extension of the ”law of cosies” in Euclidean space to Hadamard
manifold, which be useful in the next.

The following lemma was proved by applying the properties of the exponential map.

Lemma 2.3. Let x0 ∈ M and {xn} ⊂ M such that xn → x0. Then the following assertion hold.

1. For any y ∈ M ,
exp−1

xn
y → exp−1

x0
y and exp−1

y xn → exp−1
y x0

2. If {vn} is a sequence such that vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M .

3. Given the sequences {un} and {vn} satisfying un, vn ∈ TxnM , if un → u0 and vn → v0 with
u0, v0 ∈ Tx0M . then

⟨un, vn⟩ → ⟨u0, v0⟩.
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A subset K ⊆ M is said to be convex if for any two points x and y in K, the geodesic joining
x to y is contained in K, i.e., if γ : [a, b] → M is a geodesic such that x = γ(a) and y = γ(b), then
γ(ta+ (1− t)b) ∈ K for all t ∈ [0, 1]. A function f : K → R is said to be convex iff for any geodesic
segment γ : [a, b] → K the composition f ◦ γ : [a, b] → R is convex. The subdifferential of a function
f : M → R at x ∈ M is defined by

∂f(x) = {v ∈ TxM : f(y)− f(x) ≥ ⟨v, exp−1
x y⟩, ∀y ∈ M},

and its elements are called subgradient of f at x. The subdifferential ∂f(x) at x ∈ M is a closed
convex set. It is known that if f is convex and M is a Hadamard manifold, then ∂f(x) is a nonempty
set, for each x ∈ M . The nonempty set NK(x) defined by

NK(x) = {v ∈ TxM ; ⟨v, exp−1
x y⟩ ≤ 0,∀y ∈ K}

is called the normal cone of K at x ∈ K.
The Riemannian distance and its square play a fundamental role in the following. We proceed

now stating some results which we will go to use.

Proposition 2.4. Let M be a Hadamard manifold and d : M × M → R be the distance function.
Then d is a convex function with respect to the product Riemannian metric; that is, given any pair
of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M the following inequality holds for all t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each y ∈ M , the function d(., y) : M → R is a convex function.

Proposition 2.5. Let M be a Hadamard manifold and x ∈ M . The map Φx(y) = d2(x, y) satisfying
the following;

1. Φx is convex. Indeed, for any geodesic γ : [0, 1] → M the following inequality holds for all
t ∈ [0, 1]:

d2(x, γ(t)) ≤ (1− t)d2(x, γ(0)) + td2(x, γ(1))− t(1− t)d2(γ(0), γ(1)).

2. Φx is smooth. Moreover, ∂Φx(y) = −2 exp−1
y x

Proposition 2.6. Let K be a nonempty convex subset of a Hadamard manifold M and g : K → R
be a convex subdifferentiable and lower semicontinuous function on K. Then, x∗ is a solution to the
following convex problem

min{g(x) : x ∈ K}

if and only if 0 ∈ ∂g(x∗) +NK(x
∗).

Proof . The idea of proof can be found in [24]. □
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3. Subgradient extragradient algorithm

LetM be a Hadamard manifold,K a nonempty closed and convex subset ofM and f : K×K → R
a bifunction with f(x, x) = 0 for all x ∈ K. The equilibrium problem for f is to find x∗ ∈ K such
that

f(x∗, x) ≥ 0, ∀x ∈ K. (3.1)

We denoted the solution set of equilibrium problem (3.1) by EP (f,K).

Definition 3.1. A bifunction f : M ×M → R is said to be

1. monotone on K if
f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ K;

2. pseudomonotone on K if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ K;

3. Lipschitz-type continuous on K if there exist two positive constants α1 and α2 such that

f(x, y) + f(y, z) ≥ f(x, z)− α1d
2(x, y)− α2d

2(y, z), ∀x, y, z ∈ K

Next, we introduce a subgradient extragradient method (SEGM) for equilibrium problems on Hadamard
manifolds whose algorithm retrieves the proposed in [13].

Algorithm 3.2. Initialization. Choose an initial point x0 ∈ K and a parameter λ satisfies
0 < λ < min{ 1

2c1
, 1
2c2

}.
Iterative steps. Assume that xn ∈ K and we calculate xn+1 ∈ K as follows:
Step 1. Compute

yn = argmin{λf(xn, y) +
1

2
d2(xn, y) : y ∈ K}.

If xn = yn, then stop and xn is a solution to EP. Otherwise,
Step 2. Compute

xn+1 = argmin{λf(yn, y) +
1

2
d2(xn, y) : y ∈ Tn},

where Tn = {m ∈ M : ⟨exp−1
yn xn − λvn, exp

−1
yn m⟩ ≤ 0} and vn ∈ ∂2f(xn, yn).

Remark 3.3. It is easy to see that xn ∈ EP (f,K) if and only if xn = yn.

The main result of this paper is Theorem 3.8, which states the convergence of the algorithm 3.2 for
a bifunction with some conditions, provided the algorithm is well defined. We first recall the notion
of Fejér convergence and the following related result [11].

Definition 3.4. Let X be a complete metric space and K ⊆ X be a nonempty set. A sequence
{xn} ⊂ X is called Fejér convergent to K if for every y ∈ K,

d(xn+1, y) ≤ d(xn, y) n = 0, 1, 2, . . . .

Lemma 3.5. Let X be a complete metric space and K ⊆ X be a nonempty set. If {xn} ⊂ X be
Fejér convergent to K, then {xn} is bounded. In addition, if an accumulation point x of {xn} belongs
to K, then {xn} globally converges to x.



80 Ali-Akbari

Unless stated to the contrary, in the remainder of this paper we assume that f : M ×M → R is
a bifunction satisfying the following conditions:

(C1) f is pseudomonotone on K and f(x, x) = 0 for all x ∈ M ;
(C2) f is upper semicontinuous on the first variable;
(C3) f is convex and lower semicontinuous on the second variable;
(C4) f is Lipschitz-type continuous on K with the constants α1, α2;

Lemma 3.6. For any y ∈ K and λ > 0,

1. λ[f(xn, y)− f(xn, yn)] ≥ ⟨exp−1
yn xn, exp

−1
yn y⟩.

2. λ[f(yn, y)− f(yn, xn+1)] ≥ ⟨exp−1
xn+1

xn, exp
−1
xn+1

y⟩.

Proof . 1) Proposition 2.6 and the definition of yn in Algorithm 3.2 implies that

0 ∈ ∂2[λf(xn, y) +
1

2
d2(xn, y)](yn) +NC(yn).

Therefore, there exist z ∈ NC(yn) and z ∈ ∂2f(xn, yn) such that

λz − exp−1
yn xn + z = 0.

So, for any y ∈ K,
⟨exp−1

yn xn, exp
−1
yn y⟩ = λ⟨z, exp−1

yn y⟩+ ⟨z, exp−1
yn y⟩.

Now, since z ∈ NK(yn), ⟨z, exp−1
yn y⟩ ≤ 0 for any y ∈ M . It follows

⟨exp−1
yn xn, exp

−1
yn y⟩ ≤ λ⟨z, exp−1

yn y⟩. (3.2)

On the other hand, from z ∈ ∂2f(xn, yn) and the definition of subdifferential, we have

f(xn, y)− f(xn, yn) ≥ ⟨z, exp−1
yn y⟩ ∀y ∈ M. (3.3)

Multiplying both sides of the inequality (3.3) by λ > 0, and using (3.2), we obtain

λ[f(xn, y)− f(xn, yn)] ≥ ⟨exp−1
yn xn, exp

−1
yn y⟩ ∀y ∈ K.

2) The idea of the proof is similar to part 1. □

Lemma 3.7. For any x∗ ∈ EP (f,K) and λ > 0,

d2(xn+1, x
∗) ≤ d2(xn, x

∗)− (1− 2λα1)d
2(yn, xn)− (1− 2λα2)d

2(xn+1, yn)

Proof . From xn+1 ∈ Tn and the definition of Tn, it follows

⟨exp−1
yn xn − λvn, exp

−1
yn xn+1⟩ ≤ 0

for some vn ∈ ∂2f(xn, yn). Hence,

λ⟨vn, exp−1
yn xn+1⟩ ≥ ⟨exp−1

yn xn, exp
−1
yn xn+1⟩. (3.4)

Since vn ∈ ∂2f(xn, yn), by the definition of subdifferential, we have

f(xn, y)− f(xn, yn) ≥ ⟨vn, exp−1
yn y⟩, ∀y ∈ M. (3.5)
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Taking y = xn+1 into (3.5), we conclude

f(xn, xn+1)− f(xn, yn) ≥ ⟨vn, exp−1
yn xn+1⟩.

It follows from the last inequality and relation (3.4) that

λ[f(xn, xn+1)− f(xn, yn)] ≥ ⟨exp−1
yn xn, exp

−1
yn xn+1⟩. (3.6)

On the other hand, by Proposition (2.6) and the definition of xn+1 in Algorithm 3.2, we have

0 ∈ ∂2[λf(yn, y) +
1

2
d2(xn, y)](xn+1) +NTn(xn+1).

So, there exist z ∈ ∂2f(yn, xn+1) and z ∈ NTn(xn+1) such that

λz − exp−1
xn+1

xn + z = 0.

Note that z ∈ NTn(xn+1) and the definition of the normal cone imply that ⟨z, exp−1
xn+1

y⟩ ≤ 0, for any
y ∈ Tn. Hence, from the last equality, it follows

⟨λz − exp−1
xn+1

xn, exp
−1
xn+1

y⟩ ≥ 0 ∀y ∈ Tn,

or equivalently,
λ⟨z, exp−1

xn+1
y⟩ ≥ ⟨exp−1

xn+1
xn, exp

−1
xn+1

y⟩ ∀y ∈ Tn. (3.7)

Now, using the definition of subdifferential for z ∈ ∂2f(yn, xn+1), we have

f(yn, y)− f(yn, xn+1) ≥ ⟨z, exp−1
xn+1

y⟩ ∀y ∈ M.

This together with the relation (3.7) lead to

λ[f(yn, y)− f(yn, xn+1)] ≥ ⟨exp−1
xn+1

xn, exp
−1
xn+1

y⟩ ∀y ∈ Tn. (3.8)

Taking y = x∗ in the relation (3.8), we get

λ[f(yn, x
∗)− f(yn, xn+1)] ≥ ⟨exp−1

xn+1
xn, exp

−1
xn+1

x∗⟩. (3.9)

Because of x∗ ∈ EP (f,K), f(x∗, yn) ≥ 0. So, by pseudomonotonicity of f , f(yn, x
∗) ≤ 0. Therefore,

from (3.9) and λ > 0, we have

− λf(yn, xn+1) ≥ ⟨exp−1
xn+1

xn, exp
−1
xn+1

x∗⟩. (3.10)

Using the Lipschitz-type continuity of f , we have

f(yn, xn+1) ≥ f(xn, xn+1)− f(xn, yn)− α1d
2(xn, yn)− α2d

2(yn, xn+1). (3.11)

Multiplying both two sides of the relation (3.11) by λ > 0 and combining with relations (3.6) and
(3.10), respectively, leads to

−⟨exp−1
xn+1

xn, exp
−1
xn+1

x∗⟩ ≥ λf(yn, xn+1)

≥ λ[f(xn, xn+1)− f(xn, yn)]− λα1d
2(xn, yn)− λα2d

2(yn, xn+1)

≥ ⟨exp−1
yn xn, exp

−1
yn xn+1⟩ − λα1d

2(xn, yn)− λα2d
2(yn, xn+1).
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Using Proposition (2.2) twice, we obtain

d2(x∗, xn)− d2(xn, xn+1)− d2(x∗, xn+1) ≥ −2 < exp−1
xn+1

xn, exp
−1
xn+1

x∗ >

≥ 2 < exp−1
yn xn, exp

−1
yn xn+1 >

−2λα1d
2(xn, yn)− 2λα2d

2(yn, xn+1)

≥ −d2(xn, xn+1) + d2(xn, yn) + d2(xn+1, yn)

−2λα1d
2(xn, yn)− 2λα2d

2(yn, xn+1).

By simplifying the above relation, it concludes the desired result. □

Theorem 3.8. Let K be a nonempty closed convex subset of a Hadamard manifold M and f :
M × M → R be a bifunction satisfying conditions C(1), C(2), C(3) and C(4). Assume that the
sequences {xn} and {yn} generated by Algorithm 3.2 and 0 < λ < min{ 1

2α1
, 1
2α2

}. Then the following
statements holds:

1. The sequence {xn} is Fejér convergent to EP (f,K). In addition, the sequences {xn} and {yn}
are bounded.

2. Every limit point of {xn} belongs to EP (f,K). That is, the sequence {xn} converges strongly
to x̂ ∈ EP (f,K).

Proof . 1) Let x∗ ∈ EP (f,K). By Lemma 3.7,

d2(xn+1, x
∗)− d2(xn, x

∗) ≤ −(1− 2λα1)d
2(yn, xn)− (1− 2λα2)d

2(xn+1, yn). (3.12)

Since 0 < λ < min{ 1
2α1

, 1
2α2

}, then d(xn+1, x
∗) ≤ d(xn, x

∗). Hence, it concludes that the sequence
{xn} is Fejér convergence to EP (f,K) and the sequence {xn} is bounded. For boundedness of {yn},
it sufficient to prove that the sequence {d(xn, yn)} is convergent to zero. We have,

d(xn+1, x
∗) ≤ d(xn, x

∗) ≤ . . . ≤ d(x0, x
∗).

This shows that the sequence {d(xn, x
∗)} is bounded. Furthermore, by d(xn+1, x

∗) ≤ d(xn, x
∗), it

follows that the sequence {d(xn, x
∗)} is non increasing and convergent. Also, from relation (3.12), it

follows
(1− 2λα1)d

2(yn, xn) ≤ d2(xn, x
∗)− d2(xn+1, x

∗).

This implies the desired result.
2) Let x̂ be a accumulation point of the sequence {xn}. So, there exists a subsequence {xnk

} of
{xn} which converges to x̂. From {d(xnk

, ynk
)} → 0, it is concluded that {ynk

} converges to x̂. Since
K is closed and {ynk

} ⊆ K, then x̂ ∈ K.
Now, let y ∈ M be arbitrary. Using Lemma 3.6 (2), we get

λf(yn, y) ≥ λf(yn, xn+1) + ⟨exp−1
xn+1

xn, exp
−1
xn+1

y⟩. (3.13)

Since f is Lipschitz-type continuous, hence

f(yn, xn+1) ≥ f(xn, xn+1)− f(xn, yn)− α1d
2(xn, yn)− α2d

2(yn, xn+1). (3.14)

By taking y = xn+1 in Lemma 3.6 (1), we have

λ[f(xn, xn+1)− f(xn, yn)] ≥ ⟨exp−1
yn xn, exp

−1
yn xn+1⟩. (3.15)
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We obtain the following relation from relations (3.14) and (3.15):

λf(yn, xn+1) ≥ ⟨exp−1
yn xn, exp

−1
yn xn+1⟩ − λα1d

2(xn, yn)− λα2d
2(yn, xn+1). (3.16)

Combination of relations (3.13) and (3.16) imply that

λf(yn, y) ≥ ⟨exp−1
yn xn, exp

−1
yn xn+1⟩

+ ⟨exp−1
xn+1

xn, exp
−1
xn+1

y⟩
− λα1d

2(xn, yn)− λα2d
2(yn, xn+1).

This is also true for the subsequence nk. Since {xnk
} and {ynk

} converge to x̂ and f is upper
semicontinuous in the first variable, it follows

f(x̂, y) ≥ lim sup
k→∞

f(ynk
, y) ≥ 0.

It concludes that x̂ ∈ EP (f,K), because of y is arbitrary. Therefore, by Lemma 3.5, the sequence
{xn} converges strongly to x̂ ∈ EP (f,K). □
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[22] A. Kristály, Nash-type equilibria on Riemannian manifolds: a variational approach, J. Math. Pure Appl. 101

(2014) 660–688.
[23] X. Li and N. Huang, Generalized vector quasi-equilibrium problems on Hadamard manifolds, Optim. Lett. 9 (2015)

155–170.
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