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Abstract

In this article, we investigated the dynamic behavior of a discrete-time population model with the har-
vest. We give numerical simulation and chaos control by using the linear feedback control method.
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1. Introduction

The population models in ecology and biology can be expressed via continuous or discrete-
time equations. These models are dynamic models with inputs, outputs and positive feedback’s.
Discrete-time models present more realistic approach if births and deaths occur within certain inter-
vals of time in small population size [10]. It’s an important topic to rigorously analyze of population
dynamics with some effects [2, 8, 9, 17, 18]. One of the important factors affecting population dy-
namics is harvest. In recent years, the harvest effect is called as hydra effect which is an unexpected
outcome [1, 11]. In studies population dynamics with harvest, it is possible to encounter unexpected
results that affect population changes. In such cases, it becomes important to keep under control
the population by feedback control technique [7, 15].

Density-dependent processes such as growth, survival, reproduction and movement are
compensatory if their rates change in response to variation in population density (or numbers) such
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that they result in a slowed population growth rate at high densities and promote a numerical in-
crease of the population at low densities. Compensatory density dependence is important to fisheries
management because it operates to offset the losses of individuals [20].

Population dynamics describes the ways in which a given population grows and shrinks over
time, as controlled by birth, death, and emigration or immigration. It is the basis for understanding
changing fishery patterns and issues such as habitat destruction, predation and optimal harvesting
rates. The population dynamics of fisheries is used by fisheries scientists to determine sustainable
yields [12, 21, 24].

A fishery population is affected by three dynamic rate functions. These are birth rate (or recruit-
ment), growth rate and mortality. Recruitment means reaching a certain size or reproductive stage.
With fisheries, recruitment usually refers to the age a fish can be caught and counted in nets. Growth
rate measures the growth of individuals in size and length. This is important in fisheries where the
population is often measured in terms of biomass. Mortality includes harvest mortality and natural
mortality. Natural mortality includes non-human predation, disease and old age. If these rates are
measured over different time intervals, the harvestable surplus of a fishery can be determined. The
harvestable surplus is the number of individuals that can be harvested from the population without
affecting long term stability (average population size). The harvest within the harvestable surplus is
called compensatory mortality, where the harvest deaths are substituting for the deaths that would
otherwise occur naturally. Harvest beyond that is additive mortality, harvest in addition to all the
animals that would have died naturally [13, 23]. The Beverton-Holt and the Logistic (or Ricker)
ecological models are respectively suitable to define compensatory and over compensatory dynamics
in the population [3, 4, 5, 16, 22, 25, 26].

The purpose of this paper is to investigate the stability and bifurcation analysis of the positive
equilibrium point of the following model by adding harvest to the model without delay in [6]

Nt+1 = rNt +Ntfα(Nt)− eNt = F (r, α, e,Nt), (1.1)

where, fα(Nt) represents interactions (competitions) among mature individuals, e is the population
surviving constant effort harvesting, and r is the growth rate such that r ∈ (0, 1). The following
assumptions are imposed on the function f :

(i) fα(Nt) is sufficiently smooth on [0,∞) and f ′
α continuous such that f ′

α(Nt) < 0 for Nt ∈ [0,∞);
i.e., as the density increases, f decreases continuously.

(ii) f(0) has a finite positive value.

Ntfα(Nt) is one of the usual overcompensatory population maps like the scaled Nt(α−Nt). So, the
remainder of the article is discussed by taking fα(Nt) = (α−Nt).

2. Stability Analysis of Equilibrium Points of Eq (1.1) and Period-Doubling Bifurcation.

We will begin by reviewing some definitions and theorems (see, for instance [14, 19]). For the
first order difference equation as follows:

x(t+ 1) = f(x(t)) (2.1)

Definition 2.1. x∗ is defined as equilibrium point of Eq (2.1) if the following equality holds:

x∗ = f(x∗).
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Theorem 2.2. Let x∗ be a positive equilibrium point of Eq (2.1). Assume that f ′ is a continuous
and smooth on an open interval I containing equilibrium point. Then x∗ is locally asymptotically
stable if:

|f ′(x∗)| < 1,

and unstable if:
|f ′(x∗)| > 1.

Definition 2.3. m > 1 is defined as period for Eq (2.1) if:

fm(x∗) = x∗ and f i(x∗) ̸= x∗, for i = 1, 2, ...,m− 1.

Theorem 2.4. Let O+(b) = {b = (x(0), x(1), ..., x(k − 1))} be a k cycle of a continuously differen-
tiable function f. Then the following statements hold.

(i) The k cycle O+(b) is attracting if

|f ′(x(0)), f ′(x(1)), ..., f ′(x(k − 1))| < 1.

(ii) The k cycle O+(b) is repelling if

|f ′(x(0)), f ′(x(1)), ..., f ′(x(k − 1))| > 1.

Theorem 2.5. Suppose that for an equilibrium point x∗ of Eq (2.1), f ′(x∗) = 1. Then the following
statements then hold:

(i) If f ′′(x∗) ̸= 0, then x∗ is unstable.

(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.

(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

Theorem 2.6. Suppose that for an equilibrium point x∗ of Eq (2.1), f ′(x∗) = −1.Then the following
statements then hold:

(i) If −2f ′′′(x∗)− 3[f ′′(x∗)]2 < 0, then x∗ is asymptotically stable.

(ii) If −2f ′′′(x∗)− 3[f ′′(x∗)]2 > 0, then x∗ is unstable.

We then obtain the following theorem.

Theorem 2.7. Let N∗ be a positive equilibrium point of Eq (1.1). Then, N∗ is a local asymptotic
stable equilibrium point if

0 < N∗ ≤ 2. (2.2)

and N∗ is an unstable equilibrium point if N∗ > 2.

Proof . Let’s consider (i) - (ii). We can say that F ′ is a continuous function. The linearized form
of Eq (1.1) in a neighbourhood of N∗ is given by:

ut+1 = F ′(N∗)ut, F ′(N∗) = 1−N∗,

such that ut = Nt −N∗. By applying Theorem 2, we find that:

−2 < −N∗ < 0.

Also, from Theorem 6, we can easily seen N∗ = 2 is asymptotically stable. Thus the inequality (2.2)
is proved. □
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Remark 2.8. The equilibrium points of the model (1.1) with fα(Nt) = (α − Nt) are 0 and N∗ =
r + α− e− 1.

Now, let’s give some definitions and theorems (see, for instance [14, 19]) for stability analysis of
the 2 cycle solution and period doubling bifurcation.

Let consider functions of two variables of the form

G(x, λ) = fλ(x) (2.3)

where, fλ(x) is a C∞ function of the variable x, for fixed λ. Also, G depends smoothly on λ. We
will begin by reviewing some definitions and theorems.

Definition 2.9. The Schwarzian derivative of a function f at x is

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)
. (2.4)

Theorem 2.10. Let fλ be one parameter family of functions and suppose that fλ(x0) = x0 and
f ′
λ(x0) ̸= 1. Then there are intervals I about x0 and N about λ0 and a smooth functions p : N → I
such that p(λ0) = x0 and fλ(p(λ)) = p(λ), Moreover, fλ has no other fixed points in I.

Lemma 2.11. Suppose f(x) has finitely many critical points and Sf < 0. Then f has only finitely
many periodic points of period m for any integer m.

Theorem 2.12. (Period doubling bifurcations) Suppose

(i) fλ(0) = 0 for all λ in an interval about λ0.

(ii) f ′
λ0
(0) = −1.

(iii)
∂(f2

λ)
′

∂λ
|λ=λ0 (0) ̸= 0.

Then there is an interval I about 0 and a function p : I → R such that

fp(x)(x) ̸= x (2.5)

and
f 2
p(x)(x) = x. (2.6)

Remark 2.13. The following expressions confirm in addition to the hypothesis of Theorem 12.

(i) Sfλ0(0) ̸= 0. Then the curve λ = p(x) satisfies p′′(0) ̸= 0.

(ii) This means that either λ = p(x) is concave in the direction shown in to the right concave or in
the opposite direction.

(iii) If we assume that Sfλ < 0 for all λ near λ0, then the family fλ cannot have a “reverse” period
doubling bifurcation at λ0.

We then obtain the following theorems.

Theorem 2.14. 2 cycles solutions N∗
1,2 of Eq (1.1) are the asymptotic stability if

2 < N∗ <
√
5. (2.7)
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Proof . As N∗ passes through 2, the equilibrium point becomes unstable and iterative paths are
attracted to the fixed point at N∗ = r+α−e−1. We get the 2 cycles, if the equation F 2

r,α,e(Nt) = Nt

is solved, then we find the equilibrium points of period two (2 cycles) that

N∗
1,2 =

r + α− e+ 1±
√

(r + α− e+ 1)2 − 4(r + α− e+ 1)

2
. (2.8)

The following inequalities are defined for equilibrium point of period two founded.

(i) If N∗ > 2, then we have two real roots.
(ii) If N∗ = 2, then we have two equal real roots.

From Theorem 4, we get that∣∣(r + α− e+ 1)2 − 4(r + α− e+ 1)
∣∣ < 1.

By considering (i) and N∗ > 0, we reach the required inequality. □

Theorem 2.15. Suppose that the conditions (i)-(iii) in Theorem 12 are provided. There is an in-
terval I about 0 and a function p : I → R such that fp(x)(x) ̸= x and f 2

p(x)(x) = x. We have the
polynomial as follows:

p(x) =
x2 − x+ 1

x− 1

Proof . Since fp(x)(x) ̸= x, we can see that p(x) ̸= x + 1. If f 2
p(x)(x) = x is solved, we get the

function p(x). □

Remark 2.16. When N∗ =
√
5, in this case

[
F 2
r,α,e(N

∗
1 )
]′

= [Fr,α,e(N
∗
1 )]

′ [Fr,α,e(N
∗
2 )]

′ = −1. Simi-

larly, we get 22 cycles by solving F 4
r,α,e(Nt) = Nt. It appears that there is a 22 cycles when N∗ >

√
5

which is attracting for
√
5 < N∗ < λ1. This process of double bifurcation continues with indefinite

step. We can show the dynamical behavior by numerical simulations.

3. Bifurcations Analysis and Chaos Control

In this section, to show the bifurcations analysis, chaos control, maximum lyapunov exponents
and complex dynamics behavior of the population model, numerical simulations are carried out. We
consider the dynamic behavior of a discrete-time one dimensional population model with harvest as
follows:

Nt+1 = rNt +Ntfα(Nt)− eNt with fα(Nt) := α−Nt, (3.1)

where the parameters α, r and e are positive. We can see easily that for the positive equilibrium
point N∗ if r varies in the small neighborhood of PDN∗ , then period doubling bifurcation will appear
in the population model (3.1) where

PDN∗ = {(r, α, e) : r = r0 = 3− α + e, r > 1, α, e > 0} .

Now we introduce the study of control strategy in order to move the unstable periodic orbits or the
chaotic orbits towards the stable one. First, we apply the linear feedback control method [7] to the
discrete one dimensional population model with harvest (3.1). For this, we assume that the discrete
- time controller of (3.1) is defined by

Nt+1 = rNt +Nt (α−Nt)− eNt + St, (3.2)

where St = −p (Nt −N∗) is feedback controlling force, p stands for the feedback gains, and N∗ is an
unique positive equilibrium point of (3.1).
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Example 3.1. Let us consider α = 1.3, e = 0.5 and r ∈ [2, 3.2] with initial condition N0 = 0.2.
Then Equation (3.1) undergoes period doubling bifurcation which emerges from the equilibrium point
N∗ = 2 at the intrinsic growth bifurcation parameter r. The value of r varies in a small neighborhood
of r0 = 2.2 and the equation (3.1) dynamics converges to a period - 2 orbit. From Figure 1, we observe
that the interior equilibrium point N∗ of map (3.1) is stable for r < 2.2 and loses its stability through
a period doubling bifurcation for r = 2.2 and for r > 2.2. There is a period doubling cascade in orbits
of periods - 2, 4, 8, 16, 32 and non-periodic oscillations, that is usually referred to a chaos illustrated
in Figures 2(c) and 2(d).

Figure 1: Period doubling bifurcation diagram for (3.1) around N∗ in (r −N) plane.

The maximum Lyapunov exponent (LE) related to Figure 1 are computed and plotted in Figure 2(a)
which confirms the existence of the chaotic behavior and aperiodic orbits in the parametric space. It
is observed that some LE values are positive and some are negative so there exist stable equilibrium
points or stable period windows in the chaotic region. In general the positive Lyapunov exponent is
considered to be one of the characteristics implying the existence of chaos. Figures 2(d) - 2(f) are
local amplifications of the bifurcation diagram with three periodic windows that occurs in the chaotic
region. In these periodic windows, periods - 6, 5 and 3 orbits appear (see Figures 3, 4 and 5).
Furthermore, a first sub period-doubling (periodic window-1) cascade in orbits of periods - 6, 12 and
24 as in Figure 3, a second sub period doubling (periodic window-2) cascade in orbits of periods -
5, 10, and 20 are presented in Figure 4 and a third sub period doubling (periodic window-3) appears
in orbits of periods - 3 , 6, 12 shown in Figure 5. Finally a sub period doubling cascade occurs in
each periodic window leading to boundary chaotic and dynamic transition from periodic behaviors to
chaos.

Example 3.2. In this example, we take α = 0.63, r = 0.75 and e ∈ [2.2, 3.4] with initial condition
N0 = 0.1. It can be observed that the first bifurcation value of (3.1) is between the numbers 2.2 and
2.89, and the second one is between 2.81 and 2.85, and so on. Finally, Figure 7 presents the time
series corresponding to Figure 6(a) for varying values of e. We also observe that in Figures 7(a) -
7(f) , the growth pattern becomes periodic after an initial aperiodicity. In Figure 7(b), the period is
2-value cycle at e = 2.6 whereas Figure 7(c) portrays 4-value cycle at e = 2.88. The 8-value cycle at
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Figure 2: (a) Maximum Lyapunov exponents corresponding to Figure 1, (b) Maximum Lyapunov exponents are
superimposed on bifurcation diagrams, (c) - (f) local amplifications of Figure 1 showing periodic windows.
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Figure 3: Sub-period-doubling cascade for periodic window - 6.

Figure 4: Sub-period-doubling cascade for periodic window - 5.
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Figure 5: Sub-period-doubling cascade for periodic window - 3.

Figure 6: (a) Period doubling bifurcation diagram for (3.1) in (e−N) plane, (b) Maximum Lyapunov exponents for
corresponding to Figure 6(a), (c) Maximum Lyapunov exponents are superimposed on bifurcation diagrams.
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e = 2.94, 16 value cycle at e = 2.947 and non periodic oscillations at e = 2.99878 are displayed in
Figures 7(d), 7(e), 7(f) respectively.

Figure 7: Time series for various values of e corresponding to Figure 6(a).

Example 3.3. Next, we take α = 1.3, e = 0.5 and r = 2.2 with initial value N0 = 0.2. In this case,
the unique positive equilibrium point N∗ = 2 of (3.1) is unstable. The plot of Nt is shown in Figure
8(a) for the model (3.1). Then, the stable controlled model (3.2) is presented in Figure 8(b). In order
to make the equilibrium point N∗ locally asymptotically stable, linear feedback control strategy is used.
For this, we consider the corresponding controlled system (3.2) in which the feedback controlling force
is taken as St = −p (Nt − 2) with feedback gain p = −0.11. The plot of Nt is shown in Figure 8(b)
for the population model (3.2). The outcomes of theoretical analysis are confirmed.

Figure 8: (a) Plot of Nt for model (3.1), (b) Plot of Nt for model (3.2).

4. Conclusion

This paper focused on complex dynamic behavior of the population model with harvesting (1.1).
Numerical simulations which show the bifurcations analysis, chaos control, maximum Lyapunov
exponents are performed to demonstrate this dynamics behavior.
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